Ramification and Perfectoid fields

Christoph Eikemeier

Chow Lectures Leipzig

November 05, 2018

Local fields

- Q --→ R by completion (equivalence classes of "limits" of cauchy sequences)
- Fix p prime
 - p-adic absolute value: $0 \neq x \in \mathbb{Q}$
 - $\exists ! n \in \mathbb{Z}$: $x = p^n \cdot \frac{a}{b}$ where p divides neither a or b.
 - set $|x|_p = p^{-n} (|0|_p = 0)$
 - non-archimedian absolute value
- Ostrowski: every non-trivial absolute value on $\mathbb Q$ is equivalent to $|\cdot|_p$ for some prime p or the archimedian absolute value.

Local fields

 $\bullet \ \mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ wrt. } |\cdot|_p$

$$\mathbb{Q}_p = \left\{ \sum_{i=k}^{\infty} a_i p^i \mid k \in \mathbb{Z}, a_i \in \{0, ..., p-1\}, a_k \neq 0 \right\}$$

• \mathbb{Z}_p ring of integers $\subseteq \mathbb{Q}_p$

$$\mathcal{O}_{\mathbb{Q}_p} = \mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid |x|_p \le 1 \}$$

- Discrete valuation ring (exactly one non-zero prime ideal $\mathfrak{p}_{\mathbb{Q}_p}$)
- $\kappa(\mathbb{Q}_p) \cong \mathbb{F}_p$ finite residue field of characteristic $\chi(\mathbb{Q}_p) = p$
- local field of mixed characteristic

Local fields

• $\mathbb{F}_p((t))$ power series in an indeterminate t:

$$\mathbb{F}_p((t)) = \left\{ \sum_{i=k}^{\infty} a_i t^i \mid k \in \mathbb{Z}, a_i \in \{0, ..., p-1\} = \mathbb{F}_p, a_k \neq 0 \right\}$$

- local field of equal characteristic p
- formally similar elements but different operations!
 - \Rightarrow similarities?

- Extension of local fields $\mathbb{Q}_2(i)/\mathbb{Q}_2$
- $\mathfrak{p}=2\mathbb{Z}_2$ and $\mathfrak{P}=(1-i)\mathbb{Z}_2[i]$ correspondig prime ideals
- Consider extension of primes:

$$\mathfrak{p}\mathbb{Z}_2[i] = 2\mathbb{Z}_2[i] = (1+i)(1-i)\mathbb{Z}_2[i] = \mathfrak{P}^2$$

• corresponding exponent $e(\mathbb{Q}_2(i)/\mathbb{Q}_2)=2$ is called ramification index

- E/F extension of local fields
- \bullet e ramification index and f residue degree:

$$f = f(E/F) = [\kappa(E) : \kappa(F)]$$

- related by the formula $e \cdot f = [E : F]$
- The ramification index equals the group index of the value groups as subgroups of R:

$$e(E/F) = (|E^{\times}|_E : |F^{\times}|_F)$$

- E/F extension of local fields
- \bullet e ramification index and f residue degree:

$$f = f(E/F) = [\kappa(E) : \kappa(F)]$$

- related by the formula $e \cdot f = [E : F]$
- extension is called:
 - totally ramified, if f = 1
 - unramified, if e = 1
 - tamely ramified, if $\chi(F)$ does not divide e and otherwise wildly ramified.

- $G_F = \operatorname{Gal}(\overline{F}/F)$ absolute galois group of local field F
- decreasing ramification filtration of G_F :

$$G_F \supset G_F^{(0)} \supset G_F^{(1)} \supset G_F^{(2)} \supset \dots$$

where $G_F^{(0)}=I_F$ inertia subgroup and $G_F^{(1)}=P_F$ wild inertia subgroup

- $G_F^{\mathrm{ta}} = G_F/P_F$ admits explicit description
 - \Rightarrow canonical isomorphism $G^{\mathrm{ta}}_{\mathbb{Q}_p}\cong G^{\mathrm{ta}}_{\mathbb{F}_p((t))}$
 - \Rightarrow canonical assiciation of tame extensions of \mathbb{Q}_p and $\mathbb{F}_p((t))$

• Even better n > 1:

$$G_{\mathbb{Q}_p(p^{1/n})}/G_{\mathbb{Q}_p(p^{1/n})}^{(n)} \stackrel{\cong}{\longrightarrow} G_{\mathbb{F}_p((t))(t^{1/n})}/G_{\mathbb{F}_p((t))(t^{1/n})}^{(n)}$$

• $n \to \infty$:

$$\mathbb{Q}_p(p^{1/n})$$
 looks "almost" like $\mathbb{F}_p((t))(t^{1/n})$

- Basis of tilting: from mixed to equal characteristic.
- Perfectoid Spaces = 1 Framework for using equal characteristic results in the mixed characteristic world.

¹first approximation

Observations by Tate

- ullet K finite extension of \mathbb{Q}_p
- Tower of extensions K_n/K :
 - K_n/K totally ramified
 - $\operatorname{Gal}(K_n/K) = (\mathbb{Z}/p^n\mathbb{Z})^h$ for some $h \ge 1$.
 - $K_{\infty} = \bigcup_{n>1} K_n$
- Observation: If L/K_{∞} finite extension
 - Ideal $(\operatorname{tr}_{L/K_{\infty}}(\mathcal{O}_L)) \subseteq \mathcal{O}_{K_{\infty}}$ contains $\mathfrak{p}_{K_{\infty}}$
 - ullet Either equals \mathfrak{p}_{K_∞} or all of \mathcal{O}_{K_∞}

Observations by Tate

- case of a finite extension E/F: trace Ideal related to different ideal of E/F
- measures ramification:
 bigger trace ideal = less ramified extensions
- ullet result: any finite extension of K_∞ is "almost" unramified
- hence: correspondig extension of \mathcal{O}_{K_∞} is "almost" étale (étale = algebraic version of local diffeomorphism = "algebraic unramified covering")

Perfectoid fields

Definition

A Perfectoid field K is a complete non-archimedian field K of residue characteristic p, equipped with a non-discrete valuation of rank 1 ($|K^{\times}| \subseteq \mathbb{R}$ non-discrete), such that the Frobenius map

$$\mathcal{O}_K/(p) \longrightarrow \mathcal{O}_K/(p), \quad x \mapsto x^p$$

is surjective (every element has a p-th root).

- Example: completions of
 - $\mathbb{Q}_p(p^{1/p^{\infty}}) = \bigcup_{n \ge 1} \mathbb{Q}_p(p^{1/p^n})$
 - $\mathbb{F}_p((t))(t^{1/p^{\infty}}) = \bigcup_{n \ge 1} \mathbb{F}_p((t))(t^{1/p^n})$

Example

Show: completion of $\mathbb{Q}_p(p^{1/p^{\infty}})$ is a perfectoid field

- $\mathbb{Q}_p(p^{1/p^n})/\mathbb{Q}_p$ generated by $(X^{p^n}-p)$
- totally ramified with $e = p^n$
- $n \to \infty$: $|\mathbb{Q}_p(p^{1/p^{\infty}})^{\times}|$ non-discrete
- Frobenius

$$\mathbb{Z}_p[p^{1/p^{\infty}}]/(p) \longrightarrow \mathbb{Z}_p[p^{1/p^{\infty}}]/(p)$$

is surjective

hence the corresponding completion is perfectoid

Almost étale coverings

- Let M be an \mathcal{O}_K -module
- M is almost zero if $\mathfrak{p}_K \cdot M = 0$
- localization functor: $M \mapsto M^a$

$$(\mathcal{O}_K - \operatorname{Mod}) \longrightarrow (\mathcal{O}_K^a - \operatorname{Mod}) = (\mathcal{O}_K - \operatorname{Mod})/(\operatorname{almost zero})$$

(Serre quotient category) with right adjoint

 $M \mapsto M_* = \operatorname{Hom}_{\mathcal{O}_K^a}(\mathcal{O}_K^a, M)$ functor of almost elements.

Almost étale coverings

sequence of functors:

$$(\mathcal{O}_K - \operatorname{Mod}) \longrightarrow (\mathcal{O}_K^a - \operatorname{Mod}) \longrightarrow (K - \operatorname{Mod})$$

- geometric picture: composition corresponds to base change from integral structure to general fiber
- category in the middle: almost integral level, determined by the general fiber

Almost étale coverings

- $(\mathcal{O}_K^a \operatorname{Mod})$ is an abelian tensor category
- notion of an \mathcal{O}_K^a -algebra as an algebra-object in $(\mathcal{O}_K^a-\operatorname{Mod})$ $(A\ \mathcal{O}_K^a$ -Module with "multiplication" $\mu:A\otimes_{\mathcal{O}_K^a}A\longrightarrow A)$
- some commutative algebra:
 - · flat, almost projective, almost finitely presented modules
 - unramified A-algebras
 - étale and finite étale A-algebras

Almost purity by Tate

Theorem (T)

Let L/K be a finite extension. Then $\mathcal{O}_L/\mathcal{O}_K$ is almost finite étale.

- Example: $p \neq 2$, $K_n = \mathbb{Q}_p(p^{1/p^n})$, $L_n = K_n(p^{1/2})$
 - $\mathcal{O}_{L_n} = \mathcal{O}_{K_n}[X]/(f)$ with $f = X^2 p^{1/p^n}$
 - $p^{1/p^n} \in (f, f')\mathcal{O}_{K_n}[X]$
 - hence: up to p^{1/p^n} -torsion, \mathcal{O}_{L_n} is étale over \mathcal{O}_{K_n}
 - $n \to \infty$: \mathcal{O}_L almost étale over \mathcal{O}_K .
- general Philosophy:
 - Perfectoid fields are "deeply ramified" and absorb almost all ramification above them
 - · hence: objects above them are almost unramified

Generalization by Scholze

Definition

A perfectoid K-algebra R is a Banach K-algebra, such that $R^\circ\subseteq R$ (subset of powerbound elements) is open and bounded, and the frobenius morphism

$$R^{\circ}/(\varpi) \longrightarrow R^{\circ}/(\varpi)$$

is surjective

Theorem (S)

Let S/R be finite étale. Then S is perfectoid and S° is uniformly almost finite étale over R°

How to see this?

- In the case of equal characteristic the theorems are "easy"
- for mixed characteristic, is there a way to switch to the equal characteristic setting and solve the problem there?
- answer: Yes, there is: tilting. (More about this tomorrow)

Why to do this?

- Almost purity can be translated into an assertion about cohomology groups
- for Tate: essential step in the proof of Hodge-Tate decomposition for p-divisible Groups:

Theorem (Hodge-Tate decomposition)

Let G be a p-divisible group. There is a canonical isomorphism of $G_{\mathbb{Q}_p}$ -modules

$$\operatorname{Hom}(T(G),\mathbb{C}_p) \cong \mathfrak{t}_{G'}(\mathbb{C}_p) \oplus (\mathfrak{t}_G^*(\mathbb{C}_p) \otimes_{\mathbb{C}_p} \operatorname{Hom}(H,\mathbb{C}_p))$$

Literature

G. Faltings,

Almost étale extensions,

Asterisque, (279):185-270, 2002. Cohomologies p-adiques et applications arithmétiques, II.

P. Scholze,

Perfectoid Spaces,

Publ. Math. de l'IHÉS, 116(1):245-313, 2012.

P. Scholze,

Perfectoid Spaces and their Applications,

Proceedings of the ICM 2014.

Literature

J. T. Tate,

p-divisible groups,

In Proc. Conf. Local Fields, pg. 158-183. Springer, Berlin, 1967.

J. Weinstein,

Adic Spaces,

Arizona Winter School 2017.