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Two inspirations from neuroscience:
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introduction

Why convex sensing?

Receptive fields of neurons:

cell 1                 cell  2    cell  3  

Example: receptive fields of neurons in

hippocampus

A receptive field is a function

f : X → R

on a relevant stimulus space X .

Hippocampal receptive fields are (approximately) quasiconcave.

I.e. the sets Uθ = f −1 ([θ,+∞)) are (approximately) convex.



introduction

Why convex sensing?

Receptive fields of neurons:

cell 1                 cell  2    cell  3  

Example: receptive fields of neurons in

hippocampus

A receptive field is a function

f : X → R

on a relevant stimulus space X .

Hippocampal receptive fields are (approximately) quasiconcave.

I.e. the sets Uθ = f −1 ([θ,+∞)) are (approximately) convex.



introduction

a quick reminder:

Definition: A function f : Rd → R is
quasiconvex if ∀α ∈ R

Sα = f −1 ((−∞, α]) is convex

Note: If{
φ : R→ R is monotone increasing

f : Rd → R is quasiconvex
=⇒ φ ◦ f is quasiconvex
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convex sensing

Natural questions:

A neuroscience meta-observation:

Many/lots/most of brain areas have (classes of) neurons with convex
receptive fields . . . [a long list of systems] . . .

Assume we do not know anything about the stimulus space X
and the receptive fields, but can measure neuronal responses.

Question(s):
Can we use the neuronal responses to tell

the dimension of the underlying space X?

topological features of the space X? (“easy”)

the (convex) geometry of the space X . (harder)
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convex sensing

The dimension inference. . . (an ill-posed problem)

Given data: a matrix Mia

Assumptions:

Mia = fi (xa),

where fi and xa are unknown
xa ∈ Rd , and
fi : Rd → R are quasiconvex.

Question:

Find the minimal embedding
dimension d .

Warning: For this to work one needs either

“good sampling” of points xa, or

more assumptions of the functions fi .
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convex sensing

Quotienting by monotone functions

G def
= {f : R→ R monotone increasing, surjective }
Mm,n

def
= {m × n matrices }

The group Gm = G × · · · × G acts on rectangular matrices Mm,n.
For g = (g1, . . . , gm) ∈ Gm and M ∈Mm,n,

(g ·M)ia
def
= gi (Mia).

Observation 1. All the recoverable information about a convex sensing

problem is contained in the quotient
Mm,n

Gm
.

Observation 2. Let Mo
m,n denote matrices with distinct entries in each

row, then

Mo
m,n

Gm
= (Sn)m = pure directed complexes on n letters.
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convex sensing

directed complexes

A sequence in V is a tuple s = (v1, . . . , vk), where vj ∈ V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V ,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have maximal possible length = |V |.

Example: M ∈Mo
m,n, D(M) = 〈s1, . . . , sm〉 where each sequence

si = (va1 , va2 , . . . , van) is the total order on the i-th row:

Miva1
< Miva2

< · · · < Mivan .

e.g. D

 10 20 30 40
11 13 14 12
1 4 2 3

 =
〈(1, 2, 3, 4),
(1, 4, 2, 3),
(1, 3, 4, 2)〉
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convex sensing

directed complexes

A sequence in V is a tuple s = (v1, . . . , vk), where vj ∈ V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V ,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have the same length = |V |.

Directed complexes have the usual bells and whistles:

geometric representations

homotopy type, homotopy equivalence

homology H∗(D)

pure directed complex 7→ a simplicial multi-filtration (via Dowker) .
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convex sensing

A take-home message:

The topology of the directed complex D(M) carries meaningful information
about convex sensing problems (e.g. embedding dimension).

Explicit example: The nonlinear rank problem.

Here we replace quasiconvex with monotone ◦ linear . . .
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The nonlinear rank

Motivation: one-layer feedforward neural network
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input layer

output layer

yi = φi

(
d∑

a=1

Wiaxa − ti

)
,

φi : R→ R≥0 are monotone incr.

Assume that all we know is the
activity of the output layer, i.e. a
collection of points {~yα} ⊆ Rn

~yα = ~Φ
(
W ~xα − ~t

)
∈ Rn

.

Question: Can we use the output of a
one-layer network to tell the size d of
the input layer?
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The non-linear rank

A non-linear matrix factorization
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yi = ϕi

(
d∑

a=1

Wiaxa − ti

)
,

ϕi : R→ R≥0 are monotone incr.

Assume that all we know is the
activity of the output layer, i.e. a
collection of points {~yα}, ~yα ∈ Rn.

Think of this as an n ×m matrix
M = [~y1, . . . , ~ym] = ~Φ (WX − t).

Equivalently, find the minimal d so
that the factorization

Miα = φi

(
d∑

a=1

WiaX
α
a

)
,

is possible with some with monotone
increasing φi : R→ R.

Here the functions φi are unknown.



The non-linear rank

The non-linear rank

G def
= {f : R→ R monotone increasing, surjective }
Mm,n

def
= {m × n matrices }

The group Gm acts on rectangular matrices Mm,n.
For g = (g1, . . . , gm) ∈ Gm and M ∈Mm,n,

(g ·M)ia
def
= gi (Mia).

Definition: The nonlinear rank of an m×n real-valued matrix M ∈Mm,n

is defined as the minimum rank of the matrices in the orbit of M, i.e.

nrank(M)
def
= min

g∈Gm
rank(g ·M).



The non-linear rank

Simple facts about “nonlinear rank”:

nrank(M) is determined by the ordering of each row. More precisely,

Mo
m,n

def
= m × n matrices without repeating entries in each row.

Mo
m,n

Gm
= (Sn)m = “pure directed complexes” on n letters.



The non-linear rank

directed complexes

A sequence in V is a tuple s = (v1, . . . , vk), where vj ∈ V do not repeat.

Definition: A directed complex is a (graded) poset of sequences in V ,
that contains all the subsequences.

A pure directed complex is a directed complex complex whose maximal
sequences have the same length.

Example: Each M ∈ Mo
m,n yields a set of sequences si in [n] s.t. each

sequence si = (vi1, vi2, . . . , vin) is the total order on the i-th row:

Mivi1 < Mivi2 < · · · < Mivin .

e.g. D

 10 20 30 40
11 13 14 12
1 4 2 3

 =
{(1, 2, 3, 4),
(1, 4, 2, 3),
(1, 3, 4, 2)}



The non-linear rank

A geometric interpretation of D(M):

a non-linear matrix factorization 7→ a pure directed complex

(
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
7→ 〈(1, 2, 3, 4),

(1, 3, 4, 2)〉

Miα = fi (~wi · ~xα)

The i-th sequence is the
order in which the i-th plane
encounters the points ~xα.

1

2
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Simple facts about “nonlinear rank”:

nrank(M) is determined by the ordering of each row. More precisely,

Mo
m,n

Gm
= (Sn)m = pure directed complexes on n letters.

nrank(M) ≤ min{n − 1,m} for any m × n matrix.

There are combinatorial constraints that guarantee that
nrank(M) > d for any prescribed d .
These come from convex geometry...
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The non-linear rank

a quick example: a bound on nrank via Radon’s Theorem

Observation: If Miα = fi (~wi · ~xα) and s = (v1, v2, . . . , vn) ∈ D(M) then
for every l ∈ [n], the convex hulls do not intersect:

conv{v1, v2, . . . , v l} ∩ conv{v l+1, v l+2, . . . vn} = ∅.

Radon’s Theorem: Any set of d + 2
points in Rd can be partitioned into two
disjoint sets whose convex hulls intersect.

Corollary: If D(M) allows all the partitions on [n] then nrankM > n − 2.

Example:
D(M) = 〈1234, 1423, 1342〉 =⇒ nrankM = 3

Note: The general combinatorial constraints on the nonlinear rank are
currently not well-understood, but the topology of D(M) imposes
constraints in two different “good sampling” regimes.
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The non-linear rank

The limit of “many/enough” functions

Given a point cloud X = {xa} ⊂ Rd , |X | = n.

For a fixed X , there are only finitely many combinatorially distinct
functions, thus define

Dlin(X ) = {all sequences in X from linear functions fw (x) = w · x}
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Given a point cloud X = {xa} ⊂ Rd , |X | = n.

For a fixed X , there are only finitely many combinatorially distinct
functions, thus define

Dlin(X ) = {all sequences in X from linear functions fw (x) = w · x}

Lemma [T. Cover, 1967] The number
Q(n, d) of maximal sequences in Dlin(X )
satisfies
Q(n + 1, d) = Q(n, d) + nQ(n, d − 1).
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The limit of “many/enough” functions

Given a point cloud X = {xa} ⊂ Rd , |X | = n.

For a fixed X , there are only finitely many combinatorially distinct
functions, thus define

Dlin(X ) = {all sequences in X from linear functions fw (x) = w · x}

���
��XXXXXTheorem Conjecture. Assume that n = |X | > d + 2, then

H∗ (Dlin(X )) = H∗
(∨n−1

Sd
)
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Dowker complexes

The Dowker multi-filtration of a pure directed complex.
Given M is an m × n matrix.
and thresholds θ = (θ1, . . . , θm).

The Dowker complex is

Dow(M, θ)
def
= ∆ (σ1, . . . , σn)

where σa
def
= {i |Mia ≤ θi}.

Binary matrix

Bia
def
= (Mia ≤ θi ).

Note: An increasing chain of thresholds induces a filtration.
This is because

θi ≤ θ̃i ∀i ∈ [m] =⇒ Dow(M, θ) ⊆ Dow(M, θ̃)
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Dowker complexes

A fun fact:

Theorem (C. H. Dowker, 1952)

Let B be a binary matrix, then the following two complexes are homotopy
equivalent:

Dow(B, 1) ∼ Dow(BT , 1)



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank?

Mia = φi

(∑d
a=1 Wiax

α
a

)
, where φi are monotone increasing.

Mia ≤ θi ,

φi

(
d∑

a=1

Wiax
α
a

)
≤ θi ,

d∑
a=1

Wiax
α
a ≤ φ−1

i (θi ),

~xα ∈ H+
i ,

where
H+
i

def
= {x |

∑d
a=1 Wiaxa − φ−1

i (θi ) ≤ 0}

1

2

3
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Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling”(all the chambers that corre-
spond to the facets of the nerve are sam-
pled) ,

Dow
(
M, ~θ

)
= nerve

{
H+
i

}
∼ ∪mi=1H

+
i

Thus if we had a perfect sampling, then

Dow
(
M, ~θ

)
∼ Rd \ a polyhedron.

1

2

3

Moreover, (with some trick) manipulating filtrations one can force

Dow
(
M, ~θ

)
∼
(
Rd \ polytope

)
∼ Sd−1.

Question: What does one do if the sampling is not perfect?



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling”(all the chambers that corre-
spond to the facets of the nerve are sam-
pled) ,

Dow
(
M, ~θ

)
= nerve

{
H+
i

}
∼ ∪mi=1H

+
i

Thus if we had a perfect sampling, then

Dow
(
M, ~θ

)
∼ Rd \ a polyhedron.

1

2

3

Moreover, (with some trick) manipulating filtrations one can force

Dow
(
M, ~θ

)
∼
(
Rd \ polytope

)
∼ Sd−1.

Question: What does one do if the sampling is not perfect?



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling”(all the chambers that corre-
spond to the facets of the nerve are sam-
pled) ,

Dow
(
M, ~θ

)
= nerve

{
H+
i

}
∼ ∪mi=1H

+
i

Thus if we had a perfect sampling, then

Dow
(
M, ~θ

)
∼ Rd \ a polyhedron.

1

2

3

Moreover, (with some trick) manipulating filtrations one can force

Dow
(
M, ~θ

)
∼
(
Rd \ polytope

)
∼ Sd−1.

Question: What does one do if the sampling is not perfect?



Dowker complexes

Question: What does Dowker complex have to do with
nonlinear rank (and thus feedforward networks)?

Lemma: Under a condition of “enough
sampling”(all the chambers that corre-
spond to the facets of the nerve are sam-
pled) ,

Dow
(
M, ~θ

)
= nerve

{
H+
i

}
∼ ∪mi=1H

+
i

Thus if we had a perfect sampling, then

Dow
(
M, ~θ

)
∼ Rd \ a polyhedron.

1

2

3

Moreover, (with some trick) manipulating filtrations one can force

Dow
(
M, ~θ

)
∼
(
Rd \ polytope

)
∼ Sd−1.

Question: What does one do if the sampling is not perfect?



Detecting the “rank” of non-linear factorizations.
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Detecting the “rank” of non-linear factorizations.

Homological invariants of a filtered Dowker complex

Given a real n×m matrix M. An increasing sequence of threshold vectors,

~θ1 < ~θ2 < · · · < ~θp−1 < ~θp, p ≤ mn.

induces a sequence of simplicial complexes ∆j
def
= Dow(M, ~θj),

∅ ↪→ ∆1 ↪→ ∆2 ↪→ · · · ↪→ ∆p−1 ↪→ ∆p = 2[n], p ≤ mn

as well as homomorphisms in homology (over whatever field)

0→ H̃∗(∆1)→ H̃∗(∆2)→ · · · → H̃∗(∆p−1)→ 0

Homological invariants:

Betti Curves, βm(θ)
def
= dimHm (Dow (M, θ))

Persistence intervals
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Detecting the “rank” of non-linear factorizations.

Why can we infer the nonlinear rank from the Dowker
complex?

Given M and Θ = (~θ1 < . . . < ~θp)
one obtains Betti curves βΘ

k (ρ)

The result may depend on the way of
thresholding Θ...[use the blackboard]

However, one can estimate

β̄k(ρ)
def
=

1

|Sm|
∑
s∈Sm

βΘs
k (ρ)

very well via random sampling of Sm.

Importantly, β̄k(ρ) is invariant under
the action of the group Gm.

Average Betti curves β̄k(ρ) in various
ranks.
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Detecting the “rank” of non-linear factorizations.

Two different ways of inferring d :

1) A single persistent cycle ∈ Hm (Dow (M,−)) in dimension m = (d − 1).
2) The ‘shapes’ of the of the Betti curves

[use the board]
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An application

Can one estimate the dimension of the space of smells?

A question: Can we tell the
dimension of the olfactory
space from OR ? ligand
response map?

Answer: A “yes”. Preliminary
findings: We’ve found that
the fly olfactory space of
likely low-dimensional
(4 ≤ d ≤ 6).
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An application

Quick summary

Convex sensing problems can be best understood in terms of directed
complexes.

Natural questions about feedforward networks can be restated in
terms of “nonlinear matrix factorization” and the nonlinear rank.

Exact bounds on the nonlinear rank are still poorly understood, but
there are hard constraints from geometry and topology.

Nonlinear rank can be estimated (with high precision) using
topological tools.
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THE END
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