Balanced triangulations on few vertices

Lorenzo Venturello

Algebra and Discrete Mathematics - Universität Osnabrück

19/02/2019

Balanced simplicial complexes

Definition

A d-dimensional simplicial complex on vertex set $[n]$ is balanced if there exists a map (which we call coloring) $\kappa:[n] \rightarrow[d+1]$ such that $\kappa(i) \neq \kappa(j)$ for every $\{i, j\} \in \Delta$.

Notable examples:

- Consider the $(d+1)$-dimensional cross-polytope $\mathcal{C}_{d+1}:=\operatorname{conv}\left(e_{1},-e_{1}, \ldots, e_{d+1},-e_{d+1}\right) \in \mathbb{R}^{d+1}$. Then $\partial \mathcal{C}_{d+1}$ is a balanced d-dimensional simplicial complex, with $\kappa\left(e_{i}\right)=\kappa\left(-e_{i}\right)=i$.

- The barycentric subdivision of any simplicial complex is balanced. E.g.,

Interesting geometric realizations: spheres

We describe four families of simplicial complexes.

- A combinatorial d-sphere is a d-dimensional simplicial complex that has a common subdivision with the boundary of the $(d+1)$-simplex.

in

- A simplicial d-sphere is a d-dimensional simplicial complex Δ s.t. $|\Delta| \cong S^{d}$.

In

- A K-homology d-sphere is a d-dimensional simplicial complex Δ such that $\widetilde{H}_{i}\left(\mathrm{k}_{\Delta}(F) ; K\right) \cong \widetilde{H}_{i}\left(S^{d-\operatorname{dim}(F)-1} ; K\right)$ for a fixed field K and for every i.

Interesting geometric realizations: manifolds

We describe three families of simplicial complexes.

- A combinatorial d-manifold is a d-dimensional simplicial complex s.t. every vertex link is a combinatorial ($d-1$)-sphere.

In

- A simplicial d-manifold is a d-dimensional simplicial complex Δ s.t. $|\Delta| \cong M$, where M is a (triangulable) topological manifold.

In

- A K-homology d-manifold is a d-dimensional simplicial complex Δ such that $\widetilde{H}_{i}\left(\mathrm{Ik}_{\Delta}(F) ; K\right) \cong \widetilde{H}_{i}\left(S^{d-\operatorname{dim}(F)-1} ; K\right)$ for a fixed field K, for every $\varnothing \neq F \in \Delta$ and for every i.

Small balanced triangulations

- Applying barycentric subdivision to the standard (i.e., non-balanced) minimal triangulations yields complexes with a large number of vertices.
- $\partial \mathcal{C}_{d+1}$ is the balanced vertex minimal triangulation of S^{d}.
- Klee and Novik (2014) constructed triangulations of $S^{1} \times S^{d-1}$ (on $3(d+1)$ vertices if d is even and on $3 d+5$ if d is odd) and $S^{1} \times S^{d-1}$ (on $3(d+1)$ vertices if d is odd and on $3 d+5$ if d is even). The proof was completed by Zheng.
- Wang and Zheng (2018) constructed a balanced triangulation of $S^{2} \times S^{d-2}$ on $4 d$ vertices.

Main Problem

Find balanced combinatorial triangulations of a given manifold on few (possibly the minimum number of) vertices.

Idea: Find a finite set of operations that preserve the PL-homeomorphism type.

Bistellar flips

Definition

Let Δ be a d-dimensional simplicial complex, and let Γ be an induced subcomplex of Δ that is:

- PL-homeomorphic to a d-ball,
- Isomorphic to a subcomplex of $\partial \Delta_{d+1}$ (the boundary of the $(d+1)$-simplex).

A bistellar flip on Δ replaces all the facets in Γ with those in $\partial \Delta_{d+1} \backslash \Gamma$.

Bistellar flips

Definition

Let Δ be a d-dimensional simplicial complex, and let Γ be an induced subcomplex of Δ that is:

- PL-homeomorphic to a d-ball,
- Isomorphic to a subcomplex of $\partial \Delta_{d+1}$ (the boundary of the $(d+1)$-simplex).

A bistellar flip on Δ replaces all the facets in Γ with those in $\partial \Delta_{d+1} \backslash \Gamma$.

Theorem (Pachner)

Two combinatorial manifolds are PL-homeomorphic if and only if they are related by a sequence of bistellar flips.

Lutz wrote a computer program called BISTELLAR to search through the set of combinatorial triangulations of a given manifold.

Cross-flips

Bistellar flips do not preserve balancedness.

Definition (Izmestiev-Klee-Novik)

Let Δ be a balanced d-dimensional simplicial complex, and let Γ be an induced subcomplex of Δ that is:

- PL-homeomorphic to a d-ball
- Isomorphic to a subcomplex of $\partial \mathcal{C}_{d+1}$

A cross flip on Δ replaces all the facets in Γ with those in $\partial \mathcal{C}_{d+1} \backslash \Gamma$.

Cross-flips

Bistellar flips do not preserve balancedness.

Definition (Izmestiev-Klee-Novik)

Let Δ be a balanced d-dimensional simplicial complex, and let Γ be an induced subcomplex of Δ that is:

- PL-homeomorphic to a d-ball
- Isomorphic to a subcomplex of $\partial \mathcal{C}_{d+1}$

A cross flip on Δ replaces all the facets in Γ with those in $\partial \mathcal{C}_{d+1} \backslash \Gamma$.

Theorem (Izmestiev-Klee-Novik)

Two balanced combinatorial manifolds are PL-homeomorphic if and only if they are related by a sequence of basic cross flips.

Theorem (Juhnke-Kubitzke, V.)

In dimension d there are precisely $2^{d+1}-2$ non-isomorphic non-trivial basic cross-flips. Moreover $2^{d}-1$ of these flips suffice to connect any two PL-homeomorphic balanced combinatorial d-manifolds.

The implementation

Goal: Obtain small balanced triangulations of surfaces and 3-manifolds.
Starting point: The barycentric subdivision of a simplicial complex Δ is balanced triangulation of $|\operatorname{Bd}(\Delta)| \cong|\Delta|$.

Problem

Given a balanced combinatorial d-manifold Δ how do I detect all applicable cross-flips?
Proposed solution: fix a flip $\Gamma \rightarrow \partial \mathcal{C}_{d+1} \backslash \Gamma$.

- Consider the dual graph $\mathcal{G}(\Delta)$, given by

$$
V(\mathcal{G}(\Delta)):=\{F \in \Delta: \operatorname{dim}(F)=d\}, \quad E(\mathcal{G}(\Delta)):=\left\{\left\{F_{i}, F_{j}\right\}: \operatorname{dim}\left(F_{i} \cap F_{j}\right)=d-1\right\} .
$$

- List all subgraphs of $\mathcal{G}(\Delta)$ isomorphic to $\mathcal{G}(\Gamma)$. We can use efficient algorithms for this task (e.g., VF2).
- Check if the subcomplex corresponding to $\mathcal{G}(\Gamma)$ is an induced subcomplex isomorphic to Γ.

$$
\mathcal{G}(\Delta)=
$$

Does not correspond to an induced subcomplex.

The implementation

Problem

Given the list of all applicable cross-flips, which one do we choose?
Proposed heuristic solution: Let

$$
\chi_{\Gamma}(\Delta):=(\Delta \backslash \Gamma) \cup \partial \mathcal{C}_{d+1} \backslash \Gamma .
$$

Choose the flip $\Gamma \rightarrow \mathcal{C}_{d+1} \backslash \Gamma$ among those which:

- maximize $\left|\left\{v \in \chi_{\Gamma}(\Delta): \operatorname{deg}(v)=2 d\right\}\right|$.

Fact: If a vertex v can be removed by a flip then $\operatorname{deg}(v)=2 d$.

- maximize $\sum_{v \in \chi_{\Gamma}(\Delta), \operatorname{dim}(v)=0} \operatorname{deg}(v)^{2}$.

This forces the connectivity of the vertices to be inhomogeneous.

Results in dimension 2

Theorem (V.)

The vertex-minimal balanced triangulation of $\mathbb{R} \mathbf{P}^{2}$ has 9 vertices.

The non-balanced vertex minimal triangulation has 6 vertices.
The balanced vertex-minimality follows from a result of Klee and Novik: if a combinatorial manifold is not an homology sphere then it contains at least three vertices per color class.

Results in dimension 2

The dunce hat is a topological space obtained as a quotient of the 2-disk according to the following orientation:

Properties:

- Cohen-Macaulay;
- Partitionable;
- Non-constructible, hence non-shellable;
- Contractible;
- Non-collapsible;

Low dimensional pathological example.

Results in dimension 2

Theorem (V.)

The vertex-minimal balanced triangulation of the dunce hat has 11 vertices.

The non-balanced vertex minimal triangulation has 8 vertices.
The proof of balanced vertex-minimality is more technical, and divided in several cases.

Results in dimension 2

$\|\Delta\|$	$\operatorname{Min} f(\Delta)$	$f(\operatorname{Bd}(\Delta))$	Min. Bal. f known	Notes
S^{2}	$(1,4,6,4)$	$(1,14,36,24)$	$(1,6,12,8)^{*}$	$\partial \mathcal{C}_{3}$
\mathbb{T}	$(1,7,21,14)$	$(1,42,126,84)$	$(1,9,24,16)^{*}$	Klee-Novik
$\mathbb{T}^{\# 2}$	$(1,10,36,24)$	$(1,70,216,144)$	$(1,12,42,28)$	
$\mathbb{T}^{\# 3}$	$(1,10,42,28)$	$(1,80,252,168)$	$(1,14,54,36)$	
$\mathbb{T}^{\# 4}$	$(1,11,51,34)$	$(1,96,306,204)$	$(1,14,60,36)$	
$\mathbb{T}^{\# 5}$	$(1,12,60,40)$	$(1,112,360,240)$	$(1,16,72,48)$	
$\mathbb{R} \mathbf{P}^{2}$	$(1,6,15,10)$	$(1,31,90,60)$	$(1,9,24,16)^{*}$	$\Delta_{9}^{\mathbb{R} \mathbf{R}^{2}}$
$\left(\mathbb{R} \mathbf{P}^{2}\right)^{\# 2}$	$(1,8,24,16)$	$(1,48,144,96)$	$(1,11,33,22)^{*}$	Klee-Novik
$\left(\mathbb{R} \mathbf{P}^{2}\right)^{\# 3}$	$(1,9,30,20)$	$(1,59,180,120)$	$(1,12,39,26)$	
$\left(\mathbb{R} \mathbf{P}^{2}\right)^{\# 4}$	$(1,9,33,22)$	$(1,64,198,132)$	$(1,12,42,28)$	
$\left(\mathbb{R} \mathbf{P}^{2}\right)^{\# 5}$	$(1,9,36,24)$	$(1,69,216,144)$	$(1,13,48,32)$	
\vdots	\vdots	\vdots	\vdots	

Results in dimension 3

Theorem (V.)

The vertex-minimal balanced triangulations of $\mathbb{R} \mathbf{P}^{3}$ have 16 vertices.
Zheng proved that any balanced triangulation of a manifold M with $H_{1}(M ; \mathbb{Z}) \cong \mathbb{Z}_{n}$ has at least four vertices per color class.
The balanced triangulation on 16 vertices is not unique.
In particular there exists a balanced triangulation of $\mathbb{R} \mathbf{P}^{3}$ on 16 vertices that is centrally symmetric and has all vertex links isomorphic to the following 2 -sphere.

Results in dimension 3

Theorem (V.)

The vertex-minimal balanced triangulations of $\mathbb{R} \mathbf{P}^{3}$ have 16 vertices.
Zheng proved that any balanced triangulation of a manifold M with $H_{1}(M ; \mathbb{Z}) \cong \mathbb{Z}_{n}$ has at least four vertices per color class.
The balanced triangulation on 16 vertices is not unique.
In particular there exists a balanced triangulation of $\mathbb{R} \mathbf{P}^{3}$ on 16 vertices that is centrally symmetric and has all vertex links isomorphic to the following 2 -sphere.

Conjecture (by the engineer's induction)

The balanced vertex-minimal triangulations of $\mathbb{R} \mathbf{P}^{d}$ have $(d+1)^{2}$ vertices.

Results in dimension 3

$\|\Delta\|$	Min $f(\Delta)$	Min. Bal. f known	Notes
S^{3}	$(1,5,10,10,5)$	$(1, \mathbf{8}, 24,32,16)^{*}$	$\partial \mathcal{C}_{4}$
$S^{2} \times S^{1}$	$(1,10,42,64,32)$	$(1, \mathbf{1 4}, 64,100,50)^{*}$	Klee-Novik
$S^{2} \times S^{1}$	$(1,9,36,54,27)$	$(1,12,54,84,42)^{*}$	Klee-Novik
$\mathbb{R} \mathbf{P}^{3}$	$(1,11,51,80,40)$	$(1,16,88,144,72)^{*}$	$\Delta_{16}^{\mathbb{R} P^{3}}$
$L(3,1)$	$(1,12,66,108,54)$	$(1, \mathbf{1 6}, 96,160,80)^{*}$	Zheng
$L(4,1)$	$(1,14,84,140,70)$	$(1,20,132,224,112)$	
$L(5,1)$	$(1,15,97,164,82)$	$(1, \mathbf{2 2}, 152,260,130)$	
$L(5,2)$	$(1,14,86,144,72)$	$(1,20,132,224,112)$	
$L(6,1)$	$(1,16,110,188,94)$	$(1, \mathbf{2 4}, 176,304,152)$	
$\left(S^{2} \times S^{1}\right)^{\# 2}$	$(1,12,58,92,46)$	$(1,16,84,136,68)$	
$\left(S^{2} \times S^{1}\right)^{\# 2}$	$(1,12,58,92,46)$	$(1,16,84,136,68)$	
$\left(S^{2} \times S^{1}\right) \# \mathbb{R} \mathbf{P}^{3}$	$(1,14,73,118,59)$	$(1, \mathbf{2 0}, 118,196,98)$	
$\left(\mathbb{R} \mathbf{P}^{3}\right)^{\# 2}$	$(1,15,86,142,71)$	$(1, \mathbf{2 1}, 137,232,116)$	
$\left(S^{2} \times S^{1}\right)^{\# 3}$	$(1,13,72,118,59)$	$(1, \mathbf{2 0}, 118,196,98)$	
$\left(S^{2} \times S^{1}\right)^{\# 3}$	$(1,13,72,118,59)$	$(1, \mathbf{1 9}, 111,184,92)$	
$S^{1} \times S^{1} \times S^{1}$	$(1,15,105,180,90)$	$(1,24,168,288,144)$	
Oct. space	$(1,15,102,174,87)$	$(1,24,168,288,144)$	
Cube space	$(1,15,90,150,75)$	$(1,23,157,268,134)$	
Poincaré	$(1,16,106,180,90)$	$(1, \mathbf{2 6}, 180,308,154)$	
$\mathbb{R} \mathbf{P}^{2} \times S^{1}$	$(1,14,84,140,70)$	$(1, \mathbf{2 4}, 156,264,132)$	

Non-combinatorial spheres

Theorem (V.)

There exists a balanced triangulation of Poincaré homology 3-sphere, with f-vector (1, 26, 180, 308, 154).

A result of Cannon and Edwards states that the double suspension of an homology 3 -sphere Δ is homeomorphic to S^{5}. Still Δ will appear as one of the links, which is an obstruction to being combinatorial.

Corollary

There exist balanced non-combinatorial d-spheres on $2 d+20$ vertices, for every $d \geq 5$.

Two triangulations of S^{3}

Definition

A pure d-dimensional simplicial complex is shellable if there exists an ordering F_{1}, \ldots, F_{m} of its facets such that the complex $\left\langle F_{1}, \ldots, F_{i-1}\right\rangle \cap\left\langle F_{i}\right\rangle$ is pure and ($d-1$)-dimensional for every $1 \leq i \leq m$.

- Boundary complexes of simplicial polytopes are shellable.
- It is interesting and challenging to find balanced non-shellable triangulations of spheres.
- Barycentric subdivision typically turns non-shellable combinatorial sphere into shellable ones (if allow iterated subdivisions the "typically" becomes "always" by a result of Adiprasito and Benedetti).

Theorem (V.)

There exists a balanced non-shellable combinatorial 3 -sphere with f-vector (1, 28, 204, 352, 176).

Figure: 3-ball containing a triple-trefoil knot. (Benedetti and Ziegler, 2011).

- There is a triangulation of the 3 -sphere containing a triple-trefoil knot on three edges, with the f-vector $(1,18,143,250,125)$ (Benedetti-Lutz). By a result of Lickorish it is not shellable.
- Ehrenborg and Hachimori proved that the barycentric subdivision of a 3-sphere with such a knot is not shellable.
- We run our computer program applying only flips that do not untie the knot.
- Starting from a 3 -sphere containing a double trefoil-knot we obtain a balanced triangulation of S^{3} that is shellable but not vertex-decomposable.

Thanks for your attention

