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Persistent homology is the homology of a filtration

» Afiltration is a certain diagram K : R - Top
» Ris the poset category of (R, <)
» Atopological space K; foreach t ¢ R
» Aninclusion map K; — K, foreachs<teR
» Consider homology with coefficients in a field (often Z,)
H, : Top — Vect
» Persistent homology is a diagram M : R - Vect
(persistence module)

4/



Homology inference



Homology inference

Given: finite sample P c Q) of unknown shape Q) c R4

Problem (Homology inference)
Determine the homology H,(Q).

5/31



Homology inference

Given: finite sample P c Q) of unknown shape Q) c R4

Problem (Homology inference)
Determine the homology H,(Q).

Problem (Homological reconstruction)
Construct a shape X with H,(X) =~ H,.(Q).

5/31



Homology inference

Given: finite sample P c Q) of unknown shape Q) c R4

Problem (Homology inference)
Determine the homology H,(Q).

Problem (Homological reconstruction)
Construct a shape X with H,(X) =~ H,.(Q).
Idea:

» approximate the shape by a thickening Bs(P) covering Q

5/31



Homology inference

Given: finite sample P c Q) of unknown shape Q) c R4

Problem (Homology inference)
Determine the homology H,(Q).

Problem (Homological reconstruction)
Construct a shape X with H,(X) =~ H,.(Q).
Idea:
» approximate the shape by a thickening Bs(P) covering Q

Requires strong assumptions:
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Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let M be a submanifold of R4. Let P c M, 8 > 0 be such that

» Bs(P) covers Q, and
» § <+/3/20reach(M).
Then H,(M) = H,(Bys(P)).
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Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let M be a submanifold of R4. Let P c M, § > 0 be such that

» Bs(P) covers Q, and
» § <+/3/20reach(M).
Then H.(M) = H,(B,s(P)).
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Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
LetQ c R4 LetPc Q, 8 > 0besuch that

» Bs(P) covers Q, and
» theinclusions Q — Bs(Q) < B,s(Q) preserve homology.

Then H.(Q) = im H, (Bs(P) = Bas(P)).
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Homological realization
This motivates the homological realization problem:

Problem
Given a simplicial pair L ¢ K, find X with L ¢ X ¢ K such that

H.(X) =im H, (L - K).
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Homological realization
This motivates the homological realization problem:

Problem
Given a simplicial pair L ¢ K, find X with L ¢ X ¢ K such that

H.(X) =im H, (L - K).

This is not always possible:

L - > X7 < > K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
The homological realization problem is NP-hard, even in R3.
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Persistence and stability: the big picture

Data point cloud
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Persistence and stability: the big picture

Data

point cloud

distance

~

function

sublevel sets
~

topological spaces (filtration)

homology

2

vector spaces (persistence module)

PcRd

f:]RdeR

K:R - Top

M : R — Vect
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Persistence and stability: the big picture

Data

Combinatorics

point cloud PcR4
distance
function f: R4 >R

sublevel sets
~

topological spaces (filtration) K:R — Top
homology

vector spaces (persistence module) M : R - Vect

structure theorem

~

intervals (persistence barcode) B:R — Mch
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Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let ||f — g|« = 8. Then there exists a matching between the
intervals of the persistence barcodes of f and g such that
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Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let ||f — g|« = 8. Then there exists a matching between the
intervals of the persistence barcodes of f and g such that

» matched intervals have endpoints within distance < §, and

» unmatched intervals have length < 2.

s -
> >
R -~
e —
> Rt
——
> >
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Interleavings
Let § = |[f — g|lco. Write F; = f~1(—o00,t] and G; = g7'(—o0, t].
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Interleavings

Let § = |[f — g|lco. Write F; = f~1(—o00,t] and G; = g7'(—o0, t].

Then the sublevel set filtrations F, G : R - Top are
0-interleaved:

"""""" > Ft — Ft+5 — Ft+26 — Ft+36 ey

XXX

""""" > Gt — Gt+6 — Gt+26 < Gt+36 R

Applying homology (functor) preserves commutativity

» persistent homology of f, g yields
d-interleaved persistence modules R — Vect
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Persistence modules

A persistence module M is a diagram (functor) R — Vect:

» avector space M, foreacht e R
» alinear map m! : M; — M, for each s < t (transition maps)
> respecting identity: m! = idyy,
» and composition: m! o m$ = m!
If each dim M, < oo, we say M is pointwise finite dimensional.

A morphism f : M — N is a natural transformation:
» alinearmap f; : M; - N, foreacht ¢ R
» morphism and transition maps commute:
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Interval Persistence Modules

Let K be a field. For an arbitrary interval I ¢ R,
define the interval persistence module K(I) by

K iftel,

0 otherwise,

K(I)t = {

with transition maps of maximal rank.

Schematic example:
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Barcodes: the structure of persistence modules

Theorem (Krull-Schmidt; Crawley-Boewey 2015)
Let M be a pointwise finite-dimensional persistence module.
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Barcodes: the structure of persistence modules

Theorem (Krull-Schmidt; Crawley-Boewey 2015)

Let M be a pointwise finite-dimensional persistence module.
Then M is interval-decomposable:
there exists a unique collection of intervals B(M) such that

Mz @ K(I).
IeB(M)
B(M) is called the barcode of M. ——— W

» The decomposition itself is not unique.

» This is why we use homology with coefficients in a field.
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Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)
If two persistence modules are §-interleaved,
then there exists a 5-matching of their barcodes:

» matched intervals have endpoints within distance < §,

» unmatched intervals have length < 26.

.......... > Mt — Mt+6 — Mt+28 S ﬁ» -<—>
> >
>< >< ©
---------- » Ny — Nius = Niags > S
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Barcodes as diagrams



The matching category

A matching o : S + T is a bijection 8’ - T/, where 8’ ¢ §, T’ c T.
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The matching category

A matching o : S + T'is a bijection &’ - T', where 8’ c §, T' c T.

Composition of matchingso: S+ Tand 7: T » U:

® ] [ ] (
[ ] ([ ] —> [ ] ([ ]
[ ] ([ ] [ ] ([ ]

Matchings form a category Mch
» objects: sets

» morphisms: matchings
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Barcodes as matching diagrams

We can regard a barcode B as a functor R - Mch:

0.1

0.2

0.4

0.8
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Barcodes as matching diagrams

We can regard a barcode B as a functor R - Mch:

» For each real number ¢, let B, be the set of intervals of B

that contain t, and

» for each s < t, define the matching B, + B,

to be the identity on B, n B,.

1
0.1 0.2

{
0.4

0.8

18/31



Stability via functoriality?

Fy ——— Frs

NN

Gy — Gras



Stability via functoriality?

H.(F;) — H.(Fr2s)

NN

H.(Gts) — H.(Griss)



Stability via functoriality?

B(H.(F:)) — B(H.(Fi:20))

NN

B(H*(GH(S)) — B(H*(Gt+38))



Stability via functoriality?

B(H.(F:)) — B(H.(Fi:20))

NN

B(H*(GH&)) — B(H*(Gt+35))




Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2015)
There exists no functor Vect® — Mch® sending each persistence
module to its barcode.

20/31



Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2015)

There exists no functor Vect® — Mch® sending each persistence
module to its barcode.

Proposition

There exists no functor Vect — Mch sending each vector space of
dimension d to a set of cardinality d.
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Induced barcode matchings



Structure of persistence submodules / quotients

Proposition

Letf : M — N be a monomorphism of persistence modules:
each f, : M, — Ny is injective.

Then f induces an injective map B(M) — B(N)

mapping each I € B(M) to some ] € B(N)

with larger or same left and same right endpoint.

B(M)

r o =0

Dually for epimorphisms (left and right exchanged).
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Induced matchings

For a general morphism f : M — N of persistence modules:
consider epi-mono factorization

M - imf < N.
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Induced matchings

For a general morphism f : M — N of persistence modules:
consider epi-mono factorization

M - imf < N.

» imf <= N induces injection B(imf) = B(N)
» M - imf induces injection B(imf) = B(M)
» compose to a matching B(M) + B(N):

B(M)

B(N)

22/31



Stability from interleavings
Consider interleaving f; : M; - Ny.s, & : Ny &> My (Vt € R):

M,

n—5,t+8

e Nt+6
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Stability from interleavings
Consider interleaving f; : M; - Ny, g2 Nt > M5 (V€ R):

M,

n—5,t+8

Ni_s

e Nt+6

> imny g < imft = Niis
» M; - imf;
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Stability from interleavings
Consider interleaving f; : M; - Ny.s, & : Ny &> My (Vt € R):

M,

n—5,t+8

Ni_s

e Nt+6

> imn_s s <> imft <> Niis
> Mt > lmﬁ

B(M)

B(lm 7’1,75}.+5)

B(N.+5)
B(N)
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Sending persistence into
Hilbert space



Extending the TDA pipeline

Mapping barcodes into a Hilbert space?

» desirable for (kernel-based) machine learning methods
and statistics

» stability (Lipschitz continuity): important for reliable
predictions

» inverse stability (bi-Lipschitz): avoid loss of information
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Extending the TDA pipeline

Mapping barcodes into a Hilbert space?

» desirable for (kernel-based) machine learning methods
and statistics

» stability (Lipschitz continuity): important for reliable
predictions

> inverse stability (bi-Lipschitz): avoid loss of information
Existing kernels for persistence diagrams:
» stability bounds only for 1-Wasserstein distance

» Lipschitz constants depend on bound on number and
range of bars

» no bi-Lipschitz bounds known

Can we hope for something better?
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No bi-Lipschitz feature maps for persistence

Theorem (B, Carriére 2018)

There is no bi-Lipschitz map from the persistence diagrams
(with the interleaving or any p—Wasserstein distance)

into any finite-dimensional Hilbert space,

even when restricting to bounded range or number of bars.
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No bi-Lipschitz feature maps for persistence

Theorem (B, Carriére 2018)

There is no bi-Lipschitz map from the persistence diagrams
(with the interleaving or any p—Wasserstein distance)

into any finite-dimensional Hilbert space,

even when restricting to bounded range or number of bars.

Theorem (B, Carriére 2018)

If there was such a bi-Lipschitz map into some Hilbert space,
the ratio of the Lipschitz constants would have to go to oo
together with the bounds on number or range of bars.
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When was persistent homology invented?

» [Edelsbrunner/Letscher/Zomorodian 2000]
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ANNALS OF MATHEMATICS
Vol. 41, No. 2, April, 1940

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

By MARSTON MORSE
(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in
variational theories is made difficult by the fact that the critical limits, such as
absolute minima, relative minima, minimax values etc., are in general infinite in
number. These limits are associated with relative k-cycles of various dimen-
sions and are classified as 0-limits, 1-limits etc. The number of k-limits suitably
counted is called the k* type number m; of F. The theory seeks to establish
relations between the numbers m; and the connectivities p, of M. The numbers
pr are finite in the most important applications. It is otherwise with the
numbers m; .

The theory has been able to proceed provided one of the following hypotheses
is satisfied. The critical limits cluster at most at 4 « ; the critical points are
isolated;' the problem is defined by analytic functions; the critical limits taken
in their natural order are well-ordered. These conditions are not generally
fulfilled. The generality of the theory rested upon the fact that the cases
treated annroximate in g certain sence the most cgeneral  nroblems whieh it i 27/31
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Rank and span in functional topology

Search within citing articles

Exact homomorphism sequences in homology theory ed.ac.uk [PDF]

JL Kelley, E Pitcher - Annals of Mathematics, 1947 - JSTOR

The developments of this paper stem from the attempts of one of the authors to deduce
relations between homology groups of a complex and homology groups of a complex which
is its image under a simplicial map. Certain relations were deduced (see [EP 1] and [EP 2] ...

Cited by 46 Related articles All 3 versions Cite Save More

Marston Morse and his mathematical works ams.org [PDF]

R Bott - Bulletin of the American Mathematical Society, 1980 - ams.org

American Mathematical Society. Thus Morse grew to maturity just at the time when the
subject of Analysis Situs was being shaped by such masters2 as Poincaré, Veblen, LEJ
Brouwer, GD Birkhoff, Lefschetz and Alexander, and it was Morse's genius and destiny to ...

Cited by 24 Related articles All 4 versions Cite Save More

Unstable minimal surfaces of higher topological structure

M Morse, CB Tompkins - Duke Math. J, 1941 - projecteuclid.org

1. Introduction. We are concerned with extending the calculus of variations in the large to
multiple integrals. Theproblem of the existenceof minimal surfaces of unstable type contains
many of the typical difficulties, especially those ofa topological nature. Having studied this ...

Cited by 19 Related articles All 2 versions Cite Save

tror Persistence in discrete Morse theory psu.edu [PDF]

U Bauer - 2011 - Citeseer

The goal of this thesis is to bring together two different theories about critical points of a
scalar function and theit relzfion o/ {palogybi cry-énd Parsistent
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BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3, Number 3, November 1980

MARSTON MORSE AND HIS MATHEMATICAL WORKS

BY RAOUL BOTT!

1. Introduction. Marston Morse was born in 1892, so that he was 33 years
old when in 1925 his paper Relations between the critical points of a real-val-
ued function of n independent variables appeared in the Transactions of the
American Mathematical Society. Thus Morse grew to maturity just at the
time when the subject of Analysis Situs was being shaped by such masters? as
Poincaré, Veblen, L. E. J. Brouwer, G. D. Birkhoff, Lefschetz and Alexander,
and it was Morse’s genius and destiny to discover one of the most beautiful
and far-reaching relations between this fledgling and Analysis; a relation
which is now known as Morse Theory.

In retrospect all great ideas take on a certain simplicity and inevitability,
partly because they shape the whole subsequent development of the subject.
And so to us, today, Morse Theory seems natural and inevitable. However
one only has to glance at these early papers to see what a tour de force it was
in the 1920’s to go from the mini-max principle of Birkhoff to the Morse
inequalities, let alone extend these inequalities to function spaces, so that by
the earlv 30’s Morse could "aesiablisly the theoreny that for anv Riemann 27/31
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the Morse inequalities already reflect a certain part of the “Spectral Sequence
magic”, and a modern and tremendously general account of Morse’s work on
rank and span in the framework of Leray’s theory was developed by De-
heuvels [D] in the 50’s.

Unfortunately both Morse’s and Deheuvel’s papers are not easy reading.
On the other hand there is no question in my mind that the papers [36] and
[44] constitute another tour de force by Morse. Let me therefore illustrate
rather than explain some of the ideas of the rank and span theory in a very
simple and tame example.

In the figure which follows I have drawn a homeomorph of M = S! in the
plane, and I will be studying the height function F = y on M.

(
2+
A
A
1,{_1'
0%
a

FIGURE 8
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Morse’s functional topology

Key aspects:
» early precursor of persistence and spectral sequences
» uses Vietoris homology with field coefficients

» applies to a broad class of functions on metric spaces
(not necessarily continuous)

» inclusions of sublevel sets have finite rank homology
(g-tame persistent homology)

» focus on controlled behavior in pathological cases
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Motivation and application: minimal surfaces

(a) (b) (c)

(from Dierkes et al.: Minimal Surfaces, Springer 2010)
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Motivation and application: minimal surfaces

C= 6= = -
n n Iy

(from Dierkes et al.: Minimal Surfaces, Springer 2010)
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Existence of unstable minimal surfaces

Using persistent homology:

» Number of e-persistent critical points (minimal surfaces)
is finite forany e > 0
» Morse inequalities for e-persistent critical points

Theorem (Morse, Tompkins 1939)
There is a C, curve bounding an unstable minimal surface
(an index 1 critical point of the area functional).
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