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Topological Signatures & Summary Statistics

Summary Statistic: For a given data sample, calculate a quantity to
summarize it (= feature selection)

f : Data → "Nice" Space

Desired Properties:
Injectivity
Ability to define probabilistic models in the transformed space
Amenability to existing statistical methodology & ML algorithms
Computable distances

Topologically,
Persistent Homology Transform (Turner, Mukherjee, Boyer; 2014)
Smooth Euler Characteristic Transform (Crawford, M., Chen,
Mukherjee, Rabadán; 2017)
Persistence Landscapes (Bubenik; 2015)
etc. (mentioned by Uli & Wolfgang)
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From Summary Statistics to Sufficient Statistics

Idea: Sufficient statistics allow for a lower dimensional or less complex
representation of data without the loss of information

Sufficiency for a parameter that defines a distribution
e.g. x̄ for µ in N (µ, σ2)

Sufficiency for a family/class of distributions via a statistic
e.g. Exponential family, distributions on spaces, order statistics
=⇒ Measure-theoretic interpretation (Halmos & Savage, 1949;
Diaconis, 1992)

Sufficient statistics are summary statistics that are injective and
measurable, and map between two well-defined probability spaces

M., Kališnik, Patiño-Galindo, Crawford (2017)

Sufficient statistics for persistent homology, constructed via tropical
geometry, exist

=⇒ Allows for parametric analysis of recombination in phylogenetics
Anthea Monod (Columbia) Max Planck Institute — TAGS 22 February 2018 3 / 25



Statistical Sufficiency & The Factorization Criterion

Definition
Let X be a vector of observations of size n with Xi ∼ fϑ i.i.d.
A statistic T (X ) is sufficient for ϑ if

P
(
X = x |T (X ) = t, ϑ

)
= P

(
X = x |T (X ) = t

)
Theorem (Neyman–Fisher, 1922, 1935)

If the pdf for the observed data is f (x ;ϑ), then the statistic T = T (x) is
sufficient for ϑ ∈ Θ if and only if f (x ;ϑ) = h(x)g

(
T (x);ϑ

)
Theorem (Halmos–Savage, 1949)

A necessary and sufficient condition that the statistic T (·) be sufficient for
a dominated setM of measures on a σ-algebra S is that for every µ ∈M,
the density fµ := dµ/ dλ admits the factorization fµ(x) = h(x)gµ

(
T (x)

)
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Persistent Homology in 2 Dimensions
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Barcode Space

(x1, d1, x2, d2, . . . , xn, dn); xi = birth; di = length; xi ≥ 0
Bn = Orbit space of the action of the symmetric group Sn on n letters on
the product

(
[0,∞)× [0,∞)

)n, given by permuting the coordinates

Definition
The barcode space B≤n consisting of barcodes with at most n intervals is
the quotient ∐

n∈N≤n

Bn/ ∼

where ∼ is generated by the following equivalences whenever dn = 0:{
(x1, d1), (x2, d2), . . . , (xn, dn)

}
∼
{

(x1, d1), (x2, d2), . . . , (xn−1, dn−1)
}

Regularizing Subsets of Barcode Space: For fixed m > 0, denote by
Bm≤n the subset of B≤n that consist of those (x1, d1, . . . , xn, dn) with di > 0
for all i = 1, . . . , n such that xi ≤ mdi
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Fundamentals of Tropical/Arctic Geometry

Tropical geometry = "Skeletonized" version of algebraic geometry

Tropical/Min-plus Semiring:(
R ∪ {+∞},⊕,�

)
with a⊕ b := min(a, b) and a� b := a + b

Arctic/Max-plus Semiring:(
R ∪ {−∞},�,�

)
with a� b := max(a, b) and a� b := a + b

Commutative
Associative
Distributive Law: a� (b ⊕ c) = a� b ⊕ a� c

Frobenius Identity in Tropical Arithmetic:

(a⊕ b)n = an ⊕ bn

b−1 is the inverse of b w.r.t. � = −b in ordinary arithmetic
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Tropical/Arctic Functions

Let x1, x2, . . . , xn be variables of elements in the tropical/arctic semiring
Tropical/Arctic Monomial: Any product or quotient of
x1, x2, . . . , xn; repetition is allowed
Tropical Polynomial:

p(x1, x2, . . . , xn) = a1 � x
a11
1 x

a12
2 · · · x

a1n
n ⊕ a2 � x

a21
1 x

a22
2 · · · x

a2n
n ⊕

⊕ · · · ⊕ am � x
am1
1 x

am2
2 · · · x

amn
n

Each tropical/arctic polynomial is a continuous piecewise linear function
The passage from tropical/arctic polynomials to functions is not 1-1, e.g.:

x2
1 � x2

2 = 2x1 � 2x2

= max{2x1, 2x2}
x2
1 � x2

2 � x1x2 = 2x1 � 2x2 � (x1 + x2)

= max{2x1, 2x2, x1 + x2}
= max{2x1, 2x2}
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Functional Equivalence & Semirings of Equivalence Classes

Functional equivalence, p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn), denoted by ∼,
is an equivalence relation on the set of all max-plus polynomial expressions

We want to study functions, so look at the expressions that define the
same functions =⇒ Max-plus polynomials are the semiring of equivalence
classes of max-plus polynomial expressions w.r.t. ∼

We will use this semiring to assign vectors (functions) to barcodes
(coordinatize barcode space)

Very related: "The Ring of Algebraic Functions on Persistence Barcodes"
— Adcock, Carlsson & Carlsson (2016)
Careful: These functions are not Lipschitz w.r.t. Wasserstein and
bottleneck distances...
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Identifying Tropical Functions for Barcodes

Fix n and let Sn act on X =


x1,1 x1,2
x2,1 x2,2
...

...
xn,1 xn,2

 by left multiplication

En =



e1,1 e1,2
e2,1 e2,2
...

...
en,1 en,2

 6= [0]2n : ei ,j ∈ {0, 1} for i = 1, 2, . . . , n; j = 1, 2


Every matrix E ∈ En determines a max-plus monomial from X by

P(E ) = x
e1,1
1,1 x

e1,2
1,2 · · · x

en,1
n,1 x

en,2
n,2

The orbits Ei ∈ En/Sn under the row permutation action on En determine
max-plus polynomials by max-plus multiplication over row permutations:

E(e11,e12),(e21,e22),...,(en1,en2) := P(E1)� P(E2)� · · ·� P(Em)
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Tropical Coordinates on Barcode Space

Proposition

Let
[
(x1, d1, . . . , xn, dn)

]
and

[
(x ′1, d

′
1, . . . , x

′
n, d
′
n)
]
be two orbits under the

row permutation action on R2n. If

E(0,1)i (1,1)j
[
(x1, d1, . . . , xn, dn)

]
= E(0,1)i (1,1)j

[
(x ′1, d

′
1, . . . , x

′
n, d
′
n)
]

for all i , j ≤ n, then
[
(x1, d1, . . . , xn, dn)

]
=
[
(x ′1, d

′
1, . . . , x

′
n, d
′
n)
]
.

Therefore,

Em,(1,1)i ,(0,1)j (x1,d1,...,xn,dn) := E(1,1)i ,(0,1)j (x1 ⊕ dm
1 , d1, . . . , xn ⊕ dm

n , dn)

induces an injective map on Bm≤n and separates nonequivalent barcodes
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Tropical Sufficient Statistics for Persistent Homology

Theorem (Kališnik (2016); M., Kališnik, Patiño-Galindo, Crawford (2017))

The following collection of tropical polynomials

T : Bm≤n → Rd

B 7→
(
Em,(1,1)i ,(0,1)j (x1, d1, . . . , xn, dn)

)
i+j∈N≤n

(B)

induces a map on Bm≤n, thereby mapping from barcode space to
Euclidean space
are Lipschitz-continuous with respect to the Wasserstein and
bottleneck distances
are injective
are measurable via Borel σ-algebras
are sufficient statistics for the family of probability measures P on the
subset of persistence barcodes Bm≤n
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An Example, n = 2

Fix n = 2 =⇒ The set of orbits under the S2 action is

E2/S2 =



[(
1 1
1 1

)]
,

[(
1 0
1 1

)]
,

[(
1 1
0 1

)]
,

[(
0 0
1 1

)]
,

[(
1 0
1 0

)]
,

[(
1 0
0 1

)]
,

[(
0 1
0 1

)]
,

[(
0 1
0 0

)]
,

[(
1 0
0 0

)]
 .

We only need a subcollection of all orbits to map barcodes injectively
=⇒ Take the orbits with rows (1, 1) and (0, 1):[(

0 1
0 0

)]
,

[(
0 0
1 1

)]
,

[(
1 1
0 1

)]
,

[(
1 1
1 1

)]
,

[(
0 1
0 1

)]

We need d = n + n(n+1)
2 many orbits
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Suppose we have two barcodes B1 =
{

(1, 2), (3, 1)
}
and B2 =

{
(2, 2)

}
;

B1,B2 ∈ B≤2

1. Compute m: For intervals (1, 2), (3, 1), (2, 2), find the smallest m such
that xi ≤ mdi =⇒ The quotients are 1

2 ,
3
1 , 1, so take m = 3, so

B1,B2 ∈ B3
≤2

2. Determine the 2-symmetric max-plus polynomials

E(1,1)i ,(0,1)j (x1 ⊕ dm
1 , d1, . . . , xn ⊕ dm

n , dn)

from[(
0 1
0 0

)]
,

[(
0 1
0 1

)]
,

[(
0 0
1 1

)]
,

[(
1 1
0 1

)]
,

[(
1 1
1 1

)]
:

E3,(0,1),(0,0)(x1, d1, x2, d2) = d1 � d2

= max(d1, d2)

E3,(0,1),(0,1)(x1, d1, x2, d2) = d1d2

= d1 + d2
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E3,(0,0),(1,1)(x1, d1, x2, d2) = (x2 ⊕ d3
2 )d2 � (x1 ⊕ d3

1 )d1

= max
{

min(x2, 3d2) + d2,min(x1, 3d1) + d1
}

E3,(1,1),(0,1)(x1, d1, x2, d2) = (x1 ⊕ d3
1 )d1d2 � (x2 ⊕ d3

2 )d2d1

= max
{

min(x1, 3d1) + d1 + d2,

min(x2, 3d2) + d2 + d1
}

E3,(1,1),(1,1)(x1, d1, x2, d2) = (x1 ⊕ d3
1 )d1(x2 ⊕ d3

2 )d2

= min(x1, 3d1) + d1 + min(x2, 3d2) + d2

3. Evaluate on B1:

max(2, 1) = 2
2 + 1 = 3

max
{

min(1, 6) + 2,min(3, 3) + 1
}

= max{1 + 2, 3 + 1} = 4
max

{
min(1, 6) + 2 + 1,min(3, 3) + 2 + 1

}
= max{4, 6} = 6

min(1, 6) + 2 + min(3, 3) + 1 = 7
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4. Evaluate on B2:

max(2, 2) = 2
2 + 0 = 2

max
{

min(2, 6) + 2
}

= 4
max

{
min(2, 6) + 2

}
= 4

min(2, 6) + 2 = 4

The Euclidean-space vector representation of B1 is (2, 3, 4, 6, 7),
and of B2 is (2, 2, 4, 4, 4)
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Evolutionary Phylogenetics & Recombination Events
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Motivation: Recombination in RNA Viruses

Horizontal recombination is an important event that causes mutation
in RNA viruses (e.g. HIV, avian, swine influenza)
Molecular phylogenetic analysis to extract and analyze diversification
history is extremely tedious and computationally costly
Applying persistent homology significantly improves computational
efficiency:

Dimension 1 persistence intervals provide explicit information on the
genetic divergence of the sequences involved in the recombination

event (Chan, Carlsson, Rabadán; PNAS 2013)

...but is hard to work with statistically
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Application: Analyzing Intra- & Intersubtype Recombination
in Avian Influenza

The influenza virus presents a genome with 8 segments (RNA molecules)
Genetic Recombination:

Intrasubtype — Between viruses of the same subtype
Intersubtype — Between viruses of different subtypes

=⇒ Lengths of PH1 intrasubtype recombination barcodes will be shorter
than those of intersubtype recombination
Detecting gene reassortment is key to understanding mutations within the
evolutionary dynamics of viruses
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Marginal Distribution of Intra- & Intersubtype
Recombination in Avian Influenza
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Hellinger Distance

f -divergences measure distances between probability distributions

Definition
Assume that T (Bi ) and T (Bj) are probability measures that are
absolutely continuous with respect to λ. The Hellinger distance is

H2(T (Bi ),T (Bj)
)

=
1
2

∫ (√
dT (Bi )

dλ
−
√

dT (Bj)

dλ

)2

dλ

For two r.v. T (Bi ) ∼ N(µi , σ
2
i ) and T (Bj) ∼ N(µj , σ

2
j ), we have:

H2(T (Bi ),T (Bj)
)

= 1−
√

2σiσj
σ2
i + σ2

j

exp

{
−

(µi − µj)2

4(σ2
i + σ2

j )

}
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Scaled Hellinger Distances: H∗ = 11ᵀ −H

Scaled Hellinger
 Distances
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(0.2,0.6]

(0.6,1]
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Current/Future Work: Towards Parametric Probability
Distributions for Barcodes

Open problem since 2008 (Adler/Taylor, Carlsson, Blumberg et al.,
Mileyko/Mukherjee/Harer, etc.): Find explicit, parametric probability
distributions for barcodes

Challenges: Barcode space is equipped with Alexandrov topology
=⇒ Arbitrarily highly curved; geodesics are not even locally unique

Work in progress (with L. Crawford, S. Kališnik, T. Sudijono):
Compute inverse
Bi-Lipschitz?
Pull back exponential family distributions onto barcode space:
Theory + Simulation
Is "Gaussianity" preserved?
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Resources & References

Fully reproducible research
Data publicly available from GenBank, the HIV Sequence Database
(Los Alamos National Secruity) & NCBI Influenza Virus Database
Code available at https://github.com/lorinanthony/Tropix
More details can be found in Monod, A., Kališnik Verovšek, S.,
Patiño-Galindo, J.Á., Crawford, L. (2017). Tropical Sufficient
Statistics for Persistent Homology.
https://arxiv.org/abs/1709.02647
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