What is *p*-adic geometry?

Marta Panizzut

Chow Lectures Leipzig – November 5, 2018

Berkovich's theory

Huber's theory

Berkovich's theory

Huber's theory

A valued field is a field K with an absolute value $|\cdot|:K\to\mathbb{R}_{\geq 0}$ satisfying

- |a| = 0 if and only if a = 0,
- |ab| = |a||b|,
- ▶ $|a+b| \le |a| + |b|$,

If $|a+b| \le \max\{|a|, |b|\}$, then K is a non-Archimedean valued field. This condition is stronger than the triangle inequality.

The absolute value is called discrete if the value group $|K^*|$ is discrete in $\mathbb{R}_{>0}$.

Let's construct an example

Let p be a prime number.

We write $x \in \mathbb{Q}$ as $x = p^k \frac{a}{b}$, where p does not divide a and b, and $k \in \mathbb{Z}$.

$$v_p: \quad \mathbb{Q} \quad \to \quad \mathbb{R} \cup \{\infty\}$$
$$0 \quad \mapsto \quad \infty$$
$$x \quad \mapsto \quad k$$

Let's construct an example

Let p be a prime number.

We write $x \in \mathbb{Q}$ as $x = p^k \frac{a}{b}$, where p does not divide a and b, and $k \in \mathbb{Z}$.

$$\begin{array}{ccc}
v_p: & \mathbb{Q} & \to & \mathbb{R} \cup \{\infty\} \\
0 & \mapsto & \infty \\
x & \mapsto & k
\end{array}$$

 $v_p: \mathbb{Q} \to \mathbb{R} \cup \{\infty\}$ satisfies the following property:

- \triangleright $v_p(x) = \infty$ if and only if x = 0.

Such a map v_p is called a valuation.

p-adic numbers

We define the p-adic non-Archimedean absolute value on \mathbb{Q} ,

$$|x|_p = p^{-\nu_p(x)}.$$

Example:
$$|3-2|_5 = 1$$
 $|27-2|_5 = \frac{1}{25}$

The field of p-adic numbers \mathbb{Q}_p is the completion of the field of rational numbers \mathbb{Q} under the p-adic absolute value.

Completion:

- ▶ absolute value $|\cdot|_p$ uniquely extends to \mathbb{Q}_p .
- $ightharpoonup \mathbb{Q}$ is dense in \mathbb{Q}_p .
- $ightharpoonup \mathbb{Q}_p$ is complete.

Ostrowski's Theorem

Remark: The field of real numbers \mathbb{R} is the completion of \mathbb{Q} with respect to the (Archimedean) absolute value $|\cdot|_{\infty}$.

The absolute values $|\cdot|_{\infty}$, $|\cdot|_p$ and $|\cdot|_q$, with $p \neq q$, are not equivalent (just think of the sequence $\{p^n\}_n$).

Theorem (Ostrowski 1916)

Every non-trivial absolute value on \mathbb{Q} is equivalent to $|\cdot|_{\infty}$ or $|\cdot|_p$ for some prime number p.

Theorem (Hasse-Minkowski Theorem 1921)

A quadratic form Q with coefficients in \mathbb{Q} has a non-trivial solution in \mathbb{Q} if and only if Q has a non-trivial solution in \mathbb{R} and in \mathbb{Q}_p for every p.

More Examples

- Field K with trivial absolute value.
- ▶ The field $\mathbb{C}\{\{t\}\}$ of Puiseux series with complex coefficients:

$$x = c_1 t^{a_1} + c_2 t^{a_2} + c_3 t^{a_3} + \dots,$$

where $a_1 < a_2 < a_3 < \cdots$ are rational numbers that have a common denominator and $c_1 \neq 0$.

More Examples

- Field K with trivial absolute value.
- ▶ The field $\mathbb{C}\{\{t\}\}$ of Puiseux series with complex coefficients:

$$x = c_1 t^{a_1} + c_2 t^{a_2} + c_3 t^{a_3} + \dots,$$

where $a_1 < a_2 < a_3 < \cdots$ are rational numbers that have a common denominator and $c_1 \neq 0$.

▶ Number fields, i.e., finite field extensions of ℚ.

More Examples

- Field K with trivial absolute value.
- ▶ The field $\mathbb{C}\{\{t\}\}$ of Puiseux series with complex coefficients:

$$x = c_1 t^{a_1} + c_2 t^{a_2} + c_3 t^{a_3} + \dots,$$

where $a_1 < a_2 < a_3 < \cdots$ are rational numbers that have a common denominator and $c_1 \neq 0$.

- Number fields, i.e., finite field extensions of ℚ.
- ▶ The completion of $\mathbb{Q}_p(p^{\frac{1}{p^{\infty}}}) = \bigcup_{n \geq 1} \mathbb{Q}_p(p^{\frac{1}{p^n}})$ (... perfectoid field, wait for the next lecture!).

Valuation ring and residue field

Let K be a non-Archimedean field. The valuation ring is

$$R = \{x \in K \mid |x| \le 1\}.$$

It is a local ring with maximal ideal

$$\mathcal{M} = \{ x \in R \mid |x| < 1 \}.$$

The residue field k is the quotient R/\mathcal{M} .

Example:

- $ightharpoonup K=\mathbb{Q}_p$, then $k=\mathbb{Z}/p\mathbb{Z}$.
- $ightharpoonup K=\mathbb{C}\{\{t\}\}, ext{ then } k=\mathbb{C}.$

Topological properties of NA fields

Remark that if $|a| \neq |b|$, then $|a + b| = \max\{|a|, |b|\}$.

- $D_r(a) = \{x \in \mathbb{Q}_p : |x a| \le r\}$

Topological properties of NA fields

Remark that if $|a| \neq |b|$, then $|a + b| = \max\{|a|, |b|\}$.

- $D_r(a) = \{ x \in \mathbb{Q}_p : |x a| \le r \}$
- ▶ $D_r(a)^\circ = \{x \in \mathbb{Q}_p : |x a| < r\}$
- $ightharpoonup C_r(a) = \{x \in \mathbb{Q}_p : |x a| = r\}$

We have the following properties:

- ▶ $D_r(b)^\circ \subset C_r(a)$ for every $b \in C_r(a)$.
- ▶ Closed disks are open: $D_r(a) = D_r(a)^\circ \cup C_r(a)$.
- Every point in a disk is a center: $D_r(x) = D_r(y)$ for every $y \in D_r(x)$.
- ► The field *K* is Hausdorff and locally compact, but totally disconnected.

What goes wrong

Let K be a complete non-trivial NA valued field.

A K-manifold is a space that "looks like patches of K^{n} ".

K is totally disconnected, then X is totally disconnected.

A function is analytic if it can be given locally by convergent power series.

 ${\it K}$ is totally disconnected, there are too many analytic functions.

We want a better space!

Berkovich's theory

Huber's theory

Berkovich affine line

Let A be a ring. A multiplicative seminorm on A is a multiplicative function $|\cdot|:A\to\mathbb{R}_{\geq 0}$ such that

- ightharpoonup |0| = 0 and |1| = 1,
- ▶ $|f + g| \le |f| + |g|$

Berkovich affine line

Let A be a ring. A multiplicative seminorm on A is a multiplicative function $|\cdot|:A\to\mathbb{R}_{\geq 0}$ such that

- |0| = 0 and |1| = 1,
- ▶ $|f + g| \le |f| + |g|$

Let K be a valued field. We define $\mathbb{A}_K^{1,\mathsf{Berk}}$ as follows:

- points → seminorms on K[T] which extend the absolute value on K
- ▶ topology \leadsto weakest topology such that for every $f \in K[T]$ the map $|\cdot| \to |f|$ is continuous.

Points on $\mathbb{A}_{K}^{1,\mathsf{Berk}}$

Multiplicative seminorm $|\cdot|_x$ gives a point $x \in \mathbb{A}_K^{1,\mathsf{Berk}}$.

 $ightharpoonup K=\mathbb{C}$

The seminorms on $\mathbb{C}[T]$ are of the form $f \to |f(z)|$, for some $z \in \mathbb{C}$. So $\mathbb{A}^{1,\operatorname{Berk}}_{\mathbb{C}}$ is homeomorphic to \mathbb{C} . Seminorms correspond to maximal ideals of $\mathbb{C}[T]$.

Points on $\mathbb{A}_{K}^{1,\mathsf{Berk}}$

Multiplicative seminorm $|\cdot|_x$ gives a point $x \in \mathbb{A}_K^{1,\mathsf{Berk}}$.

- ► $K = \mathbb{C}$ The seminorms on $\mathbb{C}[T]$ are of the form $f \to |f(z)|$, for some $z \in \mathbb{C}$. So $\mathbb{A}^{1,\operatorname{Berk}}_{\mathbb{C}}$ is homeomorphic to \mathbb{C} . Seminorms correspond to maximal ideals of $\mathbb{C}[T]$.
- ▶ K an algebraically closed complete non-trivial NA field. Seminorms $f \rightarrow |f(x)|$, for $x \in K$.

Points on $\mathbb{A}_K^{1,\mathsf{Berk}}$

Multiplicative seminorm $|\cdot|_x$ gives a point $x \in \mathbb{A}_K^{1,\mathsf{Berk}}$.

- ► $K = \mathbb{C}$ The seminorms on $\mathbb{C}[T]$ are of the form $f \to |f(z)|$, for some $z \in \mathbb{C}$. So $\mathbb{A}^{1,\operatorname{Berk}}_{\mathbb{C}}$ is homeomorphic to \mathbb{C} . Seminorms correspond to maximal ideals of $\mathbb{C}[T]$.
- ▶ K an algebraically closed complete non-trivial NA field. Seminorms $f \to |f(x)|$, for $x \in K$.

We have more seminorms:

$$|f|_{D_r(a)} = \sup_{x \in D_r(a)} |f(x)|, \text{ with } D_r(a) = \{x \in K \, : \, |x - a| \le r\}.$$

$$|f|_{D_r(a)} = \sup_{x \in D_r(a)} |f(x)|, \text{ with } D_r(a) = \{x \in K \, : \, |x - a| \le r\}.$$

$$D_0(x) \rightsquigarrow D_r(x) \rightsquigarrow D_{|x-y|}(x) = D_{|x-y|}(y) \rightsquigarrow D_r(y) \rightsquigarrow D_0(y)$$

Berkovich's Classification Theorem

Theorem (Berkovich's Classification Theorem)

Let K be an algebraically closed, complete non-Archimedean field. Every point $x \in \mathbb{A}^{1,Berk}_K$ corresponds to a decreasing nested sequence $\{D_{r_i}(a_i)\}$ of closed discs. Classification is done according to $D = \bigcap_i D_{r_i}(a_i)$.

- ► TYPE I: $D = D_0(a)$.
- ► TYPE II: $D = D_r(a)$, with $r \in |K^*|$.
- ► TYPE III: $D = D_r(a)$, with $r \notin |K^*|$.
- ► TYPE IV: $D = \emptyset$.

$\mathbb{A}_{K}^{1,\mathsf{Berk}}$

- ▶ Points of Type I are dense in $\mathbb{A}^{1,\mathsf{Berk}}_{\mathcal{K}}$.
- $ightharpoonup X_{\mathcal{K}}^{1,\operatorname{Berk}}$ is uniquely path connected.
- ► Type II points are branching points.

Analytification of affine algebraic varieties

Let $X = \operatorname{Spec} K[T_1, \dots, T_n]/I$. The analytification $X_K^{\operatorname{Berk}}$ is the set of semimorms on $K[T_1, \dots, T_n]/I$ extending the absolute value on K.

- X connected iff X^{Berk} path connected
- ► X separated iff X^{Berk} Hausdorff
- ightharpoonup X proper iff X^{Berk} compact
- same dimensions
- **.**..

A tropical break

Let I be an ideal in $K[x_1^{\pm}, \dots, x_n^{\pm}]$ and X its variety on the algebraic torus \mathbb{T}^n . The tropical variety Trop(X) is defined as

the closure in
$$\mathbb{R}^n$$
 of $\{(\mathsf{val}(x_1),\ldots,\mathsf{val}(x_n)) \, \Big| \, (x_1,x_2,\ldots,x_n) \in X \}$.

The tropical variety Trop(X) is a pure rational polyhedral complex.

- Enumerative geometry
- Brill-Noether theory of curves
- Mirror symmetry
- Optimization
- **.**...

Analytification and Tropicalization

Let X be an affine algebraic variety over K, and $\varphi:X\to\mathbb{A}^m$ an affine embedding.

The tropicalization $Trop(X, \varphi)$ of X depends on φ .

Analytification and Tropicalization

Let X be an affine algebraic variety over K, and $\varphi:X\to\mathbb{A}^m$ an affine embedding.

The tropicalization $\text{Trop}(X, \varphi)$ of X depends on φ .

Theorem (Payne '09)

The analytification X^{an} is homeomorphic to the limit of all tropicalizations $Trop(X, \varphi)$.

Berkovich's theory

Huber's theory

Higher rank valuations

Let A be a ring. A valuation is a map to a totally ordered abelian group Γ , $|\cdot|:A\to \Gamma\cup\{0\}$, satisfying the following properties:

- |0| = 0, |1| = 1,
- $|x+y| \le \max\{|x|,|y|\}.$

Higher rank valuations

Let A be a ring. A valuation is a map to a totally ordered abelian group Γ , $|\cdot|:A\to\Gamma\cup\{0\}$, satisfying the following properties:

- |0| = 0, |1| = 1,
- $|x+y| \le \max\{|x|,|y|\}.$

Example: $A = K\langle T \rangle = \left\{ \sum_{a_n \geq 0} c_n T^{a_n} \right\}$ the ring of convergent power series on $|T| \leq 1$.

 $A^+ = R\langle T \rangle$ the subspace of power series in the valuation ring R. We define $X = \operatorname{Spa}(A, A^+)$ as

$$\Big\{|\cdot|:A o\Gamma\cup\{0\}$$
 continuous valuation on $A\,\Big|\,|f|\leq 1, f\in A^+\Big\}$

Points on $Spa(A, A^+)$

▶ TYPE I: $f \mapsto |f(a)|$, $|a| \le 1$.

Points on $Spa(A, A^+)$

- ▶ TYPE I: $f \mapsto |f(a)|, |a| \le 1$.
- ▶ TYPE II and III: $f \mapsto \sup_{y \in D_r(a)} |f(y)|$, $|a| \le 1$ and $0 < r \le 1$.
- TYPE IV: as before for not spherically complete field

Points on $Spa(A, A^+)$

- ► TYPE I: $f \mapsto |f(a)|$, $|a| \le 1$.
- ▶ TYPE II and III: $f \mapsto \sup_{y \in D_r(a)} |f(y)|$, $|a| \le 1$ and $0 < r \le 1$.
- TYPE IV: as before for not spherically complete field
- ► TYPE V: Let $|a| \le 1$ and $0 < r \le 1$. Let γ be a number infinitesimally smaller or bigger than r and $\Gamma = \mathbb{R}_{>0} \times \gamma^{\mathbb{Z}}$.

$$f = \sum c_n (T - a)^n \mapsto \max |c_n| \gamma^n.$$

If $r \notin |K^*|$, then these points are equivalent to point III.

Literature

- M. Baker, An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves, p-adic geoemtry Univ. Lecture Ser., vol. 45, Amer. Math. Soc., 2008, pp. 123–174.
- V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surverys and Monographs, vol. 33, American Mathematical Society, 1990.
- Z.I. Borevich, I.R. Shafarevich, Number Theory, Academic press, London etc. 1964.
- S. Payne, *Analytification is the limit of all tropicalizations*, Math. Res. Lett. **16**, no. 3, 543–556, 2009.
- P. Scholze, *Perfectoid spaces*, Publ. math. de l'IHÉS 116 (2012), no. 1, 245–313.
- J. Weinstein, Arizona Winter School 2017: Adic Spaces, Lecture Notes.