# Learning Algebraic Varieties from Samples



With Paul Breiding, Sara Kališnik and Madeleine Weinstein

TAGS workshop Wednesday, February 21, 2018

## Varieties

Given polynomials  $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$ , their common zero set is an *algebraic variety* V. It lives in  $\mathbb{R}^n$  or  $\mathbb{C}^n$ . If the  $f_i$  are homogeneous then V lives in a projective space  $\mathbb{P}^{n-1}_{\mathbb{R}}$  or  $\mathbb{P}^{n-1}_{\mathbb{C}}$ .



Linear spaces are varieties. Linear Algebra  $\hookrightarrow$  Non-Linear Algebra.

## Varieties

Given polynomials  $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$ , their common zero set is an *algebraic variety* V. It lives in  $\mathbb{R}^n$  or  $\mathbb{C}^n$ . If the  $f_i$  are homogeneous then V lives in a projective space  $\mathbb{P}^{n-1}_{\mathbb{R}}$  or  $\mathbb{P}^{n-1}_{\mathbb{C}}$ .



Linear spaces are varieties. Linear Algebra  $\hookrightarrow$  Non-Linear Algebra.

The word variety is **not scary**. Data scientists are invited to use it interchangeably with manifold, model, or space.

A line *L* in  $\mathbb{P}^2_{\mathbb{R}}$  is the variety of a linear form  $\alpha x + \beta y + \gamma z$ .

## Varieties

Given polynomials  $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$ , their common zero set is an *algebraic variety* V. It lives in  $\mathbb{R}^n$  or  $\mathbb{C}^n$ . If the  $f_i$  are homogeneous then V lives in a projective space  $\mathbb{P}^{n-1}_{\mathbb{R}}$  or  $\mathbb{P}^{n-1}_{\mathbb{C}}$ .



Linear spaces are varieties. Linear Algebra  $\hookrightarrow$  Non-Linear Algebra.

The word variety is **not scary**. Data scientists are invited to use it interchangeably with manifold, model, or space.

A line *L* in  $\mathbb{P}^2_{\mathbb{R}}$  is the variety of a linear form  $\alpha x + \beta y + \gamma z$ .

**Quiz**: How many connected components does  $\mathbb{P}^2_{\mathbb{R}} \setminus L$  have? What happens if we take a conic instead of a line?

## Dimension and Degree

The variety V depends only on the ideal  $I = \langle f_1, \ldots, f_r \rangle$ . Algorithms for ideals, e.g. Gröbner bases, reveal geometric features.

**Quiz**: How to define *dimension* of *V*?

$$x^2 + y^2 + z^2 - 2xyz - 1$$

a surface of degree three



Cox, Little, O'Shea: *Ideals, Varieties, and Algorithms*, Springer Undergraduate Texts in Mathematics, 1993.

The singular locus  $\operatorname{Sing}(V)$  is a proper subvariety of V, defined by minors of the Jacobian  $(\partial f_i/\partial x_j)$ . Hence  $V \setminus \operatorname{Sing}(V)$  is a manifold.

# 27 Lines on the Cubic Surface



#### The Data

We are given a finite set of points in  $\mathbb{R}^n$  or  $\mathbb{P}^{n-1}_{\mathbb{R}}$ 

$$\Omega = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}$$

These are sampled from an unknown variety V.

Exact data? Approximate data?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

**Goal**: Learn the variety V from  $\Omega$ .



#### The Data

We are given a finite set of points in  $\mathbb{R}^n$  or  $\mathbb{P}^{n-1}_{\mathbb{R}}$ 

$$\Omega = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}$$

These are sampled from an unknown variety V.

Exact data? Approximate data?

**Goal**: Learn the variety V from  $\Omega$ .



**First Question**: What is the *dimension* of *V*?

Sampling

If V is presented by a polynomial parametrization then it is easy to sample. Quiz: Does every variety have such a parametrization?

Sampling

If V is presented by a polynomial parametrization then it is easy to sample. **Quiz**: Does every variety have such a parametrization? **No**, smooth plane curves of degree  $\geq 3$  do not.

The Trott curve is the plane quartic defined

$$12^{2}(x^{4} + y^{4}) - 15^{2}(x^{2} + y^{2}) + 350x^{2}y^{2} + 81.$$





**Good News**: While most varieties are not unirational, those arising in applications often are. Nice parametrizations exist.

ж

## Three Running Examples

**Example 1**: The Trott curve.

**Example 2**: The group of rotations SO(3). Parametrization by quaternions. Ideal generated by ten quadrics:  $X^T X = \text{Id}, \det(X) = 1$ .

Rotations arise in many applications, including computer vision and structural biology.

**Quiz**: What is the dimension and degree of this variety? How many linearly independent quadrics vanish on SO(3)?

## Three Running Examples

**Example 1**: The Trott curve.

**Example 2**: The group of rotations SO(3). Parametrization by quaternions. Ideal generated by ten quadrics:  $X^T X = \text{Id}, \det(X) = 1$ .

Rotations arise in many applications, including computer vision and structural biology.

**Quiz**: What is the dimension and degree of this variety? How many linearly independent quadrics vanish on SO(3)?

**Example 3**: The variety of  $m \times n$ -matrices of rank 1. Parametrization by "column vector times row vector". Ideal generated by quadrics, namely the  $2 \times 2$ -minors.

Known to algebraic geometers as Segre variety, and to statisticians as independence model.

**Quiz**: Dimension and degree?

How about tensors?

#### Our Problem Illustrated

**Input**: A sample  $\Omega$  of forty points in  $\mathbb{R}^6$ :

| (0, -2, 6, 0, -1, 12)       | (-4, 5, -15, -12, -5, 15)   | (-4, 2, -3, 2, 6, -1)    | (0, 0, -1, -6, 0, 4)       |
|-----------------------------|-----------------------------|--------------------------|----------------------------|
| (12, 3, -8, 8, -12, 2)      | (20, 24, -30, -25, 24, -30) | (9, 3, 5, 3, 15, 1)      | (12, 9, -25, 20, -15, 15)  |
| (0, -10, -12, 0, 8, 15)     | (15, -6, -4, 5, -12, -2)    | (3, 2, 6, 6, 3, 4)       | (12, -8, 9, 9, 12, -6)     |
| (2, -10, 15, -5, -6, 25)    | (5, -5, 0, -3, 0, 3)        | (-12, 18, 6, -8, 9, 12)  | (12, 10, -12, -18, 8, -15) |
| (1, 0, -4, -2, 2, 0)        | (4, -5, 0, 0, -3, 0)        | (12, -2, 1, 6, 2, -1)    | (-5, 0, -2, 5, 2, 0)       |
| (3, -2, -8, -6, 4, 4)       | (-3, -1, -9, -9, -3, -3)    | (0, 1, -2, 0, 1, -2)     | (5, 6, 8, 10, 4, 12)       |
| (2, 0, -1, -1, 2, 0)        | (12, -9, -1, 4, -3, -3)     | (5, -6, 16, -20, -4, 24) | (0, 0, 1, -3, 0, 1)        |
| (15, -10, -12, 12, -15, -8) | (15, -5, 6, 6, 15, -2)      | (-2, 1, 6, -12, 1, 6)    | (3, 2, 0, 0, -2, 0)        |
| (24, -20, -6, -18, 8, 15)   | (-3, 3, -1, -3, -1, 3)      | (-10, 0, 6, -12, 5, 0)   | (2, -2, 10, 5, 4, -5)      |
| (4, -6, 1, -2, -2, 3)       | (3, -5, -6, 3, -6, -5)      | (0, 0, -2, 3, 0, 1)      | (-6, -4, -30, 15, 12, 10)  |

**Task**: Learn the variety V.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Our Problem Illustrated

**Input**: A sample  $\Omega$  of forty points in  $\mathbb{R}^6$ :

| (0, -2, 6, 0, -1, 12)       | (-4, 5, -15, -12, -5, 15)   | (-4, 2, -3, 2, 6, -1)    | (0, 0, -1, -6, 0, 4)       |
|-----------------------------|-----------------------------|--------------------------|----------------------------|
| (12, 3, -8, 8, -12, 2)      | (20, 24, -30, -25, 24, -30) | (9, 3, 5, 3, 15, 1)      | (12, 9, -25, 20, -15, 15)  |
| (0, -10, -12, 0, 8, 15)     | (15, -6, -4, 5, -12, -2)    | (3, 2, 6, 6, 3, 4)       | (12, -8, 9, 9, 12, -6)     |
| (2, -10, 15, -5, -6, 25)    | (5, -5, 0, -3, 0, 3)        | (-12, 18, 6, -8, 9, 12)  | (12, 10, -12, -18, 8, -15) |
| (1, 0, -4, -2, 2, 0)        | (4, -5, 0, 0, -3, 0)        | (12, -2, 1, 6, 2, -1)    | (-5, 0, -2, 5, 2, 0)       |
| (3, -2, -8, -6, 4, 4)       | (-3, -1, -9, -9, -3, -3)    | (0, 1, -2, 0, 1, -2)     | (5, 6, 8, 10, 4, 12)       |
| (2, 0, -1, -1, 2, 0)        | (12, -9, -1, 4, -3, -3)     | (5, -6, 16, -20, -4, 24) | (0, 0, 1, -3, 0, 1)        |
| (15, -10, -12, 12, -15, -8) | (15, -5, 6, 6, 15, -2)      | (-2, 1, 6, -12, 1, 6)    | (3, 2, 0, 0, -2, 0)        |
| (24, -20, -6, -18, 8, 15)   | (-3, 3, -1, -3, -1, 3)      | (-10, 0, 6, -12, 5, 0)   | (2, -2, 10, 5, 4, -5)      |
| (4, -6, 1, -2, -2, 3)       | (3, -5, -6, 3, -6, -5)      | (0, 0, -2, 3, 0, 1)      | (-6, -4, -30, 15, 12, 10)  |
|                             |                             |                          |                            |

**Task**: Learn the variety V.

**Output**: For each data point  $(x_1, x_2, \ldots, x_6)$ , the 2 × 3-matrix

$$\begin{pmatrix} x_1 & x_2 & x_5 \\ x_4 & x_6 & x_3 \end{pmatrix}$$

has rank 1. Three nice quadrics like  $x_1x_3 - x_4x_5$  vanish on  $\Omega$ . Hence V is the Segre variety  $\mathbb{P}^1 \times \mathbb{P}^2$  in  $\mathbb{P}^5$ . In statistics, this is the independence model for two random variables: binary and ternary.

## **Estimating Dimension**

How to use the existing literature on intrinsic dimension ?

**Key point**: Our sample size  $m = |\Omega|$  is fixed and relatively small.

There are various estimators  $\dim_{\bullet}(\Omega, \epsilon)$ . These depend on a parameter  $\epsilon > 0$  and they produce positive real numbers.

**Key point**:  $\epsilon$  does <u>not</u> tend to 0. This would be meaningless.



#### **Estimating Dimension**

How to use the existing literature on intrinsic dimension ?

**Key point**: Our sample size  $m = |\Omega|$  is fixed and relatively small.

There are various estimators  $\dim_{\bullet}(\Omega, \epsilon)$ . These depend on a parameter  $\epsilon > 0$  and they produce positive real numbers.

Key point:  $\epsilon$  does <u>not</u> tend to 0. This would be meaningless.



Gold Standard: Principal Component Analysis (PCA)

 $T_1 \cdot \Omega \cdot T_2 = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n), \text{ where } \lambda_1 \geq \dots \geq \lambda_n \geq 0$ Take the index *k* for which the jump from  $\log(\sigma_{k-1})$  to  $\log(\sigma_k)$  is largest.

## **Estimating Dimension**

How to use the existing literature on intrinsic dimension ?

**Key point**: Our sample size  $m = |\Omega|$  is fixed and relatively small.

There are various estimators  $\dim_{\bullet}(\Omega, \epsilon)$ . These depend on a parameter  $\epsilon > 0$  and they produce positive real numbers.

**Key point**:  $\epsilon$  does <u>not</u> tend to 0. This would be meaningless.



#### Gold Standard: Principal Component Analysis (PCA)

 $T_1 \cdot \Omega \cdot T_2 = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n), \text{ where } \lambda_1 \geq \dots \geq \lambda_n \geq 0$ Take the index k for which the jump from  $\log(\sigma_{k-1})$  to  $\log(\sigma_k)$  is largest.

We define the *Nonlinear PCA dimension* by using  $\epsilon$  to cluster  $\Omega$ . Then  $\dim_{npca}(\Omega, \epsilon)$  is the average value of k over all clusters.

## **Dimension Diagrams**

Let  $\dim_{\bullet}$  be one of these six dimension estimators:

- Correlation dimension
- Box counting dimension
- Persistent homology curve dimension
- Nonlinear PCA dimension
- Bickel-Levina dimension
- ANOVA dimension

The dimension diagram of the sample  $\Omega$  is the graph of the map



## **Correlation Dimension**

Regard  $\Omega$  as a finite metric space using the Euclidean metric on  $\mathbb{R}^n$  or the *Fubini-Study metric* on  $\mathbb{P}^{n-1}_{\mathbb{R}}$ , which is defined by

$$\operatorname{dist}_{\mathrm{FS}}(u,v) = \arccos rac{|\langle u,v 
angle|}{\|u\| \|v\|} \quad \text{for } u,v \in \mathbb{R}^n.$$

Write  $C(\epsilon)$  for the fraction of pairs  $\{u^{(i)}, u^{(j)}\}$  having distance  $\leq \epsilon$ . We set

$$\dim_{\operatorname{cor}}(\Omega,\epsilon) := \frac{\log(\mathcal{L}(\epsilon))}{|\log(\epsilon)|}.$$

Box Counting Dimension is based on the fraction of boxes occupied by the samples  $\Omega$ .



## Six Hundred 3×4 Matrices of Rank 2



A 9-dimensional variety in  $\mathbb{P}^{11}$  of degree 6 defined by four cubics.

# Persistent Homology



Topology of real and complex algebraic varieties is well-studied. This offers an excellent testing ground for persistent homology. ・ロト ・聞ト ・ヨト ・ヨト

э

## Reaching the Reach

Niyogi, Smale and Weinberger (2006) give conditions under which a sample  $\Omega$  reveals the true homology of V,  $_{\rm provided~V~is~a~compact~manifold.}$ 

A key ingredient is the *reach* of V.



The *medial axis* of V is the set  $M_V$  of points  $u \in \mathbb{R}^n$  such that minimum distance from V to u is attained by two distinct points. The *reach*  $\tau(V)$  is the shortest distance from V to its medial axis  $M_V$ . These objects are hard to compute. But it doesn't hurt to try.

**Punchline**:  $M_V$  is a variety and  $\tau(V)$  is an algebraic number.

Maddie's poster: Horobet and Weinstein (2018) deduce

Algebraicity of Persistent Homology

# Bar Hopping



$$\frac{1}{8} \, = \, 0.125 \, , \ \ \frac{\sqrt{24025 - 217\sqrt{9889}}}{248} \, = \, 0.19941426 ... \, , \ \ \frac{3}{4} \, = \, 0.75$$

・ロト ・回ト ・ヨト ・ヨト

# Tangent Spaces and Ellipsoids

Suppose we know some polynomials that vanish on  $\Omega$  and V.

Using their Jacobian, we can estimate the tangent space of V at each point  $u^{(i)}$ . We use  $\epsilon$ -ellipsoids that are adjusted to these tangent spaces instead of  $\epsilon$ -balls when computing the Vietoris-Rips complex for persistent homology in Eirene.



Figure: The left picture shows the ellipsoid-driven barcodes for the Trott curve. The topological features persist longer than when balls are used.

## **Finding Equations**

Let  $\mathcal{M}$  be a set of monomials in  $S = \mathbb{R}[x_1, \ldots, x_n]$ . Write  $S_{\mathcal{M}}$  for the subspace with basis  $\mathcal{M}$ . Examples are all monomials of degree d resp.  $\leq d$ . The corresponding subspaces  $S_{\mathcal{M}}$  satisfy

$$\dim(S_d) = \binom{n+d-1}{d}$$
 and  $\dim(S_{\leq d}) = \binom{n+d}{d}$ .

Write  $U_{\mathcal{M}}(\Omega)$  for the multivariate Vandermonde matrix of format  $m \times |\mathcal{M}|$ : in the *i*th row are the values of the monomials in  $\mathcal{M}$  at the point  $u^{(i)}$ . For example, if n = 1, m = 3,  $\Omega = \{u, v, w\}$  then

$$U_{\leq d}(\Omega) = \begin{pmatrix} u^{d} & u^{d-1} & \cdots & u^{2} & u & 1 \\ v^{d} & v^{d-1} & \cdots & v^{2} & v & 1 \\ w^{d} & w^{d-1} & \cdots & w^{2} & w & 1 \end{pmatrix}$$

**Remark**: The kernel of  $U_{\mathcal{M}}(\Omega)$  is the space  $I_{\Omega} \cap S_{\mathcal{M}}$  of  $\mathbb{R}$ -linear combinations of  $\mathcal{M}$  and that vanish on  $\Omega$ .

**Goal**: Learn the ideal  $I_V$  of the unknown variety V.

#### Numerical Linear Algebra

Desirable properties in making an educated guess for  $\mathcal{M}$ :

- (a) The ideal  $I_V$  is generated by its subspace  $I_V \cap S_M$ .
- (b) Inclusion of  $I_V \cap S_M$  in  $I_\Omega \cap S_M = \ker(U_M(\Omega))$  is an equality.

Note: If  $\mathcal{M}$  is too small then (a) fails. If  $\mathcal{M}$  is too large then (b) fails.

Requirement (b) imposes a lower bound on the sample size:

$$m \geq |\mathcal{M}| - \dim(I_V \cap S_{\mathcal{M}}).$$

**Example**: It takes  $m \ge \binom{n+2}{2}$  samples to learn quadrics in  $I_V$ .

## Numerical Linear Algebra

Desirable properties in making an educated guess for  $\mathcal{M}$ :

(a) The ideal  $I_V$  is generated by its subspace  $I_V \cap S_M$ .

(b) Inclusion of  $I_V \cap S_M$  in  $I_\Omega \cap S_M = \ker(U_M(\Omega))$  is an equality.

Note: If  $\mathcal{M}$  is too small then (a) fails. If  $\mathcal{M}$  is too large then (b) fails.

Requirement (b) imposes a lower bound on the sample size:

$$m \geq |\mathcal{M}| - \dim(I_V \cap S_{\mathcal{M}}).$$

**Example**: It takes  $m \ge \binom{n+2}{2}$  samples to learn quadrics in  $I_V$ .

We implemented

three methods for the kernel of the Vandermonde matrix  $U_{\mathcal{M}}(\Omega)$ 

| SVD  | accurate, fast, but returns orthonormal and hence dense basis.         |
|------|------------------------------------------------------------------------|
| QR   | slightly less accurate and fast than SVD, yields some sparsity.        |
| RREF | no accuracy guarantees, not as fast as the others, gives sparse basis. |

## Computational Algebraic Geometry

We now have a set  $\mathcal{P}$  of polynomials that vanish on  $\Omega$ , and we hope that it defines the true variety V. What to do with  $\mathcal{P}$ ?



Use symbolic or numerical methods to answer these questions:

- 1. What is the dimension of V ?
- 2. What is the degree of V ?
- Find the irreducible components of V.
   Determine their dimensions and degrees.

A sample of 500 points in  $\mathbb{R}^6$  is drawn from a generative model V. The kernel of the 500×210-matrix  $U_{<4}(\Omega)$ -matrix is 2-dimensional:

$$\mathcal{P} = \left\{ \begin{array}{l} acf^2 + ad^2f - 2ade^2 - b^2f^2 + 2bd^2e - c^2df + c^2e^2 - cd^3, \\ a^2df - a^2e^2 + ac^2f - acd^2 - 2b^2cf + b^2d^2 + 2bc^2e - c^3d \end{array} \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A sample of 500 points in  $\mathbb{R}^6$  is drawn from a generative model V. The kernel of the 500×210-matrix  $U_{<4}(\Omega)$ -matrix is 2-dimensional:

$$\mathcal{P} = \left\{ \begin{array}{l} acf^2 + ad^2f - 2ade^2 - b^2f^2 + 2bd^2e - c^2df + c^2e^2 - cd^3, \\ a^2df - a^2e^2 + ac^2f - acd^2 - 2b^2cf + b^2d^2 + 2bc^2e - c^3d \end{array} \right\}$$

There are two components of codimension 2, of degrees 3 and 10. Since  $3+10 \neq 16$ , the ideal  $\langle P \rangle$  is not radical. Back to finding equations.

A sample of 500 points in  $\mathbb{R}^6$  is drawn from a generative model V. The kernel of the 500×210-matrix  $U_{<4}(\Omega)$ -matrix is 2-dimensional:

$$\mathcal{P} = \left\{ acf^2 + ad^2f - 2ade^2 - b^2f^2 + 2bd^2e - c^2df + c^2e^2 - cd^3, \\ a^2df - a^2e^2 + ac^2f - acd^2 - 2b^2cf + b^2d^2 + 2bc^2e - c^3d \right\}$$

There are two components of codimension 2, of degrees 3 and 10. Since  $3+10 \neq 16$ , the ideal  $\langle \mathcal{P} \rangle$  is not radical. Back to finding equations.

The kernel of  $U_5(\Omega)$  yields two new quintics and we get  $\sqrt{\langle \mathcal{P} \rangle}$ . Finally, the kernel of the 500 × 452-matrix  $U_6(\Omega)$  suffices. The prime ideal  $I_V$  is generated by 2 quartics, 2 quintics and 4 sextics.

A sample of 500 points in  $\mathbb{R}^6$  is drawn from a generative model V. The kernel of the 500×210-matrix  $U_{<4}(\Omega)$ -matrix is 2-dimensional:

$$\mathcal{P} = \left\{ \begin{array}{l} acf^2 + ad^2f - 2ade^2 - b^2f^2 + 2bd^2e - c^2df + c^2e^2 - cd^3, \\ a^2df - a^2e^2 + ac^2f - acd^2 - 2b^2cf + b^2d^2 + 2bc^2e - c^3d \end{array} \right\}$$

There are two components of codimension 2, of degrees 3 and 10. Since  $3+10 \neq 16$ , the ideal  $\langle P \rangle$  is not radical. Back to finding equations.

The kernel of  $U_5(\Omega)$  yields two new quintics and we get  $\sqrt{\langle P \rangle}$ . Finally, the kernel of the 500 × 452-matrix  $U_6(\Omega)$  suffices. The prime ideal  $I_V$  is generated by 2 quartics, 2 quintics and 4 sextics.

The mystery variety  $V \subset \mathbb{R}^6$  is  $4 \times 4$  Hankel matrices of rank 2 whose antidiagonal entry has been deleted:

$$\begin{bmatrix} a & b & c & x \\ b & c & x & d \\ c & x & d & e \\ x & d & e & f \end{bmatrix} = \begin{bmatrix} s_1^3 & s_2^3 \\ s_1^2 t_1 & s_2^2 t_2 \\ s_1 t_1^2 & s_2 t_2^2 \\ t_1^3 & t_2^3 \end{bmatrix} \begin{bmatrix} s_1^3 & s_1^2 t_1 & s_1 t_1^2 & t_1^3 \\ s_2^3 & s_2^2 t_2 & s_2 t_2^2 & t_2^3 \end{bmatrix}.$$

Beauty



#### Equations are Beautiful:

 $p_{16}p_{25}p_{34} - p_{15}p_{26}p_{34} - p_{16} p_{24}p_{35} + p_{14}p_{26}p_{35} + p_{15}p_{24}p_{36}$  $-p_{14}p_{25}p_{36} + p_{16}p_{23}p_{45} - p_{13}p_{26}p_{45} + p_{12}p_{36}p_{45} - p_{15}p_{23}p_{46}$  $+p_{13}p_{25}p_{46} - p_{12}p_{35}p_{46} + p_{14}p_{23}p_{56} - p_{13}p_{24}p_{56} + p_{12}p_{34}p_{56}$ 

 $\begin{array}{c} x_{110}^2 x_{001}^2 + x_{100}^2 x_{011}^2 + x_{010}^2 x_{101}^2 + x_{000}^2 x_{111}^2 + 4 x_{000} x_{110} x_{011} x_{101} + 4 x_{010} x_{100} x_{001} x_{111} \\ - 2 x_{100} x_{110} x_{001} x_{011} - 2 x_{010} x_{110} x_{001} x_{101} - 2 x_{010} x_{100} x_{011} x_{101} \\ - 2 x_{000} x_{110} x_{001} x_{111} - 2 x_{000} x_{100} x_{011} x_{111} - 2 x_{000} x_{010} x_{101} x_{111} \end{array}$ 



## Real Degree and Volume



Theorem (Kinematic formula)

Let V be a smooth projective variety of dimension d in  $\mathbb{P}^{n-1}_{\mathbb{R}}$ . Then its volume is the volume of  $\mathbb{P}^d_{\mathbb{R}}$  times the real degree:

$$\mathrm{vol}(V) \,=\, rac{\pi \lceil rac{d+1}{2} 
ceil}{2 \Gamma(rac{d+1}{2})} \cdot \mathrm{deg}_{\mathbb{R}}(V)$$

where 
$$\deg_{\mathbb{R}}(V) = \int_{L \in \mathrm{Gr}(n-d-1,\mathbb{P}^{n-1}_{\mathbb{R}})} \#(L \cap V) \,\mathrm{d}\nu$$

is the expected number of intersection points with a linear space.

Example (n = 2, k = 1)

The real degree of the projective Trott curve V in  $\mathbb{P}^2_{\mathbb{R}}$  equals

$$\deg_{\mathbb{R}}(V) = 1.88364$$

Multiply with  $\mu(\mathbb{P}^1_{\mathbb{R}}) = \pi$  to learn that the length of V is 5.91763.

## Software and Experiments

#### All algorithms are implemented in our Julia package

LearningAlgebraicVarieties

Please try it out !!

**Case Study**: Data set with n = 24 and m = 6040. Samples  $u^{(i)}$  are configurations of 8 points in 3-space. These represent conformations of cyclo-octane  $C_8H_{16}$ .

Constraints:

$$d_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 = \begin{cases} 1 & \text{if } j = i+1, \\ 8/3 & \text{if } j = i+2. \end{cases}$$

Implicit representation: the 7×7 Cayley-Menger matrix has rank 3:



## Raising the Bar

The conformation space is the union of a sphere with a Klein bottle glued along two circles. Mod 2 Betti numbers are **1,2,1**. [Brown *et al.* 2008] [Martin *et al.* 2010] [Tausz *et al.* 2014]

Our software confirms this. First finding equations helps a lot:



Figure: Persistent homology: standard (left) versus ellipsoid-driven (right)

## Conclusion

Learning Algebraic Varieties from Samples in one ingredient in Linking Topology to Algebraic Geometry and Statistics



Many Thanks for Listening

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

э

#### Hanuta Prize

#### Let n = 6, m = 100, and $\Omega =$

(1,4,8,4,13,20),(1,14,3,7,2,7),(1,16,6,1,1,10),(1,20,6,16,5,4),(1,20,14,2,2,12),(2,1,5,3,17,1),(2,3,2,8,12,10),(2,3,6,1,4,3),(2,4,1,18,6,3),(2,5,2,6,4,4), (2,6,1,20,8,14),(2,6,15,2,8,9),(2,7,1,7,3,7),(2,8,5,18,15,15),(2,11,12,7,10,13), (2,12,17,6,10,9),(3,2,1,17,13,3),(3,5,4,16,14,2),(3,5,5,14,17,5),(3,8,2,4,4,8), (3,11,2,2,5,17),(3,11,7,8,7,7),(3,15,3,3,4,17),(3,18,12,5,4,4),(4,7,5,4,4,2), (4,12,14,10,12,1),(4,19,1,17,3,10),(4,20,8,15,10,20),(4,20,12,13,9,6),(5,1,1,6,16,2), (5.3.1.5.5.2), (5.6.3.8.14.12), (5.7.1.6.8.10), (5.8.7.10.15.10), (5.9.9.3.13.18), (5.9.11.9.16.9), (5.11.5.6.5.5), (5.13.13.3.8.13), (5.17.2.19.4.6), (5.20.15.17.15.9), (6,3,18,2,20,4), (6,4,10,1,10,5), (6,5,7,5,19,10), (6,6,3,8,5,1), (6,8,13,2,7,5), (6,3,18,2,20,4), (6,4,10,1,10,5), (6,5,7,5,19,10), (6,6,3,8,5,1), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,7,5), (6,8,13,2,13,2,7,5), (6,8,13,2,13,2,13,2,13), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,13,2,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), (6,8,15), ((6,9,3,17,11,8),(6,9,6,1,6,8),(6,9,12,1,12,16),(6,13,16,14,20,6),(6,16,7,16,13,16),(6,18,3,8,5,11),(7,5,2,3,4,2),(7,5,16,1,6,2),(7,10,18,4,17,14),(7,12,5,16,9,4), (7,17,5,1,4,9),(7,18,5,18,12,18),(7,19,15,7,7,4),(7,20,10,19,13,10),(8,7,8,1,8,6),(8,12,16,3,16,18),(8,15,2,12,8,12),(8,15,4,9,12,18),(8,16,8,11,9,7),(9,4,2,8,13,4), (9.8.1.20.7.4).(9.8.2.2.5.4).(9.13.2.15.3.1).(9.19.16.18.18.6).(10.4.5.12.20.2). (10,6,6,3,8,3),(10,10,20,4,15,7),(11,4,12,3,20,4),(12,4,3,12,18,3),(12,6,4,9,16,5), (12,7,2,15,18,8),(12,7,7,1,13,7),(12,13,1,6,6,6),(12,16,20,3,12,11),(12,16,20,10,17,6),(12.19.8.3.12.17)(13.11.16.2.10.6)(13.14.4.5.7.6)(13.16.6.20.14.8)(14.10.8.5.11.5)(15,10,10,7,10,2),(15,18,6,14,18,16),(15,20,16,5,10,8),(16,7,1,5,3,1),(16,12,1,20,3,1), (16,15,17,12,20,6),(16,20,14,4,18,19),(17,5,18,2,14,2),(17,13,1,20,12,8),(19,3,4,5,13,1),(19.4,7,7,17,1),(19.9,10,1,18,8),(19.10,11,4,12,4),(20.10,3,20,18,6),(20.20,15,12,15,6)

#### https://math.berkeley.edu/~bernd/hanuta.html

**Task**: Name the projective variety V in  $\mathbb{P}^5_{\mathbb{R}}$ .

The first correct answer wins a prize: Ten Hanuta bars

Students and coauthors of Bernd are not eligible to win. But they are encouraged to help others.  $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box$ 

