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Varieties

Given polynomials fi,...,f, € R[xy,..., x|, their common zero
set is an algebraic variety V. It lives in R" or C". If the f; are
homogeneous then V lives in a projective space Pﬂ%_l or P('é_l.

Linear spaces are varieties. Linear Algebra — Non-Linear Algebra.
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Varieties

Given polynomials fi,...,f, € R[xy,..., x|, their common zero
set is an algebraic variety V. It lives in R" or C". If the f; are
homogeneous then V lives in a projective space Pﬂ%_l or P(’é_l.

Linear spaces are varieties. Linear Algebra — Non-Linear Algebra.

The word variety is not scary. Data scientists are invited
to use it interchangeably with manifold, model, or space.

A line Lin ]P’%& is the variety of a linear form ax + By + vz.

Quiz: How many connected components does JP’IZR\L have?
What happens if we take a conic instead of a line?



Dimension and Degree

The variety V depends only on the ideal | = (fi,...,f).
Algorithms for ideals, e.g. Grobner bases, reveal geometric features.

Quiz: How to define dimension of V?

X2+ y?+ 22— 2xyz — 1

a surface of degree three

Cox, Little, O'Shea: Ideals, Varieties, and Algorithms,
Springer Undergraduate Texts in Mathematics, 1993.

The singular locus Sing(V') is a proper subvariety of V/, defined by
minors of the Jacobian (0f;/0x;). Hence V\Sing(V) is a manifold.



27 Lines on the Cubic Surface




The Data

We are given a finite set of points in R" or Pg*

Q= {uM, @ . umy

These are sampled from an unknown variety V.

Exact data? Approximate data?

Goal: Learn the variety V from €.



The Data

We are given a finite set of points in R" or Pg*

Q= {uM, @ . umy

These are sampled from an unknown variety V.

Exact data? Approximate data?

Goal: Learn the variety V from €.
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First Question: What is the dimension of V?



Sampling
If V is presented by a polynomial parametrization then it is easy to
sample. Quiz: Does every variety have such a parametrization?



Sampling

If V is presented by a polynomial parametrization then it is easy to
Quiz: Does every variety have such a parametrization?

No, smooth plane curves of degree > 3 do not.

sample.

The Trott curve is the plane quartic defined

12%(x* + y*) — 152(x® 4 y?) + 350x%y? + 81.
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A quartic curve.

Good News: While most varieties are not unirational, those
arising in applications often are. Nice parametrizations exist.



Three Running Examples

Example 1: The Trott curve.

Example 2: The group of rotations SO(3).
Parametrization by quaternions.
Ideal generated by ten quadrics: XTX =1d, det(X) = 1.

Rotations arise in many applications, including computer vision and structural biology.

Quiz: What is the dimension and degree of this variety?
How many linearly independent quadrics vanish on SO(3)?



Three Running Examples

Example 1: The Trott curve.

Example 2: The group of rotations SO(3).
Parametrization by quaternions.
Ideal generated by ten quadrics: XTX =1d, det(X) = 1.

Rotations arise in many applications, including computer vision and structural biology.

Quiz: What is the dimension and degree of this variety?
How many linearly independent quadrics vanish on SO(3)?

Example 3: The variety of m x n-matrices of rank 1.
Parametrization by “column vector times row vector”.
Ideal generated by quadrics, namely the 2 x 2-minors.

Known to algebraic geometers as Segre variety, and to statisticians as independence model.

Quiz: Dimension and degree? How about tensors?



Our Problem lllustrated
Input: A sample Q of forty points in RS:

(0,-2,6,0, —1,12) (—4,5,—15, —12, —5,15)  (—4,2, —3,2,6, —1) (0,0, —1, —6,0, 4)
(12,3, —8,8, —12,2) (20, 24, —30, —25, 24, —30) (9,3,5,3,15,1) (12,9, —25, 20, —15, 15)
(0, —10, —12,0, 8, 15) (15, —6, —4,5, —12, —2) (3,2,6,6,3,4) (12, —8,9,9, 12, —6)

(2, —10, 15, —5, —6, 25) (5,-5,0,—3,0,3) (—12,18,6,—8,9,12) (12,10, —12, —18, 8, —15)

(1,0, —4, —2,2,0) (4,-5,0,0,—3,0) (12, -2,1,6,2, —1) (5,0, —2,5,2,0)

(3, -2, -8, -6,4,4) (-3,-1,-9,-9,-3,-3) (0,1,-2,0,1,-2) (5,6,8,10,4,12)

(2,0, -1,-1,2,0) (12,-9,-1,4,-3,-3) (5, —6,16, —20, —4, 24) (0,0,1,-3,0,1)

(15, —10, —12, 12, —15, —8) (15, —5, 6,6, 15, —2) (=2,1,6,—12,1,6) (3,2,0,0, —2,0)
(24, —20, —6, —18, 8, 15) (=3,3,-1,-3,-1,3) (—10,0,6, —12,5,0) (2,-2,10,5, 4, —5)
(4,-6,1, -2, —2,3) (3, —5,—6,3, —6, —5) (0,0, -2,3,0,1) (-6, —4, —30, 15, 12, 10)

Task: Learn the variety V.



Our Problem lllustrated
Input: A sample Q of forty points in RS:

(0,-2,6,0, —1,12) (—4,5,—15, —12, —5,15)  (—4,2,—3,2,6, —1) (0,0,—1,—6,0,4)
(12,3, —8,8, —12,2) (20,24, —30, —25, 24, —30) (9,3,5,3,15,1 (12,9, —25, 20, —15, 15)
(0, —10, —12,0, 8, 15) (15, —6, —4,5, —12, —2) (3,2,6,6,3,4) (12, -8,9,9, 12, —6)

(2, -10,15, —5, —6, 25) (5,-5,0,—3,0,3) (~12,18,6, —8,9,12) (12,10, —12, —18, 8, —15)

(1,0,—4,-2,2,0) (4,-5,0,0,-3,0) (12,-2,1,6,2, —1) (=5,0,-2,5,2,0)
(3,-2,-8,—6,4,4) (-3,-1,-9,-9,-3,-3)  (0,1,-2,0,1,-2) (5,6,8,10, 4, 12)

(2,0, -1,-1,2,0) (12,-9,-1,4,-3,-3) (5, —6,16, —20, —4, 24) (0,0,1,-3,0,1)

(15, -10, —12,12, —15, —8) (15, —5, 6,6, 15, —2) (—2,1,6,—12,1,6) (3,2,0,0, —2,0)
(24, —20, —6, —18, 8, 15) (—3,3,—1,-3,-1,3) (~10,0,6, —12,5,0) (2,—-2,10,5, 4, —5)
(4,-6,1, -2, -2,3) (3, =5, 6,3, —6, —5) (0,0,-2,3,0,1) (—6, —4, —30, 15,12, 10)

Task: Learn the variety V.

Output: For each data point (x1,x2, ..., Xs), the 2 X 3-matrix

X1 X2 Xs
X4 Xo X3
has rank 1. Three nice quadrics like x;x3 — x3x5 vanish on €.

Hence V is the Segre variety P x P? in P°. In statistics, this is the
independence model for two random variables: binary and ternary.



Estimating Dimension

How to use the existing literature on intrinsic dimension ?
Key point: Our sample size m = |Q| is fixed and relatively small.

There are various estimators dime(£2,€). These depend on
a parameter € > 0 and they produce positive real numbers.

Key point: ¢ does not tend to 0. This would be meaningless.
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There are various estimators dim,(£2,€). These depend on
a parameter € > 0 and they produce positive real numbers.
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Gold Standard: Principal Component Analysis (PCA)

T1-Q-Tp, = diag(A1, A2y .-, A\p), where A1 >--->X,>0

Take the index k for which the jump from log(ox—1) to log(o) is largest.



Estimating Dimension

How to use the existing literature on intrinsic dimension ?
Key point: Our sample size m = |Q| is fixed and relatively small.

There are various estimators dime(£2,€). These depend on
a parameter € > 0 and they produce positive real numbers.

Key point: ¢ does not tend to 0. This would be meaningless.

Gold Standard: Principal Component Analysis (PCA)
T1-Q-Tp, = diag(A1, A2y .-, A\p), where A1 >--->X,>0
Take the index k for which the jump from log(ox—1) to log(o) is largest.

We define the Nonlinear PCA dimension by using € to cluster €.
Then dimyppea(€2, €) is the average value of k over all clusters.



Dimension Diagrams
Let dime, be one of these six dimension estimators:

The
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Correlation dimension
Box counting dimension

Persistent homology curve dimension
Nonlinear PCA dimension

Bickel-Levina dimension

ANOVA dimension

dimension diagram of the sample Q is the graph of the map

(0,1) = R>q, € — dime(€2,¢€).
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Correlation Dimension

Regard €2 as a finite metric space using the Euclidean metric on R”
or the Fubini-Study metric on Pg ', which is defined by

[{u; V)|
vl

Write C(€) for the fraction of pairs {u(), uU)} having distance < .
We set

distpg(u, v) = arccos for u,v € R".

- . log(C(e))
dimeo, (Q,€) = Tog(d)]

Box Counting Dimension is based on the
fraction of boxes occupied by the samples €.



Six Hundred 3x4 Matrices of Rank 2
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A 9-dimensional variety in P! of degree 6 defined by four cubics.
[m] = = =




Persistent Homology
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A quartic curve,

Topology of real and complex algebraic varieties is well-studied.
This offers an excellent testing ground for persistent homology.



Reaching the Reach

Niyogi, Smale and Weinberger (2006) give conditions under which a
sample Q reveals the true homology of V, provided V is a compact manifold.

A key ingredient is the reach of V.

The medial axis of V is the set My of points u € R” such that
minimum distance from V to u is attained by two distinct points.

The reach (V) is the shortest distance from V to its medial axis
My/. These objects are hard to compute. But it doesn't hurt to try.

Punchline: My is a variety and 7(V') is an algebraic number.

Maddie's poster:  Horobet and Weinstein (2018) deduce

Algebraicity of Persistent Homology



Bar Hopping
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Tangent Spaces and Ellipsoids

Suppose we know some polynomials that vanish on € and V.

Using their Jacobian, we can estimate the tangent space of V
at each point u(). We use e-ellipsoids that are adjusted to
these tangent spaces instead of e-balls when computing the
Vietoris-Rips complex for persistent homology in Eirene.

== Dimension 1 == Dimension 1
12 Dimension 0 Dimension 0

O0 0.2 04 ¢ 0.6 0.8 1 00 0.2 04 ¢ 0.6 0.8 1

Figure: The left picture shows the ellipsoid-driven barcodes for the Trott
curve. The topological features persist longer than when balls are used.



Finding Equations
Let M be a set of monomials in S = R[x, ..., x,]. Write Sy
for the subspace with basis M. Examples are all monomials of
degree d resp. < d. The corresponding subspaces Sy satisfy
-1
dim(Sy) = (”*j ) and  dim(S<q) = (”:d>.

Write Upq(2) for the multivariate Vandermonde matrix of format
m X |M]: in the ith row are the values of the monomials in M at

the point u). For example, if n=1, m=3, Q = {u, v, w} then

v wd o 2oy 1
Ucg(Q) = [ v¢ vI1 ..o w2 v 1
wd wid 1l ooow?2 w1

Remark: The kernel of Ur((Q2) is the space Ig N Sy
of R-linear combinations of M and that vanish on Q.

Goal: Learn the ideal / of the unknown variety V.



Numerical Linear Algebra
Desirable properties in making an educated guess for M:

(a) The ideal Iy is generated by its subspace I\, N Saq.
(b) Inclusion of Iy N Spaq in Ig N Sp = ker(Upn(Q)) is an equality.

Note: If M is too small then (a) fails. If M is too large then (b) fails.
Requirement (b) imposes a lower bound on the sample size:
m > ‘M‘ — dim(l\/ N SM)

Example: It takes m > ("1?) samples to learn quadrics in /y.



Numerical Linear Algebra
Desirable properties in making an educated guess for M:

(a) The ideal Iy is generated by its subspace I\, N Saq.
(b) Inclusion of Iy N Spaq in Ig N Sp = ker(Upn(Q)) is an equality.
Note: If M is too small then (a) fails. If M is too large then (b) fails.

Requirement (b) imposes a lower bound on the sample size:

m > ‘M‘ —dim(l\/ﬁSM).

Example: It takes m > ("1?) samples to learn quadrics in /y.

We implemented

three methods for the kernel of the Vandermonde matrix Up(2)

SVD  accurate, fast, but returns orthonormal and hence dense basis.
QR slightly less accurate and fast than SVD, yields some sparsity.
RREF  no accuracy guarantees, not as fast as the others, gives sparse basis.




Computational Algebraic Geometry

We now have a set P of polynomials that vanish on €2, and we
hope that it defines the true variety V. What to do with P 7

Use symbolic or numerical methods to answer these questions:
1. What is the dimension of V' 7
2. What is the degree of V' 7

3. Find the irreducible components of V.
Determine their dimensions and degrees.



Primary Decomposition
A sample of 500 points in R® is drawn from a generative model V.
The kernel of the 500x210-matrix U<4(S2)-matrix is 2-dimensional:

P = { acf? + ad?f — 2ade® — b?f? 4 2bd%e — c?df + c?e® — cd?,
a’df — a%e® + ac®f — acd? — 2b?cf + b?d? + 2bc%e — c3d }
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There are two components of codimension 2, of degrees 3 and 10.
Since 3+10 # 16, the ideal (P) is not radical. Back to finding equations.
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a’df — a%e® + ac®f — acd? — 2b?cf + b?d? + 2bc%e — c3d }
There are two components of codimension 2, of degrees 3 and 10.

Since 3+10 # 16, the ideal (P) is not radical. Back to finding equations.

The kernel of Us(2) yields two new quintics and we get /(P).

Finally, the kernel of the 500 x 452-matrix Ug(S2) suffices. The
prime ideal Iy, is generated by 2 quartics, 2 quintics and 4 sextics.



Primary Decomposition
A sample of 500 points in R® is drawn from a generative model V.
The kernel of the 500x210-matrix U<4(S2)-matrix is 2-dimensional:

P = { acf? + ad?f — 2ade® — b?f? 4 2bd%e — c?df + c?e® — cd?,
a’df — a%e® + ac®f — acd? — 2b?cf + b?d? + 2bc%e — c3d }

There are two components of codimension 2, of degrees 3 and 10.
Since 3+10 # 16, the ideal (P) is not radical. Back to finding equations.

The kernel of Us(2) yields two new quintics and we get /(P).

Finally, the kernel of the 500 x 452-matrix Ug(S2) suffices. The
prime ideal Iy, is generated by 2 quartics, 2 quintics and 4 sextics.

The mystery variety V C R® is 4x4 Hankel matrices

of rank 2 whose antidiagonal entry has been deleted:

3 3
S1 52

2 2 3 2 2 3
} _|sin S| [ sn s g

o QX0
o QX

S1 tf ) t22 sg 522 ty 5] t22 tg

QA x 0o

——
X 0o oo
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Beauty -
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Equations are Beautiful:

P16P25P34 — P15P26P34 — P16 P24P35 + P14P26P35 1 P15P24P36
—P14P25P36 + P16P23P45 — P13P26P45 + P12P36P45 — P15P23 P46
+P13P25P46 — P12P35P46 + P14P23P56 — P13P24P56 + P12P34P56

2 2 2 2 2 .2 2 2
X{10%501 T XT00X011 TX010 X101 T X000 X111 T 4X000X110X011X101+4X010X100 X001 X111
—2X100X110X001 X011 — 2X010X110X001X101 — 2X010X100X011 X101
—2Xp00X110X001 X111 — 2X000X100X011X111 — 2X000X010X101 X111

2dyp dip+dap—dip dip+d3p—dis s diptdp—1,p—d1,p—1
dip+dap—di2 2dap doptd3p—das v dptdpy p—da p1

diptdsp—dis daptdap—doz 2d3, o daptdy_i1p—d3p1

diptdp_1,p—drp—1 doptdp_1p—p1 dptdp_1p—d3p1 - 2dp_1,p



Real Degree and Volume / H s >

- i

{ \ N

Theorem (Kinematic formula)
Let V be a smooth projective variety of dimension d in IP’I'é_l.
Then its volume is the volume of }P’% times the real degree:

where degp(V) = fLeGr(n—d—l,PD'(l) #(LNV)dv

is the expected number of intersection points with a linear space.

Example (n =2,k =1)

The real degree of the projective Trott curve V in P2 equals
deggr(V) = 1.88364

Multiply with u(PL) = 7 to learn that the length of V is 5.91763.



Software and Experiments

All algorithms are implemented in our Julia package
LearningAlgebraicVarieties

Please try it out !

Case Study: Data set with n =24 and m = 6040.
Samples u() are configurations of 8 points in 3-space.
These represent conformations of cyclo-octane CgHig.

Constraints:

1 ifj= i+l
di = (xi =)+ i —y)? +(z—z)? = ’
i = (i —x) + i —y) +(z—z) 8/3 if j—it2

Implicit representation: the 7x7 Cayley-Menger matrix has rank 3:

2dig digtdg—dip  digtdg—diz .- digtdig—diy w ~
dig+drg—di2 2dog dog+dsg—dp3 - dogtdrg—day 1 I
dig+dsg—diz  dagtdig—da3 2d3g <+ dgtdig—dsy

dig+drg—di7  dog+drg—doy dig+dg—d37 - .- 2d7g d s | comeomae



Raising the Bar
The conformation space is the union of a sphere with a Klein
bottle glued along two circles. Mod 2 Betti numbers are 1,2,1.

[Brown et al. 2008] [Martin et al. 2010] [Tausz et al. 2014]

Our software confirms this. First finding equations helps a lot:
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Conclusion

Learning Algebraic Varieties from Samples in one ingredient in
Linking Topology to Algebraic Geometry and Statistics

1

Many Thanks for Listening



Hanuta Prize

Let n=6,m =100, and Q =

(1,4,8,4,13,20),(1,14,3,7,2,7),(1,16,6,1,1,10),(1,20,6,16,5,4),(1,20,14,2,2,12),
(2.1,5,3,17,1),(2,3,2,8,12,10),(2,3,6,1,4,3),(2.4,1,18,6,3),(2.5,2.6,4,4),
(2,6,1,20,8,14),(2,6,15,2,8,9),(2.7,1,7,3,7),(2,8,5,18,15,15),(2,11,12,7,10,13),
(2,12,17,6,10,9),(3,2,1,17,13,3),(3,5,4,16,14,2),(3,5,5,14,17,5),(3.8,2,4,4,8),
(3.11,2,2,5,17),(3,11,7,8,7,7),(3,15,3,3,4,17),(3,18,12,5,4,4),(4,7,5,4,4,2),
(4,12,14,10,12,1),(4,19,1,17,3,10),(4,20,8,15,10,20),(4,20,12,13,9,6),(5,1,1,6,16,2),
(5.3.1,5,5.2),(5.6,3,8,14,12),(5,7,1,6,8,10),(5,8,7,10,15,10),(5,9,9,3,13,18),
(5.9,11,9,16,9),(5,11,5,6,5,5),(5,13,13,3,8,13),(5,17,2,19,4,6),(5,20,15,17,15,9),
(6,3,18,2,20,4),(6,4,10,1,10,5),(6,5,7,5,19,10),(6,6,3,8,5,1),(6,8,13,2,7.,5),
6,9,3,17,11,8),(6,9,6,1,6,8),(6,9,12,1,12,16),(6,13,16,14,20,6),(6,16,7,16,13,16),

(
(6,18,3,8,5,11),(7,5,2,3,4,2),(7,5,16,1,6,2),(7,10,18,4,17,14),(7,12,5,16,9,4),
(7,17,5,1,4,9),(7,18,5,18,12,18),(7,19,15,7,7,4),(7,20,10,19,13,10),(8,7,8,1,8,6),
(8,12,16,3,16,18),(8,15,2,12,8,12),(8,15,4,9,12,18),(8,16,8,11,9,7),(9,4,2,8,13,4),
(9.8,1,20,7,4),(9,8,2,2,5,4),(9,13,2,15,3,1),(9,19,16,18,18,6),(10,4,5,12,20,2),
(10,6,6,3,8,3),(10,10,20,4,15,7),(11,4,12,3,20,4),(12,4,3,12,18,3),(12,6,4,9,16,5),
(12,7,2,15,18,8),(12,7,7,1,13,7),(12,13,1,6,6,6),(12,16,20,3,12,11),(12,16,20,10,17,6),
(12,19,8,3,12,17),(13,11,16,2,10,6),(13,14,4,5,7,6),(13,16,6,20,14,8),(14,10,8,5,11,5),
(15,10,10,7,10,2),(15,18,6,14,18,16),(15,20,16,5,10,8),(16,7,1,5,3,1),(16,12,1,20,3,1),
(16,15,17,12,20,6),(16,20,14,4,18,19),(17,5,18,2,14,2),(17,13,1,20,12,8),(19,3,4,5,13,1),
(19,4,7,7,17,1),(19,9,10,1,18,8),(19,10,11,4,12,4),(20,10,3,20,18,6),(20,20,15,12,15,6)

https://math.berkeley.edu/~bernd/hanuta.html
Task: Name the projective variety V in P3.

The first correct answer wins a prize: Ten Hanuta bars

Students and coauthors of Bernd are not eligible to win. But they are encouraged to help others.


https://math.berkeley.edu/~bernd/hanuta.html

