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Brain	Computer	Interface

https://en.wikipedia.org/wiki/File:Brain-computer_interface_(schematic).jpg



EEG	Based	BCI

• +	Non-invasive
• +	High	temporal	resolution	for	real-time	interaction
• +	Inexpensive,	light	weight,	and	highly	portable
• - Poor	spatial	specificity
• - EEG	Signals	in	different	channels	are	highly	correlated,	reducing	
ability	to	distinguish	neurological	processes.
• - Long	training	time	required



Real-time	fMRI	Based	BCI

• +	High	spatial	specificity	-- more	accuracy
• - High	cost
• - Non-portable
• - Low	temporal	resolution
• - Restrictive	environment



Simultaneous	EEG	– fMRI	data	acquisition

http://www.ant-neuro.com/sites/default/files/styles/product_imageshow/public/85500991.jpg?itok=0WPQPi1c



EEG	Data

Electrode	position	 measurements	 via	
Polhemus Fastrak 3D	Digitizer	System	EEG	data	were	epoched with	respect	to	R	peaks	 of	EKG	

signal	and	 averaged	over	trials.
The	ballistocardiogram (BCG)	artifact	in	the	EEG	signal	
obtained	 inside	 MR	scanner	is	removed.



Objective:	Discovery	of	Latent	Linkages
between	EEG	and	fMRI	and	improve	BCI
• Hypothesis:	latent	linkages	between	EEG	and	fMRI	can	be	exploited	to	
estimate	fMRI-like	features	from	EEG	data.
• This	could	allow	an	independently	operated	EEG-BCI	to	decode	brain	
states	in	real	time,	with	better	accuracy	and	lower	training	time.
• Hypothesis:	Features	from	a	sub-set	of	subjects	can	be	generalized	to	
new	subjects	(for	a	homogeneous	set	of	subjects).	



Strategies
• Obtain	fMRI	data	with	high	temporal	resolution:	

• Use	multiband	echo-planar	imaging	(M-EPI)	[Feinberg,	et	al.	2010]	to	achieve	whole	
brain	coverage	with	sampling	 intervals	(TR)	as	short	as	200	ms.
• View	fMRI	as	convolution	of	HDF	(Hemodynamic	response	function)	and	neuronal	
states.	Use	cubature	Kalman filter	based	blind	deconvolution	of	fMRI	[Havlicek,	et	al.	
2011]	to	recover	driving	neuronal	state	variables	with	higher	effective	temporal	
resolution.	

• Obtain	clean	EEG	data:
• EEG	signal	sampled	at	5000Hz	to	ensure	accurate	gradient	artifact	removal,	
then	downsampled to	250Hz	to	make	dataset	more	manageable.

• Use	the	complex	Morlet wavelet	[Teolis,	1998]	to	give	a	time-frequency	
representation	of	both	EEG	and	fMRI	for	each	trial.



Discover	latent	linkages	between	EEG	and	fMRI
• Simultaneous	EEG/fMRI	data	collected	using	a	P300	speller	based	paradigm.
• EEG	modalities:	trial–time–frequency–channel

• 4ms	updates,	63+1	channels,	4	trials

• fMRI	modalities:	trial–time–neuronal	state–voxel
• 200ms	updates	with	whole	brain	coverage	and	3mm	voxels

• Apply	Orthogonal	Decomposition	to	each	EEG	and	fMRI.	[Zhou	and	Cichocki 2012]
• The	first	dimension	of	“trials”	is	the	same	for	both	tensors,	permitting	the	application	
of	HOPLS.	This	important	property	allows	both	EEG	and	fMRI	to	be	sampled	at	
different	rates.	
• It	is	not	required	to	downsample	EEG	to	fMRI’s	temporal	resolution,	as	done	by	most	
researchers	in	the	EEG-fMRI	comparison	literature	(Goldman,	et	al.	2002)	
(Hinterberger,	Veit,	et	al.	2005),	which	will	lead	to	loss	of	vital	temporal	information.



• Assumptions:	EEG	data	is	the	independent	variable	X,	and	
deconvolved	fMRI	(neuronal	states)	data	is	the	dependent	variable	Y.	
• Reasonable	assumption	because	the	hemodynamic/metabolic	 activity	is	a	secondary	
response	to	the	electrical	activity.	

• Goal:	Given	X and	Y over	many	trials,	and	assuming	F(X)	=	Y,	discover	F.
• Higher	Order	Multilinear	Subspace	Regression	/	Higher	Order	Partial	Least	Squares	
(HOPLS)	[Q.	Zhao,	et	al.	2011]	to	predict	the	dependent	variable	(deconvolved	fMRI)	
from	the	independent	variable	(EEG).	
• HOPLS	parameters	(latent	variables,	core	tensors	and	tensor	loadings)	are	likely	to	
provide	information	on	latent	EEG-fMRI	relationships	 across	the	dimensions	
considered.

Discover	latent	linkages	between	EEG	and	fMRI



Partial	Least	Squares	(PLS)
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𝑇 = 𝑡-,𝑡7,⋯ , 𝑡+ and	𝑈 = 𝑢-,𝑢7,⋯ , 𝑢+ are	matrices	of	R extracted	
latent	variables	 from	X and	Y,	respectively.	
U will	 have	maximum	 covariance	with	T column-wise.	
P and	Q are	latent	vector	subspace	 base	 loadings.
E and	F are	residuals.

The	relation	between	T and	U can	be	approximated	as		𝑈 ≈ 𝑇𝐷
where	D is	an	R×R diagonal	matrix	of	regression	 coefficients.	

Partial	least	squares:	 Predicts	a	set	of	dependent	 variables	Y from	a	set	of	independent	 variables	X.
Attempts	to	explain	 as	much	 as	possible	 the	covariance	between	X	and	 Y.	

PLS	optimization	objective	 is	to	maximize	pairwise	 covariance	of	a	set	of	latent	variables	 by	projecting	 both	X
and	Y onto	new	subspaces.

(3)



Least	Squares	(Undergraduate	Linear	Algebra)

• Given	a	linear	transformation	𝑃 → 𝑄 we	want	to	simultaneously	
predict	the	subspaces	ℝR ⊂ 𝑃 and	ℝT ⊂ 𝑄 so	that	the	restricted	
map	ℝR → ℝT	gives	a	good	approximation	of	the	mapping.	

• Given	an	underdetermined	matrix	equation	𝐴	𝑥⃗ = 𝑏,	we	can	attempt	
to	square	the	system	and	solve:	𝐴\𝐴	𝑥⃗ = 𝐴\𝑏
• Perhaps	use	QR.

• The	standard	least-squares	solution	is		𝑥] = 	 𝐴\𝐴 ^-		𝐴\𝑏.	
• Project	to	a	linear	subspace	and	replace	Awith	a	full	rank	matrix	using	SVD.



Singular	Value	Decomposition
• The	Singular	Value	Decomposition	𝐴	 = 	𝑈	Σ	𝑉\

• The	quasi-diagonal	matrix	of	singular	values	𝜎-, 𝜎7,… can	be	truncated	to	the	
largest	r	 singular	values	to	give	the	best	rank	r approximation.

• The	orthogonal	matrices	U and	V	(called	loadings)	give	the	embeddings of	the	
respective	subspaces	on	which	A is	best	approximated	to	rank	r.

• The	pseudoinverse of	A is	𝐴† 	 = 𝑉	Σ†	𝑈\,	where	Σ† = diag(𝜎-^-, 𝜎7^-, …)

• The	minimal	norm	solution	to	𝐴	𝑥⃗ = 𝑏 is					𝑥] = 𝐴†𝑏 	= Σd,-
* ef

gh
if
𝑣d.



SVD	and	PLS
• Given	m data	observations	of	n	participants	stored	in	a	data	matrix	X
(independent	variables).
• Given	k responses	of	the	n participants	stored	in	a	data	matrix	Y	(dependent	
variables).
• Find	a	linear	function	F that	explains	the	maximum	covariance	between	X	and	Y.

	𝑌 = 𝑋𝐹+ 𝐸
• Center	and	normalize	both	X and	Y.	
• Compute	the	Covariance	Matrix	𝑅 = 𝑌\𝑋
• Perform	SVD:	R = 𝑈Σ𝑉\ (compact	form,	iterative	algorithm)
• The	latent	variables	of	X and	Y are	obtained	by	projections:

𝐿n = 𝑋𝑉 𝐿o = 𝑌𝑈
• U and	V	give	the	embeddingsof	the	subspaces	(the	loadings	of	the	variables)



Structured	variables
• In	the	situation	of	EEG-fMRI	data,	even	after	a	wavelet	decomposition	
of	the	data,	we	still	have	extra	structure	in	the	dependent	variables	
(fMRI)	Y	and	in	the	independent	variables	X.
• EEG	modalities:	trial–time–frequency–channel

• 4ms	updates,	63+1	channels,	4	trials
• So	X	could	be	4	trials	x	100	wavelets	x	63	channels

• fMRI	modalities:	trial–time–neuronal	state–voxel
• 200ms	updates	with	whole	brain	coverage	and	3mm	voxels
• So	Y	could	be	4	trials	x	200	wavelets	x	36,000	voxels

• Don’t	think	of	100x63	as	6,300,	don’t	think	of	200x36,000	as	7.2×10u
• Unfolding	leads	to	“small	p large	n”	problem	and	a	loss	of	information.		



Modal	Products	for	Tensors
• For	𝒜 ∈ ℝxy×xz×⋯×x{ and	𝑈 ∈ ℝ|}×x} the		𝑛��mode	tensor-matrix	product	is

𝒜×T𝑈 ∈ ℝxy×xz×⋯×x}�y×|}×x}�y×⋯×x{	

𝒜×T𝑈 ∶= ( 𝑎dy,dz,…,d},…d{𝑢�},d}
d}∈x}

• This	modal	product	generalizes	the	matrix	product	and	vector	outer	product	
and	replaces	transpose.

If	𝐴 ∈ ℝxy×xz and	𝐵 ∈ ℝxy×|z then	𝐴	×-𝐵 = 	𝐵\𝐴 ∈ ℝ|z×xz

If	x ∈ ℝ-×T and	y ∈ ℝ-×R then 𝑦⃗\𝑥 ∈ ℝR×T



Matrix	SVD	using	modal	product	notation

• SVD	Theorem:	Every	complex	𝐼-×𝐼7 matrix	𝐹 has	an	expression
𝐹 = 𝑆×-𝑈(-)×7𝑈(7)

with	
𝑈(-) a	unitary	𝐼-×𝐼-matrix	
𝑈(7) a	unitary	𝐼7×𝐼7 matrix
𝑆 pseudodiagonal	𝐼-×𝐼7 matrix,	𝑆 = diag(𝜎- , 𝜎7,… , 𝜎��� xy,xz )
The	singular	values	are	ordered:	𝜎- ≥ 𝜎7 ≥ ⋯ ,≥ 𝜎��� xy,xz ≥ 0



Tensor	SVD		(Orthogonal	Tucker	Decomposition)

• Every		𝐼-×𝐼7×⋯×𝐼� array	𝒜 can	be	written	as	a	product:
𝒜 = 	𝑆×-𝑈(-)×7𝑈(7)⋯×�𝑈(�)

• Each	𝑈(T)	is	a	unitary	𝐼T×𝐼T matrix.

• 𝑆	is	a		𝐼-×𝐼7×⋯×𝐼� complex	tensor	with	slices	having	norm	 𝑆d},d = 𝜎d
(T),	

the	n-mode	singular	values	of	𝒜
• For	each	n	the	singular	values	are	ordered	𝜎-

(T) ≥ 𝜎7
T ≥ ⋯ ≥ 𝜎x}

T ≥ 0	
• The	slices	𝑆d},d are	all-orthogonal:

𝑆d},�,𝑆d},� = 0			∀𝛼 ≠ 𝛽			∀𝑛

• Compute	the	n-mode	singular	matrix	𝑈(T) and	n-mode	singular	values	by	the	
matrix	SVD	of	the	n-th unfolding	of	size	𝐼T×𝐼7𝐼�⋯𝐼T^-𝐼T�-𝐼�.
• S	is	computed	by	𝑆 = 𝒜×-𝑈 - ∗

×7𝑈 7 ∗
⋯×�𝑈 � ∗

Theorem:
[De	Lauthawer 2005,	 Zhao-Cichocki 2013]



Tucker	Decomposition	for	EEG--fMRI
• Take	an	𝑁-×𝑁7×𝑁�×𝑁�	tensor	and	express	it	as	a	(small)	core	tensor	
of	size	𝐿-×𝐿7×𝐿�×𝐿�	together	with	changes	of	bases	(loadings)	to	
put	the	core	back	into	the	larger	tensor	space.
• Let	𝑋 and	𝑌 be	tensors	of	EEG	and	deconvolved	fMRI,	respectively	
with	modalities:	trials,	voxels/channels,	time	and	frequency.
• Obtain	new	tensor	subspaces	via	the	Tucker	model	for	each	trial:

• Approximate	𝑋 with	a	sum	of	multilinear rank-(1, 𝐿7,𝐿�,𝐿�)terms
• Approximate	𝑌 with	a	sum	of	multilinear rank-(1,𝐾7, 𝐾�,𝐾�) terms

• The	core	tensors	model	the	underlying	biophysics	and	are	different	
for	EEG	and	fMRI.	
• Perform	HOSVD	on	the	𝐿7×𝐿�×𝐿�×𝐾7×𝐾�×𝐾� contraction	𝑋×- 𝑌



Higher	order	Partial	Least	Squares	(HOPLS)
The	HOPLS	is	expressed	 as

𝑌 = (𝐷*

+

*,-

	×-	𝑡*	×7	𝑄*
(7)	×�	𝑄*

(�)×�	𝑄*
� +	𝐹

𝑋 =( 𝐺*

+
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	×-	𝑡*	×7	𝑃*
(7)	×�	𝑃*

(�)×�	𝑃*
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where	R is	the	number	 of	latent	vectors,	
𝑡* is	the	rth latent	vector,	
𝑃*
(T) and	𝑄*

(R) are	loading	matrices	corresponding	
to	latent	vector	𝑡* on	mode-n and	mode-m,	
respectively,	
𝐺* and	𝐷* are	core	tensors,	
and	×� is	the	product	 in	the	kth mode.

Compute	 the	𝑡* as	the	leading	left	singular	 vector	
of	an	unfolding,	 deflate,	and	repeat.



Feasibility	Study

• We	performed	the	simultaneous	EEG/fMRI	experiment	and	EEG-only	BCI	
using	the	P300	speller	paradigm	in	4	right-handed	male	subjects	(mean	
age:	21.5	years)	with	no	history	of	neurological	or	other	illness.	
• fMRI	data	were	acquired	using	the	M-EPI	sequence	(TR=200	ms,	multiband	
factor=8,	3	mm	isotropic	voxels,	full	coverage)	and	deconvolved	using	the	
cubature	Kalman filter	approach.	
• The	analyses	were	carried	out	on	a high	performance	computer	with	Intel®	
Core™	i7-3820	(Quad	Core,	10MB	Cache)	overclocked	up	to	4.1GHz	
processor	with	a	top	of	the	line	NVidia	GPU	Quadro Plex 7000.	
• We	obtained	significantly	high	correlation	using	both	the	full	and	the	
significant	HOPLS	models,	with	the	latter	providing	better	accuracy	with	
run	times	under	a	second.	





Preliminary	Results
Offline analysis of 

Simultaneous EEG/fMRI Expt
Full HOPLS forward model Significant HOPLS forward model

Correlation between 
deconvolved fMRI data and 

that predicted from EEG
0.76 ± 0.17 0.84 ± 0.13

Approximate run time for 
‘prediction module’ in sec

1.4 0.8

Table.2 Prediction of deconvolved fMRI from simultaneously acquired EEG using offline analysis

Off line analysis of 
simultaneous 

EEG/fMRI Expt

Original fMRI 
MVPA

fMRI predicted 
with significant 

HOPLS + MVPA

fMRI predicted 
with full HOPLS 

+ MVPA

SVM based on 
EEG tensors 

(from sequential 
model)

SVM based on 
fMRI 

tensors(from 
sequential model)

SVM based on 
ERP amplitude 

and latency

Letter 
decoding 
accuracy

1 trial 
block

0.97±0.03 0.94 ± 0.04 0.93±0.05 0.84±0.10 0.86±0.12 0.68 ± 0.17

8 trial 
blocks

1 1 1 0.98±0.02 0.98±0.02 0.84 ± 0.11

Run time per letter 
decoded (sec)

0.9 1.8 2.4 0.13 0.24 0.08

Table.3 Letter decoding accuracy from post-hoc analysis of simultaneous EEG/fMRI data



Preliminary	results

Online analysis of EEG-only BCI data
Parameters from 
same subject’s 
EEG/fMRI run

Parameters from 
random prior 

subject’s 
EEG/fMRI run

Parameters learned from all prior subjects’ EEG/fMRI run

Subject-2 Subject-3 Subject-4

Letter decoding 
accuracy from 
fMRI predicted 
with significant 

HOPLS + MVPA

1 trial block 0.93 ± 0.04 0.87 ± 0.11 0.86 0.91 0.93

8 trial blocks 1 0.94 ± 0.04 0.93 0.93 0.95

Table.4 Letter decoding accuracy from real-time analysis of EEG data using predicted fMRI 
(from significant HOPLS) as features for MVPA

In spite of these encouraging results, we stress the fact that they are derived from a small, homogeneous 
sample of 4 subjects. We need to do more trials to demonstrate more broad generalizability.



(Extra	Slide) Higher	Order	Partial	Least	Squares
• The	subspace	transformation	is	optimized	using	the	following	objective	function,	
yielding	the	common	latent	variable	𝑡* instead	of	2	latent	variables.

• 𝑚𝑖𝑛{¡ } ,¢ } } 𝑋 − [𝐺; 	𝑡,𝑃
7 ,𝑃 � ,𝑃 � ]

7
+ 𝑌 − [𝐷;		𝑡,𝑄 7 ,𝑄 � , 𝑄 � ]

7

such	that			 𝑃 T %𝑃 T = 𝐼¨}				𝑎𝑛𝑑					 𝑄
R %𝑄 R = 𝐼ª«	

• Simultaneous	optimization	of	subspace	representations	and	latent	variable	𝑡*.	
Solutions	can	be	obtained	by	Multilinear	Singular	Value	Decomposition	(MSVD)	(see	
[Q.	Zhao,	et	al.	2011])
• Minimizing	the	errors	is	equivalent	to	maximizing	the	norms	 𝐺 and	 𝐷
simultaneously	(accounting	for	the	common	latent	variable).	To	do	this	we	maximize	
the	product	 𝐺 7 ⋅ 𝐷 7.	
• Compute	the	latent	variables	𝑡* as	leading	left	singular	vectors	and	then	deflate.	
Repeat	until	you	reach	the	error	bounds	you	want.


