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1. Introduction

These are rough1 notes for my talk in Summer School on Numerical Computing in Algebraic
Geometry on 14.08.18. For more details and references please see the paper Computing periods of
hypersurfaces (arXiv:1803.08068). Soon there will be an upcoming paper with Pierre Lairez to
continue the story to finding curves in surfaces (and algebraic cycles in hypersurfaces).

The general theme of this conference is to take a problem in algebraic geometry of impossible
theoretical or computational complexity and to recast it into a million mindless computations in
analysis, letting the computer deal with it. We apply this to a classical problem in geometry;
that of computing algebraic cycles in a variety.

We stick to the “toy” problem of detecting curves in a quartic surface inP3
C
, which is nevertheless

open. The tools are not limited to this case but can handle hypersurfaces of any dimension and
degree, provided the computations terminate.

Curves are not interesting in this regard, since there are no algebraic cycles besides points and
the curve itself. Surfaces of degrees one, two and three in P3

C
are also not interesting because there

is no change in behavior as the defining coefficients vary. In fact, algebraic cycles in surfaces of
degree less than four have been completely understood a hundred years ago. The first non-trivial
case is the classification of curves in a given quartic surface.

2. Curves in a quartic surface

Take a smooth quartic surface X = Z(f) ⊂ P3
C

cut out by a homogeneous equation of degree
four:

f ∈ C[x, y, z, w]4.

Problem. What kind of algebraic curves are there in the surface X?

For instance:
• How many lines are there in X? How do they intersect? (Easy to do symbolically. Give

it a try!)
• How many quadric curves are there in X? (Symbolically hard. Maybe Bertini can do it?)
• How many twisted cubics are there in X? (Should be impossible to do it naively.)

There are always finitely many of these rational curves. However, if we were to ask for smooth
planar cubics contained in X, we would realize that they come in families: If C ⊂ X is a curve of
degree three contained in a plane H then H ∩X = C ∪ L for a line L, by degree reasons. Then
any other plane H ′ containing L will intersect X along L and another plane cubic C ′.

The observation regarding plane cubics in X suggest that we should really consider two curves
equivalent if one can be deformed into the other in some way. Otherwise, we may end up with
continuously many curves in X. The notion of equivalence we have in mind is called “linear
equivalence”, this roughly declares two curves to be equivalent if they appear as the fibers of a
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1For example, instead of including references we point to your favorite search engine.
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map X P1. (To see that the plane cubics C and C ′ above are linearly equivalent, project X
away from the line L.)

Definition 2.1. Let Pic(X) be the formal Z-linear combination of curves in X modulo linear
equivalence.

It turns out that for any smooth surface in P3 there is a number ρ(X) such that Pic(X) ' Zρ(X).
This number ρ(X) is called the Picard rank of X.

Problem. Compute the Picard rank of X. Even better, compute how generators of Pic(X)
intersect, to be represented by a ρ(X)× ρ(X) integral matrix.

Remark 2.2. Armed with the intersection matrix, one can compute all sorts of delicate informa-
tion about a linear equivalence class. For instance, we can find smooth rational curves of specified
degree by a combinatorial procedure.

Remark 2.3. This “toy” problem of determining ρ(X) is open! There is no reasonable method
to compute the Picard group for a given surface, even for a quartic surface.

Bringing analysis to this problem rests on an observation of Hodge (and Lefschetz and Picard).
He joined topology and analysis to attack this algebraic problem.

3. Topology and analysis

An algebraic curve C in the algebraic surface X defines a homology class:

[C] ∈ H2(X,Z).

Note that elements in the latter are topological 2-cycles modulo homological equivalence.

Figure 1. Underlying topological space of an algebraic curve (of genus 3).

Lemma 3.1. For any smooth surface X ⊂ P3, the association above induces an inclusion:

Pic(X) ↪→ H2(X,Z).

Remark 3.2. For any smooth quartic surface X in P3
C

we have H2(X,Z) ' Z22.

Consider the affine chart C3 ⊂ P3
C

given by w = 1 and with coordinates x, y, z. Let ∂z denote
differentiation by z. Define the following two form on C3:

(3.0.1) ωX =
dxdy

∂zf(x, y, z, 1)
.

Remark 3.3. The restriction of ωX to X uniquely extends to a holomorphic two form on the
entirety of X. Observing that df = 0 on X, one can show that (up to sign) the roles of x, y, z
(and even of w) can be interchanged to obtain the same restriction of ωX onto X.



NUMERICAL HODGE THEORY 3

Theorem 3.4 (Lefschetz (1,1)). The Picard group of X is precisely the kernel of the following
map:

(3.0.2) H2(X,Z)→ C : γ 7→
∫
γ

ωX .

Sketch. Suppose a class γ ∈ H2(X,Z) supports an algebraic curve C. The (complex) tangent
space of C is one dimensional at any point. Therefore, the two form dxdy is annihilated the
moment you restrict it to C. The integral

∫
γ
ωX must vanish.

The argument above can be generalized to any dimension, however generalizing the opposite
direction to any dimension would get you a million dollars (see Hodge conjecture). For codimension
one algebraic cycles, as in curves in surfaces, the proof uses the long exact sequence associated to
the exponential sequence. �

3.1. Strategy. The observation above suggests the following strategy to compute the Picard
group of X.

(1) Compute explicit 2-cycles γ1, . . . , γ22 generating H2(X,Z).
(2) Compute, numerically or otherwise, the integral

∫
γi
ωX . The value of these integrals are

called periods of X.
(3) Compute the kernel of the map (3.0.2).
Supposing that we got to the last step, we are faced with the problem that it is essentially

impossible to certifiably find integral relations between transcendental numbers. Nevertheless, we
will use Lenstra–Lenstra–Lovàsz (LLL) lattice reduction algorithm to get a good candidate for
the kernel.

The second step does not pose a problem at all, although it might be time consuming to
compute integrals numerically to high precision.

The first step is where we are derailed. It is difficult to compute such an explicit basis in
practice for any given f defining X, let alone to automate this procedure.

4. Deforming the integrals

Take Y = Z(g) ⊂ P3
C

be another smooth quartic defined by a simpler polynomial, say,

g = x4 + y4 + z4 + w4.

Consider the interpolation ht := (1− t)g + tf for t ∈ C. This defines a family of quartic surfaces
Xt := Z(ht) ⊂ P3

C
, which are smooth except possibly for finitely many singular values of t, let us

denote this finite set of bad values by S ⊂ C.
Let ω(t) denote the following 2-form on the affine chart C3 ⊂ P3 defined by w = 1, which is

defined exactly as in (3.0.1):

ω(t) :=
dxdy

∂zht(x, y, z, 1)
.

In light of Lefschetz (1,1) theorem, the kernels of the integration maps:

H2(Xt,Z)→ C : γ 7→
∫
γ

ω(t),

are the Picard groups Pic(Xt).

Theorem 4.1 (Ehresmann fibration theorem). Locally for t ∈ C \ S the topological spaces
underlying Xt do not change and can be identified. In particular, the groups H2(Xt,Z) can be
identified and this identification is unique locally in t.

What this means for us is that if we start with a basis γY1 , . . . , γY22 ∈ H2(Y,Z) = H2(X0,Z) then
there exists a (locally) unique family of bases γ1(t), . . . , γ22(t) ∈ H2(Xt,Z) such that γi(0) = γYi .
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Definition 4.2. We will refer to the following function as the period function of the family Xt:

p(t) :=

(∫
γ1(t)

ω(t), . . . ,

∫
γ22(t)

ω(t)

)
.

Remark 4.3. We are not bothered by the fact that γi(t) is uniquely defined only locally since
the following computations are local in t. The end result, i.e., the Picard rank does not care
about which basis we may have ended up with on X1.

4.1. New strategy. Details of how to actually carry out the following strategy is a little involved
and we refer to the introduction of the Computing periods of hypersurfaces paper cited at the
beginning.

• Compute a differential operator D ∈ C(t)[∂t] such that D · p(t) ≡ 0.
• Since Y is simple, compute the initial conditions p(0), p′(0), p′′(0), . . . .
• Solve the initial value problem specified by these two computations to obtain p(1).

Try period-suite which implements precisely this procedure, it is available at https://github.
com/period-suite/period-suite. Now that we have the periods of X we can find the kernel
of the map (3.0.2) using LLL, although we sacrifice certainty in our answers. The command
HodgeLattice will do this for you. See the README file of period-suite for further explanations.
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