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Stability

Stability Theorem [CSEH06]

Setting:
f, g : K � R

Dgm(f) - sub-levelset PD (f�1(��, �])

K - finite simplicial complex

Let X be a triangulable space with continuous tame func-
tions f, g : X � R. Then the persistence diagramsDgm(f)
and Dgm(g) for their sublevel set filtrations satisfy

dB(Dgm(f),Dgm(g))) � ||f � g||�.



Extensions

• Interleaving filtrations

• Categorical formulation

• Non-uniform interleaving

We will also make use of the following structure theorem for finitely generated modules over
a principal ideal domain.

Theorem 2.9. [Hun80, Theorem 6.12(ii),p. 225] Let A be a finitely generated module over
a principal ideal domain R. Then A is the direct sum of a free submodule E of finite rank
and a finite number of cyclic torsion modules. The cyclic torsion summands (if any) are of
orders ps11 , . . . , pskk , where p1, . . . , pk are (not necessarily distinct) positive integers. The rank
of E and the list of ideals (ps11 ), . . . , (pskk ) are uniquely determined by A (except for the order
of the pi).

3. Interleavings of diagrams

In this section we define ε-interleavings for (R,≤)-indexed diagrams and show that they
induce a metric on a set of (R,≤)-indexed diagrams. Our definition is a categorical version
of the definition in [CCSG+09].

We consider the category (R,≤), whose objects are the real numbers and the set of morphisms
from a to b consists of a single morphism if a ≤ b and is otherwise empty. For b ≥ 0, define
Tb : (R,≤) → (R,≤) to be the functor given by Tb(a) = a + b, and define ηb : Id(R,≤) ⇒ Tb

to be the natural transformation given by ηb(a) : a ≤ a+ b. Note that TbTc = Tb+c and that
ηbηc = ηb+c.

Let D be any category and let ε ≥ 0. Let F,G ∈ D(R,≤).

Definition 3.1. An ε-interleaving of F and G consists of natural transformations ϕ : F ⇒
GTε and ψ : G⇒ FTε, i.e.
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such that

(3) (ψTε)ϕ = Fη2ε and (ϕTε)ψ = Gη2ε.

If (F,G,ϕ,ψ) is an ε-interleaving, then we say that F and G are ε-interleaved.

The existence of the natural transformations ϕ and ψ implies that we have the following
commutative diagrams for all a ≤ b.
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Figure 3: Functions η and ρ that provide an interleaving between the stitched persistence module
U = (MR(X);MR(X), t0,MR(Y )) and (MR(X) where Y is a δ-approximation of a finite metric space
X.

Thus, we have also shown that (5.14) holds for every t ∈ R. It follows that (η, ρ) is a
translation pair.

We conclude this section with a simple, but hopefully illustrative, application of
Proposition 5.12.

Corollary 5.15. Let (X, d) be a finite metric space and let Y ⊂ X be a δ-approximation
of X with δ > 0. Let U = U(MR(X);MR(X), t0,MR(Y )) be the stitched persistence
module and PD(U) its persistence diagram. If [b, d, i] ∈ PD(U), then neither b or d is in
the interval (t0, t0 + δ). Moreover, there exists a matching X : PD(U) →| PD(MR(X))
such that if X ([b, d, i]) = [b′, d′, i′] and

if b < d ≤ t0 then b′ = b and d′ = d;
if b ≤ t0 < t0 + δ ≤ d then b′ = b and max(t0, d− δ) ≤ d′ ≤ d;
if b = t0 + δ < d then t0 ≤ b′ ≤ t0 + δ and max(t0, d− δ) ≤ d′ ≤ d;
if t0 + δ < b < d then b− δ ≤ b′ ≤ b and d− δ ≤ d′ ≤ d.

All unmatched points [b, d, i] ∈ PD(U) satisfy

t0 + δ ≤ b and d ≤ b+ δ,

and all unmatched points [b′, d′, i′] ∈ PD(MR(X)) satisfy

t0 < b′ < d′ ≤ b′ + δ.
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Applications of Stability

• Homological reconstruction

• Statistical inference
2310 B. T. FASY ET AL.

FIG. 4. First, we obtain the confidence interval [0, cn]for W∞(P̂,P). If a box of side length 2cn

around a point in the diagram hits the diagonal, we consider that point to be noise. By putting a band
of width

√
2cn around the diagonal, we need only check which points fall inside the band and outside

the band. The plots show the two different ways to represent the confidence interval [0, cn]. For this
particular example cn = 0.5.

rule out that the lifetime of that feature is 0, and we consider it to be noise. (This is
like saying that if a confidence interval for a treatment effect includes 0, then the
effect is not distinguishable form “no effect.”) This leads to the diagrams shown in
Figure 4.

REMARK. This simple dichotomy of “signal” and “noise” is not the only way
to quantify the uncertainty in the persistence diagram. Indeed, some points near
the diagonal may represent interesting structure. One can imagine endowing each
point in the diagram with a confidence set, possibly of different sizes and shapes.
But for the purposes of this paper, we focus on the simple method described above.

The first three methods that we present are based on the persistence diagram
constructed from the Čech complex. The fourth method takes a different approach
completely and is based on density estimation. We define the methods in this sec-
tion; we illustrate them in Section 5.

4.1. Method I: Subsampling. The first method uses subsampling. The usual
approach to subsampling [see, e.g., Politis, Romano and Wolf (1999), Romano and
Shaikh (2012)] is based on the assumption that we have an estimator θ̂ of a param-
eter θ such that nξ (θ̂ − θ) converges in distribution to some fixed distribution J
for some ξ > 0. Unfortunately, our problem is not of this form. Nonetheless, we
can still use subsampling as long as we are willing to have conservative confidence
intervals.

Let b = bn be such that b = o( n
logn) and bn → ∞. We draw all N subsamples

S1
b,n, . . . ,SN

b,n, each of size b, from the data where N = (n
b

)
. (In practice, as is

Image from Fasy, Brittany Terese, et al. "Confidence sets for persistence diagrams." The 
Annals of Statistics 42.6 (2014): 2301-2339.



Bottleneck Distance
Definition

d�(X,Y ) = inf
�:X�Y

��bijections

sup
x�X

�x � �(x)��.

R

R



Problem: Outliers

• Bottleneck distance is defined by worst case 


• To prove convergence, requires no outliers w.h.p.

Example



Problem: Outliers

• Sub/super level set 
persistence


• Most errors are small, some 
are large


• Bottleneck distance is large



p-Wasserstein Distance

Definition

dp(X,Y ) =

�

� inf
�:X�Y

��bijections

�

x�X

�x � �(x)�p
p

�

�
1/p

The p-Wasserstein distance between two PDs X and Y is
defined as

Often used in applications



p-Wasserstein Distance

Definition

�f � g�p
p =

�

��K

|f(�) � g(�)|p.

Simplicial norm (compare to standard definition)



Related Work
Wasserstein stability for Lipschitz functions

Theorem

Uses equivalence of norms (number of points)

C depends on total persistence

D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz Functions Have Lp-
stable Persistence, FOCM, April 2010



Goal

Theorem



Goal

Theorem

Why is this reasonable?



Minimum Spanning Acycles

• Generalization of a minimum spanning tree



Minimum Spanning Acycles

• Generalization of a minimum spanning tree

Properties: one connected component, acyclic

Weighted edges: minimum weight over all spanning trees



Minimum Spanning Acycles

Fix dimension d - consider d-skeleton of a simplicial complex

Acyclicity: �d = 0

Spanning: �d�1 = 0

Algebraic properties: 



Minimum Spanning Acycles

Fix dimension d - consider d-skeleton of a simplicial complex

If (d-1)-Betti number cannot be zero, higher dimensional 
generalisation of spanning forest.

Acyclicity: �d = 0

Spanning: �d�1 = 0

Algebraic properties: 



Minimum Spanning Acycles
Weighted version: d-simplices have weights

Use weight function as a filtration

f : � R

(�, �)

Negative simplicies (& death times) correspond to 
simplicies in MSA 

Observation 



Birth and Death Times

Theorem



Outline of Proof
Death times represent when no new classes are 
created (including instantaneous classes)

f(�1)

f(�k)

............

Each simplex + or -  ⇒  consequence of Mayer-Vietoris



Outline of Proof

4 cases:

1. Moving a positive simplex forward 

2. Moving a negative simplex backward 

3. Moving a positive simplex backward 

4. Moving a negative simplex forward



Outline of Proof

Moving a positive simplex backward

• If remains positive - trivial

• If negative - birth time 
moves less than how 
much the simplex moved



Towards Persistence Diagrams

Lemma
Let f : K � R be a monotone function over a simplicial
complex K. There exists a map from Dgm(f) to pairs of
simplices (�, �) such that for p � Dgm(f), if �(p) = (�, �),
then f(�) = px and f(�) = py.

In persistence, need to take care of pairing between 
positive and negative simplicies 

How can this map change?



Geometric Picture

Example: moving a negative simplex back in the filtration



Geometric Picture

Example: moving a negative simplex back in the filtration



Geometric Picture

Example: moving a negative simplex back in the filtration



Geometric Picture

Example: moving a negative simplex back in the filtration



Geometric Picture

Example: moving a negative simplex back in the filtration

Tracking simplex by simplex only works for W1



Critical Pairs

Correspondence with points off the diagonal

Definition

A critical pair is a pair of simplicies in the image of � such
that f(�) � f(�) > 0. We call any simplex crtitical if it part
of a critical pair.



Interpolation

Linearly interpolate between functions



Dividing Up the Problem



Dividing Up the Problem

Ordering of simplicies does not change



Easy Case

Lemma

Let ft : K � R, t � [a, b] be a continuous family of mono-
tone functions over a simplicial complex K such that for all
a < s < b the order (potentially with equality) of the function
values of the simplices remains the same. Then

Wp(Dgm(fa),Dgm(fb)) � ||fa � fb||p.



Proof Idea



Combining Intervals



Main Result

Theorem

Let f, g : K � R be monotone functions,

Wp(Dgm(f),Dgm(g)) � �f � g�p.



Observations

• Outliers do not affect Wasserstein distances between 
persistence diagrams too much


• Requires fixed simplicial complex (since we use a 
simplicial norm)


• It does not use the equivalence of norms 



Vietoris-Rips Filtrations

• Often we build complexes from point sets


• Can a similar result hold if we move/perturb points?



Result

Theorem



Components(H0)

• Cannot have too many classes around one vertex

• We do not points, so only consider critical edges (which 
for 0-dim only kill homology classes)

• Assuming e  is critical (adjacent to a critical simplex), we 
can exclude a cone 



Čech Filtrations

Let P � Rd be a finite point set, let f : Rd � R, defined by

f(x) = min
p�P

d(x, p)

Distance filtration: 

Homotopic to the Čech Filtration



Counterexample

'

v

Points placed along a circle

Configuration is generic

C2,2 = O(n)

Constant depends on n,



Bounding Cd,k 

• Counterexample

minimal nontrivial 2-cycle packing critical simplifies



Bounding C2,k

Generalize 0-dimensional case: cannot be adjacent to too 
many critical simplifies 

Lemma

Proof: Mayer-Vietoris 



Bounding C2,1

Corollary



Geometric Picture
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What’s Next?

• Relating simplicial norm to more classical norm,           
e.g. Sobelov norm, recent work by Polterovich et. al. 
(Persistence barcodes and Laplace eigenfunctions)


• Expected Wasserstein bounds (bad cases are generic but 
unlikely)


• Combining with approximate Nerve Theorem 


