Numerical computation
 of the homology of basic semialgebraic sets

Pierre Lairez
joint work with Peter Bürgisser and Felipe Cucker
Inria Saclay
TAGS 2018
Linking Topology to Algebraic Geometry and Statistics
22 February 2018, Leipzig

Basic semialgebraic sets

definition A basic semi algebraic set is the solution set of finitely many polynomial equation and inequations.
Picture: https://de.wikipedia.org/wiki/Steinmetz-Körper

Semialgebraic sets in applications

J. T. Schwartz, M. Sharir, "On the piano movers problem"

FIg. 1. An instance of our case of the "piano movers" problem. The positions drawn in full are the initial and final positions of B; the intermediate dotted positions describe a possible motion of B between the initial and final positions.

Complexity bounds in real algebraic geometry

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D.
polynomial time algorithm
membership Decide if $x \in W$

Complexity bounds in real algebraic geometry

```
polynomial time algorithm
    membership Decide if }x\in
single exponential time algorithm - (sD) }\mp@subsup{)}{}{\mp@subsup{n}{}{O(1)}
```

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

Complexity bounds in real algebraic geometry

```
W\subseteq\mp@subsup{\mathbb{R}}{}{n}\mathrm{ (basic) semialgebraic set defined by s equations or inequalities of degree D}D\mathrm{ .}
polynomial time algorithm
    membership Decide if }x\in
single exponential time algorithm - (sD) }\mp@subsup{)}{}{\mp@subsup{n}{0(1)}{(1)}
    emptyness Decide if W=\varnothing (Grigoriev, Vorobjov, Renegar)
```


Complexity bounds in real algebraic geometry

```
W\subseteq\mp@subsup{\mathbb{R}}{}{n}\mathrm{ (basic) semialgebraic set defined by s equations or inequalities of degree D.}
polynomial time algorithm
    membership Decide if }x\in
single exponential time algorithm - (sD) }\mp@subsup{)}{}{\mp@subsup{n}{}{O(1)}
    emptyness Decide if W=\varnothing (Grigoriev, Vorobjov, Renegar)
    dimension Compute dimW (Koiran)
```


Complexity bounds in real algebraic geometry

```
W\subseteq\mp@subsup{\mathbb{R}}{}{n}\mathrm{ (basic) semialgebraic set defined by s equations or inequalities of degree D.}
polynomial time algorithm
    membership Decide if }x\in
single exponential time algorithm - (sD) }\mp@subsup{)}{}{\mp@subsup{n}{}{O(1)}
    emptyness Decide if W=\varnothing (Grigoriev, Vorobjov, Renegar)
    dimension Compute dim W (Koiran)
        #CC Compute the number of connected components (Canny,
        Grigoriev, Vorobjov)
```


Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm
membership Decide if $x \in W$
single exponential time algorithm $-(s D)^{n^{O(1)}}$
emptyness Decide if $W=\varnothing$ (Grigoriev, Vorobjov, Renegar)
dimension Compute $\operatorname{dim} W$ (Koiran)
\#CC Compute the number of connected components (Canny, Grigoriev, Vorobjov)
$b_{0}, b_{1}, b_{2}, \ldots$ Compute the first few Betti numbers (Basu)

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm
membership Decide if $x \in W$
single exponential time algorithm $-(s D)^{n^{O(1)}}$
emptyness Decide if $W=\varnothing$ (Grigoriev, Vorobjov, Renegar)
dimension Compute dim W (Koiran)
\#CC Compute the number of connected components (Canny, Grigoriev, Vorobjov)
$b_{0}, b_{1}, b_{2}, \ldots$ Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm
membership Decide if $x \in W$
single exponential time algorithm $-(s D)^{n^{O(1)}}$
emptyness Decide if $W=\varnothing$ (Grigoriev, Vorobjov, Renegar)
dimension Compute dim W (Koiran)
\#CC Compute the number of connected components (Canny, Grigoriev, Vorobjov)
$b_{0}, b_{1}, b_{2}, \ldots$ Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)
double exponential algorithms $-(s D)^{2^{O(n)}}$

Complexity bounds in real algebraic geometry

$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm
membership Decide if $x \in W$
single exponential time algorithm $-(s D)^{n^{O(1)}}$
emptyness Decide if $W=\varnothing$ (Grigoriev, Vorobjov, Renegar)
dimension Compute dim W (Koiran)
\#CC Compute the number of connected components (Canny, Grigoriev, Vorobjov)
$b_{0}, b_{1}, b_{2}, \ldots$ Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)
double exponential algorithms $-(s D)^{2^{O(n)}}$ homology Compute the homology groups of W
$W \subseteq \mathbb{R}^{n}$ (basic) semialgebraic set defined by s equations or inequalities of degree D. polynomial time algorithm
membership Decide if $x \in W$
single exponential time algorithm $-(s D)^{n^{O(1)}}$
emptyness Decide if $W=\varnothing$ (Grigoriev, Vorobjov, Renegar)
dimension Compute $\operatorname{dim} W$ (Koiran)
\#CC Compute the number of connected components (Canny, Grigoriev, Vorobjov)
$b_{0}, b_{1}, b_{2}, \ldots$ Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)
double exponential algorithms $-(s D)^{2^{O(n)}}$ homology Compute the homology groups of W

CAD Compute the cylindrical algebraic decompositon (Collins)

Approaching sets by union of balls

- Homotopically equivalent to its nerve

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
- sufficiently many points

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
- sufficiently many points
- radius not too small

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
- sufficiently many points
- radius not too small
- radius not too large

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
- sufficiently many points
- radius not too small
- radius not too large
- How to quantify "sufficiently many", "too small" and "too large" in an algebraic setting?

Approaching sets by union of balls

- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
- sufficiently many points
- radius not too small
- radius not too large
- How to quantify "sufficiently many", "too small" and "too large" in an algebraic setting?
- Can we derive algebraic complexity bounds for the computation of the homology of semialgebraic sets?

A numerical algorithm for homology

$$
\text { input } W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}
$$

A numerical algorithm for homology

$$
\begin{aligned}
& \text { input } W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\} \\
& \text { input space } \mathscr{H}=\text { tuples of } s+q \text { polynomial equations/inequalities } \\
& \text { of degree at most } D .
\end{aligned}
$$

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D.
input size $N=$ dimension of this space.

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D. input size $N=$ dimension of this space. condition number κ_{*} (to be defined later)

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D.
input size $N=$ dimension of this space.
condition number κ_{*} (to be defined later)
main result One can compute $H_{*}(W)$ with $\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$ operations

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D.
input size $N=$ dimension of this space.
condition number κ_{*} (to be defined later) main result One can compute $H_{*}(W)$ with $\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$ operations
probability measure Gaussian probability distribution

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D.
input size $N=$ dimension of this space.
condition number κ_{*} (to be defined later) main result One can compute $H_{*}(W)$ with $\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$ operations
probability measure Gaussian probability distribution
probabilistic analysis cost $\leqslant(s D)^{n^{3+o(1)}}$ with probabiliy $\geqslant 1-(s D)^{-n}$ cost $\leqslant 2^{O\left(N^{2}\right)}$ with probabiliy $\geqslant 1-2^{-N}$.

A numerical algorithm for homology

input $W=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=\cdots=f_{q}(x)=0, g_{1}(x) \geqslant 0, \ldots, g_{s}(x) \geqslant 0\right\}$
input space $\mathscr{H}=$ tuples of $s+q$ polynomial equations/inequalities of degree at most D.
input size $N=$ dimension of this space.
condition number κ_{*} (to be defined later) main result One can compute $H_{*}(W)$ with $\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$ operations
probability measure Gaussian probability distribution
probabilistic analysis cost $\leqslant(s D)^{n^{3+o(1)}}$ with probabiliy $\geqslant 1-(s D)^{-n}$ cost $\leqslant 2^{O\left(N^{2}\right)}$ with probabiliy $\geqslant 1-2^{-N}$.
grid methods Initiated by Cucker, Krick, Malajovich, Shub, Smale, Wschebor

Condition number

Condition number for linear systems

problem How much the solution of a linear system $A x=b$ is affected by a pertubation of b ?

Condition number for linear systems

problem How much the solution of a linear system $A x=b$ is affected by a pertubation of b ?
$\|\delta x\| /\|\delta b\| \leqslant \kappa(A)=\|A\|\left\|A^{-1}\right\|$
(Goldstine, von Neuman, Turing)

Condition number for linear systems

problem How much the solution of a linear system $A x=b$ is affected by a pertubation of b ?
$\|\delta x\| /\|\delta b\| \leqslant \kappa(A)=\|A\|\left\|A^{-1}\right\|$
(Goldstine, von Neuman, Turing)
distance to ill-posed set $\kappa(A)=\|A\| / \operatorname{dist}(A$, singular matrices $)$
(Eckart, Young, Mirsky)

Condition number for linear systems

problem How much the solution of a linear system $A x=b$ is affected by a pertubation of b ?
$\|\delta x\| /\|\delta b\| \leqslant \kappa(A)=\|A\|\left\|A^{-1}\right\|$
(Goldstine, von Neuman, Turing)
distance to ill-posed set $\kappa(A)=\|A\| / \operatorname{dist}(A$, singular matrices $)$
(Eckart, Young, Mirsky)
many analogues [e.g. Demmel]

Condition number for linear systems

problem How much the solution of a linear system $A x=b$ is affected by a pertubation of b ?
$\|\delta x\| /\|\delta b\| \leqslant \kappa(A)=\|A\|\left\|A^{-1}\right\|$
(Goldstine, von Neuman, Turing)
distance to ill-posed set $\kappa(A)=\|A\| / \operatorname{dist}(A$, singular matrices $)$ (Eckart, Young, Mirsky)
many analogues [e.g. Demmel]
Is there a considition number for closed sets?

Reach of a closed set

The reach of a set is its minimal distance to its medial axis.
https://en.wikipedia.org/wiki/Local_feature_size

Reach of a closed set

W a closed subset of \mathbb{R}^{n}

Reach of a closed set

W a closed subset of \mathbb{R}^{n}
the reach $\tau(W)$ is the largest real number such that $d(x, W)<\tau(W) \Rightarrow \exists!y \in W: d(x, W)=\|x-y\|$. (Federer)

Reach of a closed set

W a closed subset of \mathbb{R}^{n}
the reach $\tau(W)$ is the largest real number such that $d(x, W)<\tau(W) \Rightarrow \exists!y \in W: d(x, W)=\|x-y\|$. (Federer)

Reach of a closed set

W a closed subset of \mathbb{R}^{n}
the reach $\tau(W)$ is the largest real number such that
$d(x, W)<\tau(W) \Rightarrow \exists!y \in W: d(x, W)=\|x-y\|$.
(Federer)

$\infty>\tau(W)>0$

$\tau(W)=0$

The Niyogi-Smale-Weinberger theorem

$$
W \subseteq \mathbb{R}^{n} \text { closed }
$$

The Niyogi-Smale-Weinberger theorem

$W \subseteq \mathbb{R}^{n}$ closed
$\mathscr{X} \subset \mathbb{R}^{n}$ finite

The Niyogi-Smale-Weinberger theorem

$$
\begin{aligned}
& W \subseteq \mathbb{R}^{n} \text { closed } \\
& \mathscr{X} \subset \mathbb{R}^{n} \text { finite } \\
& \text { assumption } 6 \text { dist }_{\text {Hausdorff }}(\mathscr{X}, W)<\tau(W)
\end{aligned}
$$

The Niyogi-Smale-Weinberger theorem

$$
\begin{gathered}
\qquad W \subseteq \mathbb{R}^{n} \text { closed } \\
\mathscr{X} \subset \mathbb{R}^{n} \text { finite } \\
\text { assumption } 6 \text { dist }_{\text {Hausdorff }}(\mathscr{X}, W)<\tau(W) \\
\text { conclusion For any } \delta \in\left(3 \text { dist }_{\text {Hausdorff }}(\mathscr{X}, W), \frac{1}{2} \tau(W)\right), \\
\bigcup_{x \in \mathscr{X}} B_{\delta}(x) \cong W .
\end{gathered}
$$

The Niyogi-Smale-Weinberger theorem

$$
\begin{gathered}
W \subseteq \mathbb{R}^{n} \text { closed } \\
\mathscr{X} \subset \mathbb{R}^{n} \text { finite } \\
\text { assumption } 6 \operatorname{dist}_{\text {Hausdorff }}(\mathscr{X}, W)<\tau(W) \\
\text { conclusion For any } \delta \in\left(3 \operatorname{dist}_{\text {Hausdorff }}(\mathscr{X}, W), \frac{1}{2} \tau(W)\right), \\
\bigcup_{x \in \mathscr{X}} B_{\delta}(x) \cong W .
\end{gathered}
$$

An algebraic condition number

Non-transversal intersection of the boundaries

An algebraic condition number

Non-transversal intersection of the boundaries

Singularity in the boundary

An algebraic condition number

homogeneous setting $X \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $f_{1}=0, \ldots, f_{q}=0$ (denoted $F=0$) of degree at most D.

An algebraic condition number

homogeneous setting $X \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $f_{1}=0, \ldots, f_{q}=0$ (denoted $F=0$) of degree at most D. singular solution $x \in X$ is a singular solution if the jacobian matrix $\left(\partial f_{i} / \partial x_{j}\right)_{i, j}$ is not full-rank.

An algebraic condition number

homogeneous setting $X \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $f_{1}=0, \ldots, f_{q}=0$ (denoted $F=0$) of degree at most D.
singular solution $x \in X$ is a singular solution if the jacobian matrix $\left(\partial f_{i} / \partial x_{j}\right)_{i, j}$ is not full-rank.
ill-posed problems The system $F=0$ is ill-posed if it has a singular solution.
homogeneous setting $X \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $f_{1}=0, \ldots, f_{q}=0$ (denoted $F=0$) of degree at most D.
singular solution $x \in X$ is a singular solution if the jacobian matrix $\left(\partial f_{i} / \partial x_{j}\right)_{i, j}$ is not full-rank.
ill-posed problems The system $F=0$ is ill-posed if it has a singular solution. condition number $\kappa(F)=\|F\| /$ dist ($F,\{$ ill-posed problems $\}$).

Geometry of ill-posedness

What is the geometry of $\{$ ill-posed problem $\} \subset \mathscr{H}$?

Geometry of ill-posedness

What is the geometry of \{ill-posed problem $\} \subset \mathscr{H}$?
codimension 1

Geometry of ill-posedness

What is the geometry of $\{$ ill-posed problem $\} \subset \mathscr{H}$?
codimension 1

$$
\text { degree } \leqslant n 2^{n} D^{n}
$$

Geometry of ill-posedness

What is the geometry of \{ill-posed problem $\} \subset \mathscr{H}$?

codimension 1

$$
\text { degree } \leqslant n 2^{n} D^{n}
$$

example A cubic plane curve:

$$
a_{0} x^{3}+a_{1} x^{2}+a_{2} x y^{2}+a_{3} y^{3}+a_{4} x^{2}+a_{5} x y+a_{6} y^{2}+a_{7} x+a_{8} y+a_{9}=0 .
$$

$\operatorname{dim} \mathscr{H}=9$ and the ill-posed set is given by the following degree 12 polynomial with 2040 monomials
$-19683 a_{0}^{4} a_{3}^{4} a_{9}^{4}+26244 a_{0}^{4} a_{3}^{3} a_{6} a_{8} a_{9}^{3}-5832 a_{0}^{4} a_{3}^{3} a_{8}^{3} a_{9}^{2}-5832 a_{0}^{4} a_{3}^{2} a_{6}^{3} a_{9}^{3}-7290 a_{0}^{4} a_{3}^{2} a_{6}^{2} a_{8}^{2} a_{9}^{2}+3 \varepsilon$
$-1836 a_{0}^{4} a_{3} a_{6}^{3} a_{8}^{3} a_{9}+216 a_{0}^{4} a_{3} a_{6}^{2} a_{8}^{5}-432 a_{0}^{4} a_{6}^{6} a_{9}^{2}+216 a_{0}^{4} a_{6}^{5} a_{8}^{2} a_{9}-27 a_{0}^{4} a_{6}^{4} a_{8}^{4}+26244 a_{0}^{3} a_{1} a_{2} a_{3}^{3}$
$+3888 a_{0}^{3} a_{1} a_{2} a_{3} a_{6}^{3} a_{9}^{3}+4860 a_{0}^{3} a_{1} a_{2} a_{3} a_{6}^{2} a_{8}^{2} a_{9}^{2}-2592 a_{0}^{3} a_{1} a_{2} a_{3} a_{6} a_{8}^{4} a_{9}+288 a_{0}^{3} a_{1} a_{2} a_{3} a_{8}^{6}-12$
$-8748 a_{0}^{3} a_{1} a_{3}^{3} a_{5} a_{8} a_{9}^{3}-8748 a_{0}^{3} a_{1} a_{3}^{3} a_{6} a_{7} a_{9}^{3}+5832 a_{0}^{3} a_{1} a_{3}^{3} a_{7} a_{8}^{2} a_{9}^{2}+5832 a_{0}^{3} a_{1} a_{3}^{2} a_{5} a_{6}^{2} a_{9}^{3}+486$
$+4860 a_{0}^{3} a_{1} a_{3}^{2} a_{6}^{2} a_{7} a_{8} a_{9}^{2}-5184 a_{0}^{3} a_{1} a_{3}^{2} a_{6} a_{7} a_{8}^{3} a_{9}+864 a_{0}^{3} a_{1} a_{3}^{2} a_{7} a_{8}^{5}-5184 a_{0}^{3} a_{1} a_{3} a_{5} a_{6}^{3} a_{8} a_{9}^{2}+$
$+1836 a_{0}^{3} a_{1} a_{3} a_{6}^{3} a_{7} a_{8}^{2} a_{9}-360 a_{0}^{3} a_{1} a_{3} a_{6}^{2} a_{7} a_{8}^{4}+864 a_{0}^{3} a_{1} a_{5} a_{6}^{5} a_{9}^{2}-360 a_{0}^{3} a_{1} a_{5} a_{6}^{4} a_{8}^{2} a_{9}+36 a_{0}^{32} a_{1}$

Distance to ill-posedness

$$
\begin{aligned}
& \text { theorem } \operatorname{dist}(F,\{\text { ill-posed }\}) \simeq \min _{x \in \mathbb{S}^{n}} \underbrace{\left.\frac{1}{\left\|\mathrm{~d}_{x} F^{\dagger}\right\|^{2}}+\|F(x)\|^{2}\right)^{\frac{1}{2}}}_{\text {vanisihes at a singular root }} \\
& \text { (Cucker) }
\end{aligned}
$$

Distance to ill-posedness

$$
\begin{aligned}
& \text { theorem } \operatorname{dist}(F,\{\text { ill-posed }\}) \simeq \min _{x \in \mathbb{S}^{n}} \underbrace{\left(\frac{1}{\left\|\mathrm{~d}_{x} F^{\dagger}\right\|^{2}}+\|F(x)\|^{2}\right)^{\frac{1}{2}}}_{\text {vanisihes at a singular root }} \\
& \text { (Cucker) }
\end{aligned}
$$

$\rightsquigarrow \kappa(F)$ is easily approximable.

An algebraic condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$
and inequalities $G \geqslant 0$ of degree at most D.

An algebraic condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.
affine \rightarrow spherical Homogenize and constrain $x_{0}>0$.

An algebraic condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.
affine \rightarrow spherical Homogenize and constrain $x_{0}>0$.
ill-posed problems W is ill-posed some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.
homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.
affine \rightarrow spherical Homogenize and constrain $x_{0}>0$.
ill-posed problems W is ill-posed some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.
condition number $\kappa_{*}(F, G)=\max _{L \subseteq G} \kappa(F \cup L)$.
homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.
affine \rightarrow spherical Homogenize and constrain $x_{0}>0$.
ill-posed problems W is ill-posed some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.
condition number $\kappa_{*}(F, G)=\max _{L \subseteq G} \kappa(F \cup L)$.
theorem $K_{*}(F, G) \leqslant\|F, G\| / \operatorname{dist}((F, G),\{$ ill-posed problems \}).

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.

$$
\text { theorem } D^{\frac{3}{2}} \tau(W) \mathcal{K}_{*}(F, G) \geqslant \frac{1}{7}
$$

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^{n}$ defined by homogeneous polynomial equations $F=0$ and inequalities $G \geqslant 0$ of degree at most D.

$$
\begin{gathered}
\text { theorem } D^{D^{\frac{3}{2}} \tau(W) \kappa_{*}(F, G) \geqslant \frac{1}{7}} \text { corollary } \mathscr{X} \subset \mathbb{S}^{n} \text { finite. } \\
\text { For any } \delta \in\left(3 \text { dist }_{\text {Hausdorff }}(\mathscr{X}, W),\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}\right) \\
\bigcup_{x \in \mathscr{X}} B_{\delta}(x) \cong W
\end{gathered}
$$

Sampling and thickening

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

Tentative algorithm

$$
\begin{gathered}
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\} \\
1 \text { Compute } \delta=\left(14 D^{\frac{3}{2}} \mathcal{K}_{*}(F, G)\right)^{-1}
\end{gathered}
$$

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

1 Compute $\delta=\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}$
2 Pick a $\frac{1}{3} \delta$-grid \mathscr{G} on \mathbb{S}^{n}.
(That is, any point of \mathbb{S}^{n} is $\frac{1}{3} \delta$-close to \mathscr{G}.)

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

1 Compute $\delta=\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}$
2 Pick a $\frac{1}{3} \delta$-grid \mathscr{G} on \mathbb{S}^{n}.
(That is, any point of \mathbb{S}^{n} is $\frac{1}{3} \delta$-close to \mathscr{G}.)
3 Compute $\mathscr{X}=\left\{x \in \mathscr{G} \left\lvert\, \operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta\right.\right\}$

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

1 Compute $\delta=\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}$
2 Pick a $\frac{1}{3} \delta$-grid \mathscr{G} on \mathbb{S}^{n}. (That is, any point of \mathbb{S}^{n} is $\frac{1}{3} \delta$-close to \mathscr{G}.)
3 Compute $\mathscr{X}=\left\{x \in \mathscr{G} \left\lvert\, \operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta\right.\right\}$
output The homology of $B_{\delta}(\mathscr{X})$.

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

1 Compute $\delta=\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}$
2 Pick a $\frac{1}{3} \delta$-grid \mathscr{G} on \mathbb{S}^{n}. (That is, any point of \mathbb{S}^{n} is $\frac{1}{3} \delta$-close to \mathscr{G}.)
3 Compute $\mathscr{X}=\left\{x \in \mathscr{G} \left\lvert\, \operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta\right.\right\}$
output The homology of $B_{\delta}(\mathscr{X})$.
correctness Niyogi-Smale-Weinberger theorem $+\kappa_{*}$ estimate of $\tau(W)$.

Tentative algorithm

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}
$$

1 Compute $\delta=\left(14 D^{\frac{3}{2}} \kappa_{*}(F, G)\right)^{-1}$
2 Picka $\frac{1}{3} \delta$-grid \mathscr{G} on \mathbb{S}^{n}. (That is, any point of \mathbb{S}^{n} is $\frac{1}{3} \delta$-close to \mathscr{G}.)
3 Compute $\mathscr{X}=\left\{x \in \mathscr{G} \left\lvert\, \operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta\right.\right\}$
output The homology of $B_{\delta}(\mathscr{X})$.
correctness Niyogi-Smale-Weinberger theorem $+\kappa_{*}$ estimate of $\tau(W)$.
efficiency How to check $\operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta$?

Easier sampling

$$
\text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G)
$$

Easier sampling

$$
\begin{aligned}
& \text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G) \\
& \text { thickening } W(r)=\left\{x \in \mathbb{S}^{n}| | f_{i}(x) \mid \leqslant r\left\|f_{i}\right\|, g_{j}(x) \geqslant-r\left\|g_{j}\right\|\right\} \supseteq W .
\end{aligned}
$$

Easier sampling

$$
\begin{aligned}
& \text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G) \\
& \text { thickening } W(r)=\left\{x \in \mathbb{S}^{n}| | f_{i}(x) \mid \leqslant r\left\|f_{i}\right\|, g_{j}(x) \geqslant-r\left\|g_{j}\right\|\right\} \supseteq W . \\
& \text { theorem If } r \leqslant\left(13 D^{\frac{3}{2}} \mathcal{K}_{*}^{2}\right) \text { then } \\
& \\
& \text { Tube }\left(W, D^{-1 / 2} r\right) \subset \underbrace{W(r) \subset \text { Tube }\left(W, 3 \kappa_{*} r\right)}_{\text {interesting! }}
\end{aligned}
$$

Easier sampling

$$
\begin{aligned}
& \text { input } W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G) \\
& \text { thickening } W(r)=\left\{x \in \mathbb{S}^{n}| | f_{i}(x) \mid \leqslant r\left\|f_{i}\right\|, g_{j}(x) \geqslant-r\left\|g_{j}\right\|\right\} \supseteq W . \\
& \text { theorem If } r \leqslant\left(13 D^{\frac{3}{2}} \kappa_{*}^{2}\right) \text { then } \\
& \\
& \text { Tube }\left(W, D^{-1 / 2} r\right) \subset \underbrace{W(r) \subset \text { Tube }\left(W, 3 \kappa_{*} r\right)}_{\text {interesting! }} \\
& \text { remark } W(r) \neq \varnothing \Rightarrow W \neq \varnothing
\end{aligned}
$$

Easier sampling

input $W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G)$
thickening $W(r)=\left\{x \in \mathbb{S}^{n}| | f_{i}(x) \mid \leqslant r\left\|f_{i}\right\|, g_{j}(x) \geqslant-r\left\|g_{j}\right\|\right\} \supseteq W$.
theorem If $r \leqslant\left(13 D^{\frac{3}{2}} \mathcal{K}_{*}^{2}\right)$ then
$\operatorname{Tube}\left(W, D^{-1 / 2} r\right) \subset \underbrace{W(r) \subset \operatorname{Tube}\left(W, 3 \kappa_{*} r\right)}_{\text {interesting! }}$
remark $W(r) \neq \varnothing \Rightarrow W \neq \varnothing$
remark k_{*} bounds the variations of W under small pertubations of the equations: it is a genuine condition number

Easier sampling

input $W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}, \kappa_{*}=\kappa_{*}(F, G)$
thickening $W(r)=\left\{x \in \mathbb{S}^{n}| | f_{i}(x) \mid \leqslant r\left\|f_{i}\right\|, g_{j}(x) \geqslant-r\left\|g_{j}\right\|\right\} \supseteq W$.
theorem If $r \leqslant\left(13 D^{\frac{3}{2}} \mathcal{K}_{*}^{2}\right)$ then

$$
\operatorname{Tube}\left(W, D^{-1 / 2} r\right) \subset \underbrace{W(r) \subset \operatorname{Tube}\left(W, 3 \kappa_{*} r\right)}_{\text {interesting! }}
$$

remark $W(r) \neq \varnothing \Rightarrow W \neq \varnothing$
remark k_{*} bounds the variations of W under small pertubations of the equations: it is a genuine condition number
idea Replace $\operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta$ by $x \in W(r)$ (for a suitable r).

Covering algorithm

input A spherical semialgebraic set $W=\left\{x \in \mathbb{S}^{n} \mid F(x)=0, G(x) \geqslant 0\right\}$ assumption $K_{*}(F, G)$ is finite.
output A finite set $\mathscr{X} \subset \mathbb{S}^{n}$ and an $\varepsilon>0$ such that $B_{\varepsilon}(\mathscr{X}) \cong W$.
algorithm function $\operatorname{Covering}(F, G)$

$$
r \leftarrow 1
$$

repeat

$$
r \leftarrow r / 2
$$

Compute a r-grid \mathscr{G}_{r} in \mathbb{S}^{n}
$k_{*} \leftarrow \max \left\{\kappa(F \cup L, x) \mid x \in \mathscr{G}_{r}\right.$ and $\left.L \subseteq G\right\}$
until $71 D^{\frac{5}{2}} k_{*}^{2} r<1$
return the set $\mathscr{X}=\mathscr{G}_{r} \cap W\left(D^{\frac{1}{2}} r\right)$ and the real number $\varepsilon=5 D k_{*} r$
end function

Complexity analysis

Condition-based analysis

computation of the covering $\left(s D \kappa_{*}\right)^{n^{1+o(1)}}$

Condition-based analysis

computation of the covering $\left(s D \kappa_{*}\right)^{n^{1+o(1)}}$
computation of the homology $\# \mathscr{X}^{O(n)}=\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$

Condition-based analysis

> computation of the covering $\left(s D \kappa_{*}\right)^{n^{1+o(1)}}$
> computation of the homology $\# \mathscr{X}^{O(n)}=\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$

How big is κ_{*} ?

Condition-based analysis

computation of the covering $\left(s D \kappa_{*}\right)^{n^{1+o(1)}}$
computation of the homology $\# \mathscr{X}^{O(n)}=\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$

How big is κ_{*} ?
worst case complexity unbounded

Condition-based analysis

computation of the covering $\left(s D \kappa_{*}\right)^{n^{1+o(1)}}$
computation of the homology $\# \mathscr{X}^{O(n)}=\left(s D \kappa_{*}\right)^{n^{2+o(1)}}$

How big is κ_{*} ?
worst case complexity unbounded
average complexity unbounded ?!

Weak complexity bounds

If the average case is unbounded, is the algorithm slow?

Weak complexity bounds

If the average case is unbounded, is the algorithm slow?
example The power method for computing the dominant eigenpair of a real $d \times d$ symmetric matrix (compute $M^{n} x$ for large n). Unbounded average case (Kostlan). Used in practice with success.

Weak complexity bounds

If the average case is unbounded, is the algorithm slow?
example The power method for computing the dominant eigenpair of a real $d \times d$ symmetric matrix (compute $M^{n} x$ for large n).

Unbounded average case (Kostlan).
Used in practice with success.
weak complexity cost $\leqslant \operatorname{poly}(d)$ with probability $\geqslant 1-\exp (-d)$.
(Amelunxen, Lotz)

Probabilistic analysis

general bound If $\Sigma \subset \mathscr{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathscr{H}$ is a Gaussian isotropic random variable,

$$
\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X, \Sigma)} \geqslant t\right) \leqslant \frac{11 \operatorname{dim} \mathscr{\mathscr { C }} \operatorname{deg} \Sigma}{t}
$$

Probabilistic analysis

general bound If $\Sigma \subset \mathscr{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathscr{H}$ is a Gaussian isotropic random variable, $\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X, \Sigma)} \geqslant t\right) \leqslant \frac{11 \operatorname{dim} \mathscr{H} \operatorname{deg} \Sigma}{t}$.
degree bound $\operatorname{deg}\{$ ill-posed problems $\} \leqslant n 2^{n}(s+1)^{n+1} D^{n}$

Probabilistic analysis

general bound If $\Sigma \subset \mathscr{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathscr{H}$ is a Gaussian isotropic random variable, $\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X, \Sigma)} \geqslant t\right) \leqslant \frac{11 \operatorname{dim} \mathscr{H} \operatorname{deg} \Sigma}{t}$.
degree bound $\operatorname{deg}\{$ ill-posed problems $\} \leqslant n 2^{n}(s+1)^{n+1} D^{n}$
corollary 1 cost $\leqslant(s D)^{n^{3+o(1)}}$ with probabiliy $\geqslant 1-(s D)^{-n}$

Probabilistic analysis

general bound If $\Sigma \subset \mathscr{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathscr{H}$ is a Gaussian isotropic random variable,

$$
\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X, \Sigma)} \geqslant t\right) \leqslant \frac{11 \operatorname{dim} \mathscr{H} \operatorname{deg} \Sigma}{t} .
$$

degree bound $\operatorname{deg}\{$ ill-posed problems $\} \leqslant n 2^{n}(s+1)^{n+1} D^{n}$
corollary 1 cost $\leqslant(s D)^{n^{3+o(1)}}$ with probabiliy $\geqslant 1-(s D)^{-n}$
corollary 2 cost $\leqslant 2^{O\left(N^{2}\right)}$ with probabiliy $\geqslant 1-2^{-N}$.

Perspectives

Ill-posedness is relative to a data representation

Perspectives

III-posedness is relative to a data representation
example Given by a rational parametrization, the lemniscate is well-conditionned

Perspectives

III-posedness is relative to a data representation
example Given by a rational parametrization, the lemniscate is well-conditionned

next goal Given $F=\left(f_{1}, \ldots, f_{s}\right)$, compute the homology of any set obtain from the sets $\left\{f_{i} \geqslant 0\right\}$ and $\left\{f_{i} \leqslant 0\right\}$ by union, intersection and complementation, assuming $\kappa_{*}(F)<\infty$. Work in progress by Josué Tonelli Cueto.

Perspectives

Ill-posedness is relative to a data representation
example Given by a rational parametrization, the lemniscate is well-conditionned

next goal Given $F=\left(f_{1}, \ldots, f_{s}\right)$, compute the homology of any set obtain from the sets $\left\{f_{i} \geqslant 0\right\}$ and $\left\{f_{i} \leqslant 0\right\}$ by union, intersection and complementation, assuming $\kappa_{*}(F)<\infty$. Work in progress by Josué Tonelli Cueto.

Thank you!

