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Purpose of the talk 

!  Concentration of measure plays a 
fundamental role in the theory of model 
selection 

!  Model selection may be usefull for 
geometric inference 

!  Focus on the Gaussian framework: 
convenient to provide the main ideas and 
intuitions 



Concentration of measure 



Isoperimetry 

The Gaussian isoperimetric Theorem: let     
    be the standard Gaussian measure on    . 
Given   , among the sets     with 

is minimal for a half-space 

with                  (   : standard Gaussian tail 
function,   : Euclidean distance) 
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Gaussian concentration inequality 

and therefore if             , then          and        

Given some   -Lipschitz function   , applying 
this inequality with             to the set   

where      is a median of    leads to 

True (not obvious) with      instead of   
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Chi-quare distribution 

 If we apply this inequality to the Euclidean 
norm itself, i.e.                 , then          and 
since            

and therefore 

Of course     follows a chi-square 
distribution           . 
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The Gaussian concentration inequality also applies  
to suprema of Gaussian processes. 

Let                 be some centered Gaussian process. 
Assume that T is equipped with the covariance 
pseudo-metric    defined by             

If (T,d) is separable and if                   is a.s. 
continuous on (T,d) , setting                 one has 

where  
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Outside the Gaussian world 

!  Concentration of measure for product 
measures has been studied for years by M. 
Talagrand in a series of remarkable papers. 

!  Talagrand’s concentration inequality for 
empirical processes plays a fundamental 
role in statistics in general and for model 
selection in particular.  

!  Gaussian life is easier! 



Model Selection 



What are we talking about? 
•  Statistical inference  
       One observes      ( random vector, random 

process…) with unknown distribution    . 
       Purpose: take a decision about some 

quantity          related to   . Predict with a 
level of confidence. 

       What to do: design a genuine estimation 
procedure         of     and get some idea of how 
far it is from the target    . 

• The role of probability theory 
       Problem: the exact distribution of    is 

generally unknown. 
       Solution: make some approximation or 

evaluation based on Probability Theory. 
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• Asymptotic Theory 
   Typically, when                   ,           and                 

are independent. Asymptotic theory in statistics 
uses limit theorems ( Central limit Theorems, Large 
Deviation Principles) as approximation tools. 

       Example: when     belongs to some given model  
( which does not depend of    ),  behavior of 
maximum likelihood estimators. 

• Model selection 
   Designing a genuine          requires some prior 

knowledge on   . Choosing a proper model for    is a 
major problem for the statistician. 

       Aim of model selection : construct data-driven 
criteria to select a model among a given list. 

  X = X1,..., Xn( )  n→∞   X1,..., Xn

 P
 n

 P



•   Asymptotic approach to model selection 

- Idea of using some penalized empirical 
criterion goes back to the seminal works of 
Akaike (’70). 
- Akaike celebrated criterion (AIC) suggests to 
penalize the log-likelihood by the number of 
parameters of the parametric model. 
- This criterion is based on some asymptotic 
approximation that essentially relies on Wilks’ 
Theorem 



Wilks’ Theorem: under some proper regularity 
conditions the log-likelihood           based on n 
i.i.d. observations  with distribution belonging to 
a parametric model with D parameters obeys to 
the following weak convergence result 

 Ln θ( )

where    denotes  the MLE and      is 
the true value of the parameter.      



• Non asymptotic Theory 
    In many situations, it is usefull to make 

the size of the models tend to infinity or 
make the list of models depend on n. In 
these situations, classical asymptotic 
analysis breaks down and one needs to 
introduce an alternative approach that we 
call non asymptotic. 

               We still like  

    But the size of the models as well the size 
of the list of models should be authorized 
to be large too. This approach is based on  

Concentration Inequalities  

Large values of n ! 



This approach has been fruitfully used in several 
works. Among others: Baraud (’00) and (’03) for 
least squares in the regression framework, 
Castellan (’03) for log-splines density estimation, 
Patricia Reynaud (’03) for poisson processes, etc…  



Gaussian Model Selection 



The Gaussian framework  

We consider the generalized linear Gaussian  
model. This means that, given some separable 
Hilbert space    , one observes 

where    is some centered Gaussian isonormal 
process, i.e. maps isometrically    onto some 
Gaussian subspace of          .   We have in mind 
that writing the level of noise as                allows 
an easy comparison with other frameworks 
involving    observations. 
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This framework is convenient to cover both the 
infinite dimensional white noise model and the finite 
dimensional linear model for which            and 
                , where    is a standard Gaussian random 
vector.  
Consider some collection            of (typically closed 
and convex) subsets of    .  
We also consider the least squares criterion                            

and, for each    ,    minimizing     over    . The quality 
of model      is measured by the quadratic risk 
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Our purpose is to analyze the penalized LSE     , 
where 

   
m̂ = argmin

m∈M
Lε ŝm( ) + pen m( ){ }

Does the risk reflect the model choice paradigm? 
Let us compute it in the simplest situation where       
is a linear model with dimension     . Then    

The best (oracle) model according to this criterion 
should make a trade-off between its size and its 
quality of approximation to the truth. The aim is 
now to mimic it.   
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Selecting linear models 
Let us begin with model selection among linear  
models and review some results obtained in joint 
works with Lucien Birgé (JEMS�01 and PTRF�07). 
Each model      is assumed to be linear  with   
dimension      and represented by the least  
squares estimator     on    . Then 

Oracle : Ideal model achieving  
Aim: mimic the oracle by estimating the risk 
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• Mallows������heuristics 
Let    denote the orthogonal projection of s on     . 
An « ideal » model should minimize the quadratic  
risk 

or equivalently 

Substituting to        its natural unbiased estimator   
              leads to Mallows’      criterion 

 Issue : look the way        concentrates around  
uniformly w.r.t.         . 
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Theorem (Birgé, Massart�01) 
Let              be a family of non negative weights 
such that  

Let         . Assume that  

and take 

Then 
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A typical choice is                 . Then if one defines 

the weights actually appear as the price to pay  
for redundancy (i.e. many models with the same 
dimension). The penalty becomes 
and the upper bound (up to constant) writes 

  
infD infDm=D d 2 s,Sm( ) + pen D( ){ }{ }
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Choice of the weights 



Comparison with the oracle 
Since 

If the weights             are such that 
and                then the upper bound provided  

by the Theorem becomes 

(up to some multiplicative constant).  
Conclusion :  The selected estimator performs  

(almost) as well as an oracle.  
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Let                be a family of elements in    . Let      
be some collection of subsets of            and  

define                     ,          .  
a.  Ordered variable selection 
     is the collection of subsets of the form 
with         (possibly         )    
Then one can take 

Comparable to the oracle (linearly independent  
case)  
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Variable Selection 
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b. Complete variable selection 
Let      be the collection of all subsets of             . 
One can take                     which leads to 

and 

with       . In the orthonormal case      can be  
explicited. It is simply hard thresholding  
(Donoho, Johnstone, Kerkyacharian, Picard) 
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   with                          . Then 

Refinement : One can choose                              
whenever           , which leads to an optimal  
risk bound (minimax sense). 
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Let              be the Fourier basis with its  
natural ordering then 

Up to constant               is bounded by                                   

uniformly w.r.t    satisfying              . 
Optimal in minimax sense since 

Conclusion  Minimax, up to constant over all 
the Sobolev balls              simultanously. 
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•  Link with non parametric adaptation 



• Conclusions 
• Mallows��criterion can underpenalize. 
• Condition K>1 is sharp. 
• What penalty should be recommanded? One 

can try to optimize the oracle inequality. 
The result is that twice the minimal value   
is a good choice (Birgé, Massart (2007)) 

• Practical use One does not know the level of 
noise but one can retain from the theory 
that 

    « optimal » penalty = 2 « minimal » penalty 
               data-driven penalty 



Back to Geometry 



Assume that for every             , there exists some function               
           such that                   on             and              

for any positive    and any point    in     .     

  φm↗    φm x( ) / x↘

Theorem (M. 2007) 

Let us define     such that  
and consider some family of weights            such that  

Let    be some constant with          and take  
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Comments 

If      is finite dimensional with dimension      
we can take            which shows that the 
above Theorem strictly implies the linear 
model selection Theorem (Birgé,Massart (‘01)). 
Indeed since                                  

if            denotes some orthonormal basis of 
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More generally, the function     should be 
understood as a modulus of continuity of     over  
model     . One can indeed use a pealing device  
to ensure that if for every         and every   
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Simplicial approximation 
Here is an illustration of what we are promoting 
with Frédéric Chazal and our students.   
C. Caillerie and B. Michel (2011) have applied the  
Gaussian model selection Theorem above to  
simplicial approximation. 
Consider that one observes                         
                                        with      
The unobserved deterministic points    ‘s belong  
to       and the variables     ‘s are i.i.d. standard  
normal random vectors. One has in mind that the  
points    ‘s are sampled on some geometrical  
object that one wants to learn.                

 xi = si +σξi   1≤ i ≤ n
 si

  ! p
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 si



They consider some collection of k-homogenous 
simplicial complexes                 in     . They use                   
covering numbers to define a proper penalty term  
and derive a risk bound on the selected estimator 

where    simply denotes the vector of        
« built » from the    ‘s.  
As expected (at least if the collection is not too 
rich) the penalty recommanded by the Theorem is 
found to be proportionnal to             

   Cm ,m∈M{ }   ! p
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where         is measuring the size of the simplicial 
complex. More precisely 

where the sum is extended to the set of simplices 
with maximal dimension k and      denotes the 
diameter of the smallest Euclidean ball containing 
the simplex    . The bad news are that the penalty 
involves nasty constant (and the level of noise 
that we do not know in practice). 
They use a heuristics to solve this problem. 
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They use the penalized criterion 

where      is estimated from the data by using the 
following phase transition which is empirically 
observed: when      is too small (          ) the 
criterion  

chooses a simplicial complex with a size which is 
close to the maximal one in the collection.      
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Thanks for your attention! 

Many remaining issues… 

Among which: escaping from the square loss,  
building an adaptive estimation theory… 


