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Non-Archimedean valued fields

A valued field is a field K with an absolute value | · | : K → R≥0
satisfying

I |a| = 0 if and only if a = 0,

I |ab| = |a||b|,
I |a + b| ≤ |a|+ |b|,

If |a+b| ≤ max{|a|, |b|}, then K is a non-Archimedean valued field.
This condition is stronger than the triangle inequality.

The absolute value is called discrete if the value group |K ∗| is discrete
in R>0.



Let’s construct an example

Let p be a prime number.
We write x ∈ Q as x = pk a�b, where p does not divide a and b,
and k ∈ Z.

vp : Q → R ∪ {∞}
0 7→ ∞
x 7→ k

vp : Q→ R ∪ {∞} satisfies the following property:

I vp(x) =∞ if and only if x = 0.

I vp(xy) = vp(x) + vp(y).

I vp(x + y) ≥ min{vp(x), vp(y)}.
Such a map vp is called a valuation.
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p-adic numbers

We define the p-adic non-Archimedean absolute value on Q,

|x |p = p−vp(x).

Example: |3− 2|5 = 1 |27− 2|5 = 1
25

The field of p-adic numbers Qp is the completion of the field of
rational numbers Q under the p-adic absolute value.

Completion:

I absolute value | · |p uniquely extends to Qp.

I Q is dense in Qp.

I Qp is complete.



Ostrowski’s Theorem

Remark: The field of real numbers R is the completion of Q with
respect to the (Archimedean) absolute value | · |∞.

The absolute values | · |∞, | · |p and | · |q, with p 6= q, are not
equivalent (just think of the sequence {pn}n).

Theorem (Ostrowski 1916)

Every non-trivial absolute value on Q is equivalent to | · |∞ or | · |p
for some prime number p.

Theorem (Hasse–Minkowski Theorem 1921)

A quadratic form Q with coefficients in Q has a non-trivial solution
in Q if and only if Q has a non-trivial solution in R and in Qp for
every p.



More Examples

I Field K with trivial absolute value.

I The field C{{t}} of Puiseux series with complex coefficients:

x = c1t
a1 + c2t

a2 + c3t
a3 + . . . ,

where a1 < a2 < a3 < · · · are rational numbers that have a
common denominator and c1 6= 0.

I Number fields, i.e., finite field extensions of Q.

I The completion of Qp(p
1

p∞ ) = ∪n≥1Qp(p
1
pn ) (... perfectoid

field, wait for the next lecture!).
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Valuation ring and residue field

Let K be a non-Archimedean field. The valuation ring is

R =
{
x ∈ K

∣∣ |x | ≤ 1
}
.

It is a local ring with maximal ideal

M =
{
x ∈ R

∣∣ |x | < 1
}
.

The residue field k is the quotient R/M .

Example:

I K = Qp, then k = Z/pZ.

I K = C{{t}}, then k = C.



Topological properties of NA fields

Remark that if |a| 6= |b|, then |a + b| = max{|a|, |b|}.

I Dr (a) = {x ∈ Qp : |x − a| ≤ r}
I Dr (a)◦ = {x ∈ Qp : |x − a| < r}
I Cr (a) = {x ∈ Qp : |x − a| = r}

We have the following properties:

I Dr (b)◦ ⊂ Cr (a) for every b ∈ Cr (a).

I Closed disks are open: Dr (a) = Dr (a)◦ ∪ Cr (a).

I Every point in a disk is a center: Dr (x) = Dr (y) for every
y ∈ Dr (x).

I The field K is Hausdorff and locally compact, but totally
disconnected.
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What goes wrong

Let K be a complete non-trivial NA valued field.

A K -manifold is a space that “looks like patches of Kn”.

K is totally disconnected, then X is totally disconnected.

A function is analytic if it can be given locally by convergent power
series.
K is totally disconnected, there are too many analytic functions.

We want a better space!
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Berkovich affine line

Let A be a ring. A multiplicative seminorm on A is a multiplicative
function | · | : A→ R≥0 such that

I |0| = 0 and |1| = 1,

I |f + g | ≤ |f |+ |g |

Let K be a valued field. We define A1,Berk
K as follows:

I points  seminorms on K [T ] which extend the absolute value
on K

I topology  weakest topology such that for every f ∈ K [T ]
the map | · | → |f | is continuous.
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Points on A1,Berk
K

Multiplicative seminorm | · |x gives a point x ∈ A1,Berk
K .

I K = C
The seminorms on C[T ] are of the form f → |f (z)|, for some

z ∈ C. So A1,Berk
C is homeomorphic to C. Seminorms

correspond to maximal ideals of C[T ].

I K an algebraically closed complete non-trivial NA field.
Seminorms f → |f (x)|, for x ∈ K .

We have more seminorms:

|f |Dr (a) = sup
x∈Dr (a)

|f (x)|, with Dr (a) = {x ∈ K : |x − a| ≤ r}.
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|f |Dr (a) = sup
x∈Dr (a)

|f (x)|, with Dr (a) = {x ∈ K : |x − a| ≤ r}.

D0(x) Dr (x) D|x−y |(x) = D|x−y |(y) Dr (y) D0(y)



Berkovich’s Classification Theorem

Theorem (Berkovich’s Classification Theorem)

Let K be an algebraically closed, complete non-Archimedean field.
Every point x ∈ A1,Berk

K corresponds to a decreasing nested
sequence {Dri (ai )} of closed discs. Classification is done according
to D = ∩iDri (ai ).

I TYPE I: D = D0(a).

I TYPE II: D = Dr (a), with r ∈ |K ∗|.
I TYPE III: D = Dr (a), with r 6∈ |K ∗|.
I TYPE IV: D = ∅.



A1,Berk
K

I Points of Type I are dense in A1,Berk
K .

I X 1,Berk
K is uniquely path connected.

I Type II points are branching points.



Analytification of affine algebraic varieties

Let X = SpecK [T1, . . . ,Tn]/I . The analytification XBerk
K is the

set of semimorms on K [T1, . . . ,Tn]/I extending the absolute value
on K .

I X connected iff XBerk path
connected

I X separated iff XBerk

Hausdorff

I X proper iff XBerk compact

I same dimensions

I ...



A tropical break

Let I be an ideal in K [x±1 , . . . , x
±
n ] and X its variety on the algebraic

torus Tn. The tropical variety Trop(X ) is defined as

the closure in Rn of
{

(val(x1), . . . , val(xn))
∣∣∣ (x1, x2, . . . , xn) ∈ X

}
.

The tropical variety Trop(X ) is a pure rational polyhedral complex.

I Enumerative geometry

I Brill-Noether theory of
curves

I Mirror symmetry

I Optimization

I ...



Analytification and Tropicalization
Let X be an affine algebraic variety over K , and ϕ : X → Am an
affine embedding.
The tropicalization Trop(X , ϕ) of X depends on ϕ.

Theorem (Payne ’09)

The analytification X an is homeomorphic to the limit of all
tropicalizations Trop(X , ϕ).
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Higher rank valuations

Let A be a ring. A valuation is a map to a totally ordered abelian
group Γ, | · | : A→ Γ ∪ {0}, satisfying the following properties:

I |0| = 0, |1| = 1,

I |x + y | ≤ max{|x |, |y |}.

Example: A = K 〈T 〉 =
{∑

an≥0 cnT
an
}

the ring of convergent
power series on |T | ≤ 1.
A+ = R〈T 〉 the subspace of power series in the valuation ring R.
We define X = Spa(A,A+) as{
| · | : A→ Γ ∪ {0} continuous valuation on A

∣∣∣ |f | ≤ 1, f ∈ A+
}
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Points on Spa(A,A+)

I TYPE I: f 7→ |f (a)|, |a| ≤ 1.

I TYPE II and III: f 7→ supy∈Dr (a)|f (y)|, |a| ≤ 1 and 0 < r ≤ 1.

I TYPE IV: as before for not spherically complete field

I TYPE V: Let |a| ≤ 1 and 0 < r ≤ 1. Let γ be a number
infinitesimally smaller or bigger than r and Γ = R>0 × γZ.

f =
∑

cn(T − a)n 7→ max |cn|γn.

If r 6∈ |K ∗|, then these points are equivalent to point III.
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