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introduction

Two inspirations from neuroscience:

1) What is the dimension of 2) Feedforward networks
the space of smells?
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Why convex sensing?

Receptive fields of neurons:

cell 1 cell 2 cell 3

A receptive field is a function

f: X—=R

on a relevant stimulus space X.

Example: receptive fields of neurons in
hippocampus
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Why convex sensing?

Receptive fields of neurons:

cell 1 cell 2 cell 3

A receptive field is a function

f: X—=R

on a relevant stimulus space X.
Example: receptive fields of neurons in

hippocampus

Hippocampal receptive fields are (approximately) quasiconcave.

l.e. the sets U = f~1 ([, +o0)) are (approximately) convex.
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introduction

a quick reminder:

Definition: A function f: R -5 R is

quasiconvex if Vo € R f)

So =1 ((—00,a]) is convex

Note: If

¢: R — R is monotone increasing . .
= ¢ o f is quasiconvex

f: R — R is quasiconvex
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convex sensing

Natural questions:

A neuroscience meta-observation:

Many/lots/most of brain areas have (classes of) neurons with convex
receptive fields ... [a long list of systems] ...

Assume we do not know anything about the stimulus space X
and the receptive fields, but can measure neuronal responses.

Question(s):
Can we use the neuronal responses to tell
o the dimension of the underlying space X?
o topological features of the space X? (“easy”)

o the (convex) geometry of the space X. (harder)



convex sensing

The dimension inference. .. (an ill-posed problem)

Given data: a matrix M,

Assumptions:
My = f;’(xa)7

where f; and x; are unknown
x, € R, and
fi: RY — R are quasiconvex.



convex sensing

The dimension inference. .. (an ill-posed problem)

Given data: a matrix M, Question:

Assumptions: Find the minimal embedding

M, = fi(xa), dimension d.
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convex sensing

The dimension inference. .. (an ill-posed problem)

Given data: a matrix M, Question:

Assumptions: Find the minimal embedding

dimension d.
Mia = ﬁ(Xa))
where f; and x; are unknown

X; € RY and
fi: RY — R are quasiconvex.

Warning: For this to work one needs either

o “good sampling” of points x,, or
o more assumptions of the functions f;.
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convex sensing

Quotienting by monotone functions
G € {f: R — R monotone increasing, surjective }

def .
M n = {m x n matrices }

The group G = G x --- x G acts on rectangular matrices M, .
For g = (g1,...,8m) € G™ and M € Mp, ,,
def

(g . M)ia = gi(Mia)'

Observation 1. All the recoverable information about a convex sensing

problem is contained in the quotient #



convex sensing

g &ef {f: R — R monotone increasing, surjective }

def .
M n = {m x n matrices }

The group G = G x --- x G acts on rectangular matrices M, .
For g = (g1,.--,8m) €G™ and M € Mp,,

def

(g . M)ia = gi(Mia)'

Observation 1. All the recoverable information about a convex sensing

problem is contained in the quotient — ="

Observation 2. Let M7, , denote matrices with distinct entries in each

row, then

MG n
gm

= (8p)™ = pure directed complexes on n letters.
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that contains all the subsequences.
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A sequence in V' is a tuple s = (vi,..., v), where v; € V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have maximal possible length = |V/|.

Example: M € M7, ., D(M) = (s1,...,Sm) where each sequence

Si = (Vayy Vay, - - -, Va, ) is the total order on the i-th row:
Mival < Mian << Miva,,-
10 20 30 40 (1,2,3,4),
eg. D 11 13 14 12 | = (1,4,2.3),

1 4 2 3 (1,3,4,2))
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directed complexes

A sequence in V is a tuple s = (v1,..., vk), where v; € V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V/,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have the same length = |V/|.




convex sensing

A sequence in V is a tuple s = (v1,..., vk), where v; € V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V/,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have the same length = |V/|.

Directed complexes have the usual bells and whistles:
o geometric representations
o homotopy type, homotopy equivalence
o homology H.(D)

o pure directed complex — a simplicial multi-filtration (via Dowker) .
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convex sensing

A take-home message:

The topology of the directed complex D(M) carries meaningful information
about convex sensing problems (e.g. embedding dimension).

Explicit example: The nonlinear rank problem.

Here we replace quasiconvex with monotone o linear-. ..
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output layer
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The nonlinear rank

Motivation: one-layer feedforward neural network

Assume that all we know is the
input layer activity of the output layer, i.e. a
collection of points {y*} C R"

7 =& (Wx* —f) eR"

output layer

Question: Can we use the output of a

d .
one-layer network to tell the size d of
= ¢i Winxs — t; )
yi = o (; 2Xa '> ' the input layer?

¢i: R — R>q are monotone incr.



The non-linear rank

A non-linear matrix factorization

input layer

output layer

d
Yi = @i (Z Wiaxs — ti) ,
a=1

it R — R>( are monotone incr.

Assume that all we know is the
activity of the output layer, i.e. a
collection of points {y®}, y* € R".

Think of this as an n X m matrix

—

M=[7,....7" = & (WX — t).

Equivalently, find the minimal d so
that the factorization

d
Mia = i (Z vv,-aX3> :
a=1

is possible with some with monotone
increasing ¢;: R — R.

Here the functions ¢; are unknown.



The non-linear rank

G < {f: R — R monotone increasing, surjective }

Mm.n 2l {m x n matrices }

The group G acts on rectangular matrices M, ..
For g = (g1,...,8m) € G™ and M € Mp, ,,

def

(g M)ia = gi(Mia).

Definition: The nonlinear rank of an m x n real-valued matrix M € M, ,
is defined as the minimum rank of the matrices in the orbit of M, i.e.

nrank(M) £ min rank(g - M).
gegm



The non-linear rank

Simple facts about “nonlinear rank”:

o nrank(M) is determined by the ordering of each row. More precisely,

def - . 0 0 o
M¢ = m x n matrices without repeating entries in each row.
’

MGin
gm

= (8,)" = “pure directed complexes” on n letters.



The non-linear rank

A sequence in V' is a tuple s = (vi,..., v), where v; € V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have the same length.

Example: Each M € M§, , yields a set of sequences s; in [n] s.t. each
sequence s; = (vj1, Vi2, - . ., Vin) is the total order on the i-th row:

MiVil < Miv,-g <0 < MiVin'

10 20 30 40 {(1,2,3,4),
eg. D 11 13 14 12 | = (1,4,2,3),
1 4 2 3 (1,3,4,2)}



The non-linear rank

A geometric interpretation of D(M):

a non-linear matrix factorization + a pure directed complex

% % ok % = ((1,2,3,4),
* k% %k (1,3,4,2))

Miq = fi (W; - X)

The i-th sequence is the
order in which the i-th plane
encounters the points X*.
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Simple facts about “nonlinear rank”:

o nrank(M) is determined by the ordering of each row. More precisely,
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Simple facts about “nonlinear rank”:

o nrank(M) is determined by the ordering of each row. More precisely,
Mz
gm

o nrank(M) < min{n — 1, m} for any m x n matrix.

= (8,)™ = pure directed complexes on n letters.



The non-linear rank

Simple facts about “nonlinear rank”:

o nrank(M) is determined by the ordering of each row. More precisely,
Mz
gm

o nrank(M) < min{n — 1, m} for any m x n matrix.

= (8,)™ = pure directed complexes on n letters.

o There are combinatorial constraints that guarantee that
nrank(M) > d for any prescribed d.
These come from convex geometry...



The non-linear rank
a quick example: a bound on nrank via Radon’s Theorem

Observation: If M, = f; (W; - X*) and s = (v1, v2, ..., V,) € D(M) then
for every I € [n], the convex hulls do not intersect:

conv{vi,v2, ... v} nconv{v/* vIT2 v =g
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Observation: If M, = f; (W; - X*) and s = (v1, v2, ..., V,) € D(M) then
for every I € [n], the convex hulls do not intersect:

conv{vi,v2, ... v} nconv{v/* vIT2 v =g

Radon's Theorem: Any set of d + 2
points in R? can be partitioned into two
disjoint sets whose convex hulls intersect.

Corollary: If D(M) allows all the partitions on [n] then nrank M > n — 2.

Example:
D(M) = (1234,1423,1342) —> nrank M =3



The non-linear rank

a quick example: a bound on nrank via Radon’s Theorem

Observation: If M, = f; (W; - X*) and s = (v1, v2, ..., V,) € D(M) then
for every I € [n], the convex hulls do not intersect:

conv{v?, v, .., vl} N conv{v'“7 vt vt = 2.
Radon's Theorem: Any set of d + 2

points in R? can be partitioned into two
disjoint sets whose convex hulls intersect.

Corollary: If D(M) allows all the partitions on [n] then nrank M > n — 2.

Example:
D(M) = (1234,1423,1342) —> nrank M =3

Note: The general combinatorial constraints on the nonlinear rank are
currently not well-understood, but the topology of D(M) imposes
constraints in two different “good sampling” regimes.



The non-linear rank
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The non-linear rank

The limit of “many/enough” functions

Given a point cloud X = {x,} C R, |X| = n.

For a fixed X, there are only finitely many combinatorially distinct
functions, thus define

Diin(X) = {all sequences in X from linear functions f,,(x) = w - x}



The non-linear rank

The limit of “many/enough” functions
Given a point cloud X = {x,} C RY, |X| = n.

For a fixed X, there are only finitely many combinatorially distinct
functions, thus define

Diin(X) = {all sequences in X from linear functions f,,(x) = w - x}

52

Lemma [T. Cover, 1967] The number Rd
Q(n, d) of maximal sequences in Djin(X)

satisfies

Q(n+1,d) = Q(n,d) + nQ(n,d — 1). ®




The non-linear rank

The limit of “many/enough” functions

Given a point cloud X = {x,} C R, |X| = n.

For a fixed X, there are only finitely many combinatorially distinct
functions, thus define

Diin(X) = {all sequences in X from linear functions f,(x) = w - x}

Theorem



The non-linear rank

The limit of “many/enough” functions

Given a point cloud X = {x,} C R, |X| = n.

For a fixed X, there are only finitely many combinatorially distinct
functions, thus define

Diin(X) = {all sequences in X from linear functions f,(x) = w - x}

Theeremn Conjecture. Assume that n = |X| > d + 2, then

H, (Din(X)) = H, (\/”_15d>



The non-linear rank
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Dowker complexes

The Dowker multi-filtration of a pure directed complex.

Given M is an m x n matrix. Binary matrix
and thresholds 6 = (01, ...,0m). Bin < (M, < 6)).
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The Dowker multi-filtration of a pure directed complex.

Given M is an m x n matrix. Binary matrix
and thresholds 6 = (61, ...,0). Bin £ (M, < 6;).

The Dowker complex is
Dow(M,8) £ A (01,...,00)

where o, & {i| M <0;}.




Dowker complexes

The Dowker multi-filtration of a pure directed complex.

Given M is an m x n matrix. Binary matrix
and thresholds 6 = (61, ...,0). Bin £ (M, < 6;).

The Dowker complex is
Dow(M,8) £ A (01,...,00)

where o, & {i| M <0;}.

Note: An increasing chain of thresholds induces a filtration.
This is because

0; <0; Vie[m = Dow(M,8) C Dow(M, @)



Dowker complexes

A fun fact:

Theorem (C. H. Dowker, 1952)

Let B be a binary matrix, then the following two complexes are homotopy
equivalent:

Dow(B,1) ~ Dow(BT,1)




Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank?

d . .
M, = ¢; (23:1 W,-ax;’), where ¢; are monotone increasing.

Mia < 0i7
(Z VVIaX ) <0

Z Wiaxs < 7 (0)),
a=1
X* € H,

where
H = x| o0 Waaxa — 67 1(65) < 0}



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank?

d . .
M, = ¢; (23:1 W,-ax;’), where ¢; are monotone increasing.

Mia < 0i7
(Z VVIaX ) <0

Z Wiaxs < 7 (0)),
a=1

X* € H,

where
H = x| o0 Waaxa — 67 1(65) < 0}



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling” (all the chambers that corre-
spond to the facets of the nerve are sam-
pled) ,

Dow <M,§) = nerve {H;"} ~ U H"
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Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling” (all the chambers that corre-
spond to the facets of the nerve are sam-

pled) ,
Dow <M,§> = nerve {H;"} ~ U HY

Thus if we had a perfect sampling, then

Dow (M,é) ~R?\ a polyhedron.

Moreover, (with some trick) manipulating filtrations one can force

Dow (M, §> ~ (Rd\ pontope) ~ §971,



Detecting the “rank” of non-linear factorizations.
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Detecting the “rank” of non-linear factorizations.

Homological invariants of a filtered Dowker complex

Given a real n x m matrix M. An increasing sequence of threshold vectors,

— — —

1< <---<lp_1 <0, p < mn.
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Homological invariants of a filtered Dowker complex

Given a real n x m matrix M. An increasing sequence of threshold vectors,

— — —

1<br < <lp_1 <0Op, p < mn.

. . .. def o
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Detecting the “rank” of non-linear factorizations.

Homological invariants of a filtered Dowker complex
Given a real n x m matrix M. An increasing sequence of threshold vectors,

— — —

1<br < <lp_1 <0y, p < mn.
induces a sequence of simplicial complexes A; o Dow(M,Hj-),
@c—>A1<—>A2<—>-~<—>Ap,1c—>Ap:2[”], p < mn

as well as homomorphisms in homology (over whatever field)

0 — A(A1) = A.(D2) = - — A(Ap-1) = 0



Detecting the “rank” of non-linear factorizations.

Homological invariants of a filtered Dowker complex

Given a real n x m matrix M. An increasing sequence of threshold vectors,

— — —

1<br < <lp_1 <0y, p < mn.
induces a sequence of simplicial complexes A; o Dow(M, @)
@c—>A1<—>A2<—>-~~<—>Ap,1<—>Ap:2[”], p < mn

as well as homomorphisms in homology (over whatever field)

0= A(A1) =& H(B2) = -+ = A(Bp1) - 0

Homological invariants:
o Betti Curves,  fBm(0) = dim H,, (Dow (M, 0))

o Persistence intervals



Detecting the “rank” of non-linear factorizations.

Why can we infer the nonlinear rank from the Dowker
complex?

Given M and © = (6, < ... < 0,)
one obtains Betti curves 32 (p)

The result may depend on the way of
thresholding ©...[use the blackboard]



Detecting the “rank” of non-linear factorizations.

Why can we infer the nonlinear rank from the Dowker
complex?

Given M and © = (6, < ... < 0,)
one obtains Betti curves 32 (p)

The result may depend on the way of
thresholding ©...[use the blackboard]

However, one can estimate
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Importantly, Bx(p) is invariant under
the action of the group G™.



Detecting the “rank” of non-linear factorizations.

Why can we infer the nonlinear rank from the Dowker
complex?

Given M and © = (6 < ... <6,)  Average Betti curves B(p) in various
one obtains Betti curves 32 (p) ranks.

The result may depend on the way of
thresholding ©...[use the blackboard]

However, one can estimate

number of cycles

= def 1
Bule) = 5 > B2(p)

sESm

very well via random sampling of S,.

Importantly, Bx(p) is invariant under
the action of the group G™. araph density




number of cycles

Detecting the “rank” of non-linear factorizations.

Two different ways of inferring d:

1) A single persistent cycle € Hy, (Dow (M, —)) in dimension m = (d — 1).
2) The ‘shapes’ of the of the Betti curves

[use the board]

08

06

number of cycles

04

02

Betti curves for random matrices of Betti curves for random matrices of
nrank = 2 nrank = 3



An application

Can one estimate the dimension of the space of smells?

A question: Can we tell the
dimension of the olfactory
space from OR 7 ligand
response map?

Receptors The rest of the brain

Answer: A "yes". Preliminary
findings: We've found that
the fly olfactory space of
likely low-dimensional

Rl (4<d<6).

b
LY

[} ™
“acat”

“Olfactory Space” that the brain
can possibly perceive
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An application

Quick summary

o Convex sensing problems can be best understood in terms of directed
complexes.

o Natural questions about feedforward networks can be restated in
terms of “nonlinear matrix factorization” and the nonlinear rank.

o Exact bounds on the nonlinear rank are still poorly understood, but
there are hard constraints from geometry and topology.

o Nonlinear rank can be estimated (with high precision) using
topological tools.



An application
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THE END

Vielen Dank!
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Philip Egger Min-Chun Wu Aliaksandra Yarosh
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