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Setup

Consider one-dimensional signal f : [0, 1]→ R with k modes.
Suppose f is observed by a finite number of measurements:

Yi = f (ti) + εi, 0 = t0 < t1 < · · · < tn = 1 .

Question: With what probability can we infer the number of
modes of f from the observations (Yi)?

Noise (εi) independently distributed with mean zero s.t. for some
κ > 0, v > 0 and all m ≥ 2:

E |εi|
m
≤ vm!κm−2/2 for all i = 1, . . . , n.
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Setup (cont’d)

I Not on our agenda: First regularize (filter) data, then
perform topological inference (Bubenik, Carlsson, Chazal,
Cohen-Steiner, Guibas, Kim, Mémoli, Mérigot, Oudot,
Sheehy, . . . .).

I Hard to analyze effect of filtering from statistical
perspective without a priori assumptions on data or oracles.

I Goal: Statistical bounds on number of modes of f inferred
from data Y only, without reconstructing f along the way.
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Persistent homology [Edelsbrunner et al., 2002]

Investigate change of homology for sublevel sets

Example: connected components in 1D
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Persistence diagrams [Cohen-Steiner et al., 2005]

persistence of pair of critical points = death - birth
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Persistence signatures
Order persistence values from highest to lowest:

s0,∞(f ) ≥ s1,∞(f ) ≥ s2,∞(f ) ≥ · · · ≥ 0 ≥ 0 . . .

Lemma (Bauer)
Let X denote the space of piecewise constant functions on (some)
equipartition of [0, 1]. Let Xk ⊂ X denote the set of functions
with at most k inner maxima (= modes). Then

sk,∞(f ) = 2 · dist∞(f ,Xk) .

Note: Stability implies that |sk,∞(f ) − sk,∞(g)| ≤ 2‖f − g‖∞ ∀k.
This gives upper bound sk,∞(f ) ≤ 2 · dist∞(f ,Xk).
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Persistence signatures

X0

X1

X2
f

Interpret persistence signatures as distance to set of functions
with at most k modes.
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Different metrics – different signatures

X0

X1

X2
f

Define metric signature sk(f ) := dist(f ,Xk) with respect to some
metric d on X.

Call d descriptive if for every f with at least k + 1 modes sk > 0.
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Different metrics – different signatures

Lemma (Stability of metric signatures)
For all metrics and all k: |sk(f ) − sk(g)| ≤ d(f , g).

Proof.
Distance to sets is 1-Lipschitz. �

Consider the following descriptive metrics:
I Persistence signatures: d∞(f , g) = supx|f (x) − g(x)|.
I Kolmogorov signatures: dK(f , g) = supx|F(x) − G(x)|

for antiderivatives F and G (with F(0) = G(0) = 0).
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Thresholding metric signatures

0.2 0.4 0.6 0.8 1.0

�5

5

10

0.2 0.4 0.6 0.8 1.0

�5

5

10

2 4 6 8 10 12 14

0.005

0.010

0.050

0.100

0.500

1.000

2 4 6 8 10 12 14

0.005

0.010

0.050

0.100

0.500

1.000

11 / 24



Thresholding metric signatures

Empirical signatures: s0(Y) ≥ s1(Y) ≥ s2(Y) ≥ · · · Define:

kq(Y) := max
{
j : sj−1(Y) ≥ q

}

Example 1:

f (x) =

1 if x ∈ [1/3, 2/3) ,

0 else .

Extreme value theory for i.i.d. normal noise: Largest value on
[1/3, 2/3) approaches 1 +

√
2 log(n), lowest value on

complement approaches −
√

2 log(n) with P→ 1.

Observation: Thresholding persistence signatures at
q(n) =

√
2 log(n) and thresholding Kolmnogorov signatures at

q = 1/2 detects single mode of f with P→ 1.
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Thresholding metric signatures

Example 2: (decreasing signal to noise ratio)

fn(x) =

δn if x ∈ [1/3, 2/3) ,

0 else .

Theorem (Bauer, Munk, Sieling, W.)
Let δn

√
n→ ∞ and δn

√
log(n)→ 0. Then there exists no

successful thresholding strategy for persistence signatures:

lim sup
n→∞

P
(
k∞qn

(Y) = 1
)
< 1

for every possible thresholding sequence (qn).

Theorem (Bauer, Munk, Sieling, W.)
Let δn

√
n→ ∞ and δn → 0. Then thresholding Kolmogorov

signatures at q(n) = δn/2 detects single mode of f with P→ 1.
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Thresholding metric signatures

Example 3: (needle in heystack)

fn(x) =

(1 + ε)
√

2 log(n) if x ∈ [j/n, (j + 1)/n) ,

0 else .

for ε > 0 and some j that is not known a priori.

Observations:
I Sup-norm thresholding (Y1, . . . ,Yn) minimax efficient for

detecting single mode of f [Donoho/Jin, Ingster/Suslina].
I No thresholding known for persistence or Kolmogorov.
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Empirical Kolmogorov signatures

Theorem (Bauer, Munk, Sieling, W.)
Let δ > 0. Then

P

(
max
k∈N0
|sk(Y) − sk(f )| ≥ δ

)
≤ 2 exp

(
−

δ2n
2v + 2κδ

)
.

Moreover, for given probability α ∈ (0, 1), one can construct
non-asymptotic confidence bands:

P
(
sk(f ) ∈

[
(sk(Y) − τn(α))+ , sk(Y) + τn(α)

]
for all k ∈ N0

)
≥ 1 − α ,

where (x)+ = max(0, x) and τn(α) can be explicitly computed.
Asymptotically: τn(α) ≈ 1/

√
n.
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Empirical Kolmogorov signatures

Remarks:
I These are “honest” (non-asymptotic) confidence bands.
I No a priori assumption on f required.
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Thresholding K-signatures – overest. modes

Theorem (Bauer, Munk, Sieling, W.)
Let f have at most k modes, and let α ∈ (0, 1). Then

P
(
kτn(α)(Y) > k

)
≤ α ,

i.e., τn(α) controls the probability of overestimating the number
of modes of f .

Fact: τn(α) is independent of the number and magnitude of the
modes of f . In this sense the result is universal.
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Thresholding K-signatures – underest. modes

Remarks:
I Obtaining a universal result in opposite direction, i.e.,

controlling the probability of underestimating the number of
modes, is more delicate.

I Without a priori information on the “smallest scales” of f ,
no method can provide a control for their underestimation
[Donoho].

I Only possible to provide a bound for underestimating those
signatures of f that are larger than a certain threshold.
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Thresholding K-signatures – underest. modes

Theorem (Bauer, Munk, Sieling, W.)
Let α ∈ (0, 1). Then

P
(
kτn(α)(Y) < k2τn(α)(f )

)
≤ α .

Let f have at most k modes. Then one has two-sided bound:

P
(
k2τn(α)(f ) ≤ kτn(α)(Y) ≤ k

)
≥ 1 − α .

Fixing α, one has τn(α) ≈ 1/
√

n⇒ ∃C such that asymptotically
by thresholding at C/

√
n, it can be guaranteed that all signatures

of f above a certain threshold get detected with P ≥ 1 − α.
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Thresholding K-signatures – estimating modes

So far: No a priori information about f . But now:

Theorem (Bauer, Munk, Sieling, W.)
Let f have at most k modes and assume sk−1(f ) ≥ ε. Then

P
(
kε/2(Y) = k

)
≥ 1 − 2 exp

(
−

ε2n
8v + 4κε

)
.

Number of modes of f can be estimated correctly from empirical
signatures with P→ 1 under the assumption of a lower bound on
magnitude (in the Kolmogorov norm) of the smallest mode of f .
This is independent of the number of modes of f .
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Computing Kolmogorov signatures – Taut strings

Definition (Taut strings)
Let f ∈ L∞[a, b] with antiderivative F. The taut string Uα is the
minimizer of ∫ b

a

√
1 + U′α(t)2 dt

subject to Uα(a) = F(a), Uα(b) = F(b), ‖U − F‖∞ ≤ α.

Theorem (Bauer, Munk, Sieling, W.)
The function uα = U′α minimizes the number of modes among all
functions u with dKol(f , u) ≤ α.
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Taut strings continued

20 40 60 80 100

–0.4

–0.2

0.2

0.4

0.6 f

uα

20 40 60 80 100

– 8

– 6

– 4

– 2

2

4

F±α

Uα

Observations:
I uα coincides with f apart

from some intervals, on
which it is constant.

I New cancelation of critical
points occurs for αk = sKol

k .

I Kolmogorov signatures can
be computed in
O(n log(n)).
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Summary

I Honest confidence bands for Kolmogorov signatures.

I Universal bound on over-estimating modes.

I Exact estimation possible exponentially fast given smallest
Kolmogorov signature of f .

I Distance-based analogy for persistence breaks for dim>2.

I Kolmogorov approach breaks for dim>1.

I But: Statistical questions persist for higher dim.

I Reference: Bauer, Munk, Sieling, W.: Persistence Barcodes
versus Kolmogorov Signatures: Detecting Modes of
One-Dimensional Signals. Found Comput Math, 2017.
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Thank you for your attention!
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