Tropical Sufficient Statistics for Persistent Homology

Anthea Monod

Columbia University
am4691@cumc.columbia.edu

Joint work with Sara Kališnik (Max Planck Institute), Juan Ángel Patiño-Galindo (Columbia) \& Lorin Crawford (Brown)

Many thanks to Steve Oudot (INRIA Saclay) for helpful discussions

22 February 2018

Topological Signatures \& Summary Statistics

Summary Statistic: For a given data sample, calculate a quantity to summarize it (= feature selection)

$$
f: \text { Data } \rightarrow \text { "Nice" Space }
$$

Desired Properties:

- Injectivity
- Ability to define probabilistic models in the transformed space
- Amenability to existing statistical methodology \& ML algorithms
- Computable distances

Topologically,

- Persistent Homology Transform (Turner, Mukherjee, Boyer; 2014)
- Smooth Euler Characteristic Transform (Crawford, M., Chen, Mukherjee, Rabadán; 2017)
- Persistence Landscapes (Bubenik; 2015)
- etc. (mentioned by Uli \& Wolfgang)

From Summary Statistics to Sufficient Statistics

Idea: Sufficient statistics allow for a lower dimensional or less complex representation of data without the loss of information

- Sufficiency for a parameter that defines a distribution e.g. \bar{x} for μ in $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Sufficiency for a family/class of distributions via a statistic e.g. Exponential family, distributions on spaces, order statistics \Longrightarrow Measure-theoretic interpretation (Halmos \& Savage, 1949; Diaconis, 1992)
Sufficient statistics are summary statistics that are injective and measurable, and map between two well-defined probability spaces
M., Kališnik, Patiño-Galindo, Crawford (2017)

Sufficient statistics for persistent homology, constructed via tropical geometry, exist
\Longrightarrow Allows for parametric analysis of recombination in phylogenetics

Statistical Sufficiency \& The Factorization Criterion

Definition

Let X be a vector of observations of size n with $X_{i} \sim f_{\vartheta}$ i.i.d.
A statistic $T(X)$ is sufficient for ϑ if

$$
\mathbb{P}(X=x \mid T(X)=t, \vartheta)=\mathbb{P}(X=x \mid T(X)=t)
$$

Theorem (Neyman-Fisher, 1922, 1935)
If the pdf for the observed data is $f(x ; \vartheta)$, then the statistic $T=T(x)$ is sufficient for $\vartheta \in \Theta$ if and only if $f(x ; \vartheta)=h(x) g(T(x) ; \vartheta)$

Theorem (Halmos-Savage, 1949)
A necessary and sufficient condition that the statistic $T(\cdot)$ be sufficient for a dominated set \mathcal{M} of measures on a σ-algebra \mathbf{S} is that for every $\mu \in \mathcal{M}$, the density $f_{\mu}:=\mathrm{d} \mu / \mathrm{d} \lambda$ admits the factorization $f_{\mu}(x)=h(x) g_{\mu}(T(x))$

Persistent Homology in 2 Dimensions

Barcode Space

$\left(x_{1}, d_{1}, x_{2}, d_{2}, \ldots, x_{n}, d_{n}\right) ; x_{i}=$ birth; $d_{i}=$ length; $x_{i} \geq 0$
$B_{n}=$ Orbit space of the action of the symmetric group S_{n} on n letters on the product $([0, \infty) \times[0, \infty))^{n}$, given by permuting the coordinates

Definition

The barcode space $\mathcal{B}_{\leq n}$ consisting of barcodes with at most n intervals is the quotient

$$
\coprod_{n \in \mathbf{N}_{\leq n}} B_{n} / \sim
$$

where \sim is generated by the following equivalences whenever $d_{n}=0$:

$$
\left\{\left(x_{1}, d_{1}\right),\left(x_{2}, d_{2}\right), \ldots,\left(x_{n}, d_{n}\right)\right\} \sim\left\{\left(x_{1}, d_{1}\right),\left(x_{2}, d_{2}\right), \ldots,\left(x_{n-1}, d_{n-1}\right)\right\}
$$

Regularizing Subsets of Barcode Space: For fixed $m>0$, denote by $\mathcal{B}_{\leq n}^{m}$ the subset of $\mathcal{B}_{\leq n}$ that consist of those $\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)$ with $d_{i}>0$ for all $i=1, \ldots, n$ such that $x_{i} \leq m d_{i}$

Fundamentals of Tropical/Arctic Geometry

Tropical geometry $=$ "Skeletonized" version of algebraic geometry
Tropical/Min-plus Semiring:
$(\mathbf{R} \cup\{+\infty\}, \oplus, \odot)$ with $a \oplus b:=\min (a, b)$ and $a \odot b:=a+b$
Arctic/Max-plus Semiring:
$(\mathbf{R} \cup\{-\infty\}, \boxplus, \odot)$ with $a \boxplus b:=\max (a, b)$ and $a \odot b:=a+b$

- Commutative
- Associative
- Distributive Law: $a \odot(b \oplus c)=a \odot b \oplus a \odot c$
- Frobenius Identity in Tropical Arithmetic:

$$
(a \oplus b)^{n}=a^{n} \oplus b^{n}
$$

b^{-1} is the inverse of b w.r.t. $\odot=-b$ in ordinary arithmetic

Tropical/Arctic Functions

Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables of elements in the tropical/arctic semiring

- Tropical/Arctic Monomial: Any product or quotient of $x_{1}, x_{2}, \ldots, x_{n}$; repetition is allowed
- Tropical Polynomial:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =a_{1} \odot x_{1}^{a_{1}^{1}} x_{2}^{a_{2}^{1}} \cdots x_{n}^{a_{n}^{1}} \oplus a_{2} \odot x_{1}^{a_{1}^{2}} x_{2}^{a_{2}^{2}} \cdots x_{n}^{a_{n}^{2}} \oplus \\
& \oplus \cdots \oplus a_{m} \odot x_{1}^{a_{1}^{m}} x_{2}^{a_{2}^{m}} \cdots x_{n}^{a_{n}^{m}}
\end{aligned}
$$

Each tropical/arctic polynomial is a continuous piecewise linear function The passage from tropical/arctic polynomials to functions is not 1-1, e.g.:

$$
\begin{aligned}
x_{1}^{2} \boxplus x_{2}^{2} & =2 x_{1} \boxplus 2 x_{2} \\
& =\max \left\{2 x_{1}, 2 x_{2}\right\} \\
x_{1}^{2} \boxplus x_{2}^{2} \boxplus x_{1} x_{2} & =2 x_{1} \boxplus 2 x_{2} \boxplus\left(x_{1}+x_{2}\right) \\
& =\max \left\{2 x_{1}, 2 x_{2}, x_{1}+x_{2}\right\} \\
& =\max \left\{2 x_{1}, 2 x_{2}\right\}
\end{aligned}
$$

Functional Equivalence \& Semirings of Equivalence Classes

Functional equivalence, $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, denoted by \sim, is an equivalence relation on the set of all max-plus polynomial expressions

We want to study functions, so look at the expressions that define the same functions \Longrightarrow Max-plus polynomials are the semiring of equivalence classes of max-plus polynomial expressions w.r.t. ~
We will use this semiring to assign vectors (functions) to barcodes (coordinatize barcode space)
Very related: "The Ring of Algebraic Functions on Persistence Barcodes" - Adcock, Carlsson \& Carlsson (2016)

Careful: These functions are not Lipschitz w.r.t. Wasserstein and bottleneck distances...

Identifying Tropical Functions for Barcodes

Fix n and let S_{n} act on $X=\left(\begin{array}{cc}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ \vdots & \vdots \\ x_{n, 1} & x_{n, 2}\end{array}\right)$ by left multiplication

$$
\mathscr{E}_{n}=\left\{\left(\begin{array}{cc}
e_{1,1} & e_{1,2} \\
e_{2,1} & e_{2,2} \\
\vdots & \vdots \\
e_{n, 1} & e_{n, 2}
\end{array}\right) \neq[0]_{n}^{2}: e_{i, j} \in\{0,1\} \text { for } i=1,2, \ldots, n ; j=1,2\right\}
$$

Every matrix $E \in \mathscr{E}_{n}$ determines a max-plus monomial from X by

$$
P(E)=x_{1,1}^{e_{1,1}} x_{1,2}^{e_{1,2}} \cdots x_{n, 1}^{e_{n, 1}} x_{n, 2}^{e_{n, 2}}
$$

The orbits $E_{i} \in \mathscr{E}_{n} / S_{n}$ under the row permutation action on \mathscr{E}_{n} determine max-plus polynomials by max-plus multiplication over row permutations:

$$
E_{\left(e_{11}, e_{12}\right),\left(e_{21}, e_{22}\right), \ldots,\left(e_{n 1}, e_{n 2}\right)}:=P\left(E_{1}\right) \boxplus P\left(E_{2}\right) \boxplus \cdots \boxplus P\left(E_{m}\right)
$$

Tropical Coordinates on Barcode Space

Proposition

Let $\left[\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)\right]$ and $\left[\left(x_{1}^{\prime}, d_{1}^{\prime}, \ldots, x_{n}^{\prime}, d_{n}^{\prime}\right)\right]$ be two orbits under the row permutation action on $\mathrm{R}^{2 n}$. If

$$
E_{(0,1)^{i}(1,1)^{j}}\left[\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)\right]=E_{(0,1)^{i}(1,1)^{j}}\left[\left(x_{1}^{\prime}, d_{1}^{\prime}, \ldots, x_{n}^{\prime}, d_{n}^{\prime}\right)\right]
$$

for all $i, j \leq n$, then $\left[\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)\right]=\left[\left(x_{1}^{\prime}, d_{1}^{\prime}, \ldots, x_{n}^{\prime}, d_{n}^{\prime}\right)\right]$.
Therefore,

$$
E_{m,(1,1)^{i},(0,1)^{j}\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)}:=E_{(1,1)^{i},(0,1)^{i}}\left(x_{1} \oplus d_{1}^{m}, d_{1}, \ldots, x_{n} \oplus d_{n}^{m}, d_{n}\right)
$$

induces an injective map on $\mathcal{B}_{\leq n}^{m}$ and separates nonequivalent barcodes

Tropical Sufficient Statistics for Persistent Homology

Theorem (Kališnik (2016); M., Kališnik, Patiño-Galindo, Crawford (2017))
The following collection of tropical polynomials

$$
\begin{aligned}
T: \mathcal{B}_{\leq n}^{m} & \rightarrow \mathbf{R}^{d} \\
\mathscr{B} & \mapsto\left(E_{m,(1,1)^{i},(0,1)^{i}}\left(x_{1}, d_{1}, \ldots, x_{n}, d_{n}\right)\right)_{i+j \in \mathbf{N}_{\leq n}}(\mathscr{B})
\end{aligned}
$$

- induces a map on $\mathcal{B}_{\leq n}^{m}$, thereby mapping from barcode space to Euclidean space
- are Lipschitz-continuous with respect to the Wasserstein and bottleneck distances
- are injective
- are measurable via Borel σ-algebras
- are sufficient statistics for the family of probability measures \mathcal{P} on the subset of persistence barcodes $\mathcal{B}_{\leq n}^{m}$

An Example, $n=2$

Fix $n=2 \Longrightarrow$ The set of orbits under the S_{2} action is
$\mathscr{E}_{2} / S_{2}=\left\{\begin{array}{r}{\left[\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right],\left[\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\right],\left[\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right],\left[\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right],} \\ {\left[\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right],\left[\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right],\left[\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right],\left[\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right],\left[\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right]}\end{array}\right\}$

We only need a subcollection of all orbits to map barcodes injectively \Longrightarrow Take the orbits with rows $(1,1)$ and $(0,1)$:

$$
\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right]
$$

We need $d=n+\frac{n(n+1)}{2}$ many orbits

Suppose we have two barcodes $\mathscr{B}_{1}=\{(1,2),(3,1)\}$ and $\mathscr{B}_{2}=\{(2,2)\}$; $\mathscr{B}_{1}, \mathscr{B}_{2} \in \mathcal{B}_{\leq 2}$

1. Compute m : For intervals $(1,2),(3,1),(2,2)$, find the smallest m such that $x_{i} \leq m d_{i} \Longrightarrow$ The quotients are $\frac{1}{2}, \frac{3}{1}, 1$, so take $m=3$, so $\mathscr{B}_{1}, \mathscr{B}_{2} \in \mathcal{B}_{\leq 2}^{3}$
2. Determine the 2 -symmetric max-plus polynomials

$$
E_{(1,1)^{i},(0,1)^{j}}\left(x_{1} \oplus d_{1}^{m}, d_{1}, \ldots, x_{n} \oplus d_{n}^{m}, d_{n}\right)
$$

from

$$
\begin{aligned}
{\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\right] } & ,\left[\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right]: \\
E_{3,(0,1),(0,0)}\left(x_{1}, d_{1}, x_{2}, d_{2}\right) & =d_{1} \boxplus d_{2} \\
& =\max \left(d_{1}, d_{2}\right) \\
E_{3,(0,1),(0,1)}\left(x_{1}, d_{1}, x_{2}, d_{2}\right) & =d_{1} d_{2} \\
& =d_{1}+d_{2}
\end{aligned}
$$

$$
\begin{aligned}
E_{3,(0,0),(1,1)}\left(x_{1}, d_{1}, x_{2}, d_{2}\right)= & \left(x_{2} \oplus d_{2}^{3}\right) d_{2} \boxplus\left(x_{1} \oplus d_{1}^{3}\right) d_{1} \\
= & \max \left\{\min \left(x_{2}, 3 d_{2}\right)+d_{2}, \min \left(x_{1}, 3 d_{1}\right)+d_{1}\right\} \\
E_{3,(1,1),(0,1)}\left(x_{1}, d_{1}, x_{2}, d_{2}\right)= & \left(x_{1} \oplus d_{1}^{3}\right) d_{1} d_{2} \boxplus\left(x_{2} \oplus d_{2}^{3}\right) d_{2} d_{1} \\
= & \max \left\{\min \left(x_{1}, 3 d_{1}\right)+d_{1}+d_{2},\right. \\
& \left.\min \left(x_{2}, 3 d_{2}\right)+d_{2}+d_{1}\right\} \\
E_{3,(1,1),(1,1)}\left(x_{1}, d_{1}, x_{2}, d_{2}\right)= & \left(x_{1} \oplus d_{1}^{3}\right) d_{1}\left(x_{2} \oplus d_{2}^{3}\right) d_{2} \\
= & \min \left(x_{1}, 3 d_{1}\right)+d_{1}+\min \left(x_{2}, 3 d_{2}\right)+d_{2}
\end{aligned}
$$

3. Evaluate on \mathscr{B}_{1} :

$$
\begin{aligned}
\max (2,1) & =2 \\
2+1 & =3
\end{aligned}
$$

$\max \{\min (1,6)+2, \min (3,3)+1\}=\max \{1+2,3+1\}=4$
$\max \{\min (1,6)+2+1, \min (3,3)+2+1\}=\max \{4,6\}=6$

$$
\min (1,6)+2+\min (3,3)+1=7
$$

4. Evaluate on \mathscr{B}_{2} :

$$
\begin{aligned}
\max (2,2) & =2 \\
2+0 & =2 \\
\max \{\min (2,6)+2\} & =4 \\
\max \{\min (2,6)+2\} & =4 \\
\min (2,6)+2 & =4
\end{aligned}
$$

The Euclidean-space vector representation of \mathscr{B}_{1} is $(2,3,4,6,7)$, and of \mathscr{B}_{2} is $(2,2,4,4,4)$

Evolutionary Phylogenetics \& Recombination Events

Linking algebraic topology to evolution.

Motivation: Recombination in RNA Viruses

- Horizontal recombination is an important event that causes mutation in RNA viruses (e.g. HIV, avian, swine influenza)
- Molecular phylogenetic analysis to extract and analyze diversification history is extremely tedious and computationally costly
- Applying persistent homology significantly improves computational efficiency:

Dimension 1 persistence intervals provide explicit information on the genetic divergence of the sequences involved in the recombination event (Chan, Carlsson, Rabadán; PNAS 2013)
...but is hard to work with statistically

Application: Analyzing Intra- \& Intersubtype Recombination in Avian Influenza

The influenza virus presents a genome with 8 segments (RNA molecules) Genetic Recombination:

- Intrasubtype - Between viruses of the same subtype
- Intersubtype - Between viruses of different subtypes
\Longrightarrow Lengths of PH_{1} intrasubtype recombination barcodes will be shorter than those of intersubtype recombination
Detecting gene reassortment is key to understanding mutations within the evolutionary dynamics of viruses

Marginal Distribution of Intra- \& Intersubtype Recombination in Avian Influenza

_ Intrasubtypes -_ Intersubtypes

Hellinger Distance

f-divergences measure distances between probability distributions

Definition

Assume that $T\left(\mathscr{B}_{i}\right)$ and $T\left(\mathscr{B}_{j}\right)$ are probability measures that are absolutely continuous with respect to λ. The Hellinger distance is

$$
H^{2}\left(T\left(\mathscr{B}_{i}\right), T\left(\mathscr{B}_{j}\right)\right)=\frac{1}{2} \int\left(\sqrt{\frac{\mathrm{~d} T\left(\mathscr{B}_{i}\right)}{\mathrm{d} \lambda}}-\sqrt{\frac{\mathrm{d} T\left(\mathscr{B}_{j}\right)}{\mathrm{d} \lambda}}\right)^{2} \mathrm{~d} \lambda
$$

For two r.v. $T\left(\mathscr{B}_{i}\right) \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ and $T\left(\mathscr{B}_{j}\right) \sim N\left(\mu_{j}, \sigma_{j}^{2}\right)$, we have:

$$
H^{2}\left(T\left(\mathscr{B}_{i}\right), T\left(\mathscr{B}_{j}\right)\right)=1-\sqrt{\frac{2 \sigma_{i} \sigma_{j}}{\sigma_{i}^{2}+\sigma_{j}^{2}}} \exp \left\{-\frac{\left(\mu_{i}-\mu_{j}\right)^{2}}{4\left(\sigma_{i}^{2}+\sigma_{j}^{2}\right)}\right\}
$$

Scaled Hellinger Distances: $\mathbf{H}^{*}=11^{\top}-\mathbf{H}$

Current/Future Work: Towards Parametric Probability Distributions for Barcodes

Open problem since 2008 (Adler/Taylor, Carlsson, Blumberg et al., Mileyko/Mukherjee/Harer, etc.): Find explicit, parametric probability distributions for barcodes

Challenges: Barcode space is equipped with Alexandrov topology \Longrightarrow Arbitrarily highly curved; geodesics are not even locally unique Work in progress (with L. Crawford, S. Kališnik, T. Sudijono):

- Compute inverse
- Bi-Lipschitz?
- Pull back exponential family distributions onto barcode space: Theory + Simulation
- Is "Gaussianity" preserved?

Resources \& References

- Fully reproducible research
- Data publicly available from GenBank, the HIV Sequence Database (Los Alamos National Secruity) \& NCBI Influenza Virus Database
- Code available at https://github.com/lorinanthony/Tropix
- More details can be found in Monod, A., Kališnik Verovšek, S., Patiño-Galindo, J.Á., Crawford, L. (2017). Tropical Sufficient Statistics for Persistent Homology. https://arxiv.org/abs/1709.02647

Thank You!

Funding: National Institutes of General Medical Sciences at the National Institutes of Health (NIGMS-NIH), Award No. R01GM117591.

NII National Institute of General Medical Sciences

