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Balanced simplicial complexes

Definition
A d-dimensional simplicial complex on vertex set [n] is balanced if there exists a map
(which we call coloring) κ ∶ [n]→ [d + 1] such that κ(i) ≠ κ(j) for every {i, j} ∈ ∆.

Notable examples:
Consider the (d + 1)-dimensional cross-polytope
Cd+1 ∶= conv(e1,−e1, . . . ,ed+1,−ed+1) ∈ Rd+1. Then ∂Cd+1 is a balanced
d-dimensional simplicial complex, with κ(ei) = κ(−ei) = i .

∂C2 ≅ , ∂C3 ≅ .

The barycentric subdivision of any simplicial complex is balanced. E.g.,

Bd
⎛
⎜⎜⎜
⎝

⎞
⎟⎟⎟
⎠

= .
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Interesting geometric realizations: spheres

We describe four families of simplicial complexes.

A combinatorial d-sphere is a d-dimensional simplicial complex that has a
common subdivision with the boundary of the (d + 1)-simplex.

⊆

A simplicial d-sphere is a d-dimensional simplicial complex ∆ s.t. ∣∆∣ ≅ Sd .

⊆
A K -homology d-sphere is a d-dimensional simplicial complex ∆ such that
H̃i(lk∆ (F) ; K ) ≅ H̃i(Sd−dim(F)−1; K ) for a fixed field K and for every i .
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Interesting geometric realizations: manifolds

We describe three families of simplicial complexes.

A combinatorial d-manifold is a d-dimensional simplicial complex s.t. every
vertex link is a combinatorial (d − 1)-sphere.

⊆

A simplicial d-manifold is a d-dimensional simplicial complex ∆ s.t. ∣∆∣ ≅ M,
where M is a (triangulable) topological manifold.

⊆
A K -homology d-manifold is a d-dimensional simplicial complex ∆ such that
H̃i(lk∆ (F) ; K ) ≅ H̃i(Sd−dim(F)−1; K ) for a fixed field K , for every ∅ ≠ F ∈ ∆ and for
every i .
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Small balanced triangulations

Applying barycentric subdivision to the standard (i.e., non-balanced) minimal
triangulations yields complexes with a large number of vertices.

∂Cd+1 is the balanced vertex minimal triangulation of Sd .

Klee and Novik (2014) constructed triangulations of S1 ×Sd−1 (on 3(d + 1) vertices
if d is even and on 3d + 5 if d is odd) and S1 "Sd−1 (on 3(d + 1) vertices if d is odd
and on 3d + 5 if d is even). The proof was completed by Zheng.

Wang and Zheng (2018) constructed a balanced triangulation of S2 × Sd−2 on 4d
vertices.

Main Problem
Find balanced combinatorial triangulations of a given manifold on few (possibly the
minimum number of) vertices.

Idea: Find a finite set of operations that preserve the PL-homeomorphism type.
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Bistellar flips

Definition
Let ∆ be a d-dimensional simplicial complex, and let Γ be an induced subcomplex of
∆ that is:

PL-homeomorphic to a d-ball,

Isomorphic to a subcomplex of ∂∆d+1 (the boundary of the (d + 1)-simplex).

A bistellar flip on ∆ replaces all the facets in Γ with those in ∂∆d+1 ∖ Γ.
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Bistellar flips

Definition
Let ∆ be a d-dimensional simplicial complex, and let Γ be an induced subcomplex of
∆ that is:

PL-homeomorphic to a d-ball,

Isomorphic to a subcomplex of ∂∆d+1 (the boundary of the (d + 1)-simplex).

A bistellar flip on ∆ replaces all the facets in Γ with those in ∂∆d+1 ∖ Γ.

Theorem (Pachner)
Two combinatorial manifolds are PL-homeomorphic if and only if they are related by a
sequence of bistellar flips.

Lutz wrote a computer program called BISTELLAR to search through the set of
combinatorial triangulations of a given manifold.
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Cross-flips

Bistellar flips do not preserve balancedness.

Definition (Izmestiev-Klee-Novik)
Let ∆ be a balanced d-dimensional simplicial complex, and let Γ be an induced
subcomplex of ∆ that is:

PL-homeomorphic to a d-ball

Isomorphic to a subcomplex of ∂Cd+1

A cross flip on ∆ replaces all the facets in Γ with those in ∂Cd+1 ∖ Γ.
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Cross-flips

Bistellar flips do not preserve balancedness.

Definition (Izmestiev-Klee-Novik)
Let ∆ be a balanced d-dimensional simplicial complex, and let Γ be an induced
subcomplex of ∆ that is:

PL-homeomorphic to a d-ball

Isomorphic to a subcomplex of ∂Cd+1

A cross flip on ∆ replaces all the facets in Γ with those in ∂Cd+1 ∖ Γ.

Theorem (Izmestiev-Klee-Novik)
Two balanced combinatorial manifolds are PL-homeomorphic if and only if they are
related by a sequence of basic cross flips.

Theorem (Juhnke-Kubitzke, V.)

In dimension d there are precisely 2d+1 − 2 non-isomorphic non-trivial basic cross-flips.
Moreover 2d − 1 of these flips suffice to connect any two PL-homeomorphic balanced
combinatorial d-manifolds.
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The implementation

Goal: Obtain small balanced triangulations of surfaces and 3-manifolds.
Starting point: The barycentric subdivision of a simplicial complex ∆ is balanced
triangulation of ∣Bd(∆)∣ ≅ ∣∆∣.

Problem
Given a balanced combinatorial d-manifold ∆ how do I detect all applicable cross-flips?

Proposed solution: fix a flip Γ→ ∂Cd+1 ∖ Γ.

Consider the dual graph G(∆), given by

V(G(∆)) ∶= {F ∈ ∆ ∶ dim(F) = d}, E(G(∆)) ∶= {{Fi ,Fj} ∶ dim(Fi ∩ Fj) = d − 1}.

List all subgraphs of G(∆) isomorphic to G(Γ). We can use efficient algorithms
for this task (e.g., VF2).

Check if the subcomplex corresponding to G(Γ) is an induced subcomplex
isomorphic to Γ.
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Γ =

G(Γ) =

∆ =

G(∆) =

Universität Osnabrück Balanced triangulations on few vertices 19/02/2019 9 / 19



Γ =

G(Γ) =

∆ =

G(∆) =

Does not correspond to an
induced subcomplex.
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The implementation

Problem
Given the list of all applicable cross-flips, which one do we choose?

Proposed heuristic solution: Let

χΓ(∆) ∶= (∆ ∖ Γ) ∪ ∂Cd+1 ∖ Γ.

Choose the flip Γ→ ∂Cd+1 ∖ Γ among those which:

maximize ∣{v ∈ χΓ(∆) ∶ deg(v) = 2d}∣ .

Fact: If a vertex v can be removed by a flip then deg(v) = 2d .

maximize ∑
v∈χΓ(∆),dim(v)=0

deg(v)2.

This forces the connectivity of the vertices to be inhomogeneous.
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Results in dimension 2

Theorem (V.)

The vertex-minimal balanced triangulation of RP2 has 9 vertices.

8 9

7

89

7

1
6 5

2 3

4

The non-balanced vertex minimal triangulation has 6 vertices.
The balanced vertex-minimality follows from a result of Klee and Novik: if a
combinatorial manifold is not an homology sphere then it contains at least three
vertices per color class.
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Results in dimension 2

The dunce hat is a topological space obtained as a quotient of the 2-disk according to
the following orientation:

Properties:

Cohen-Macaulay;

Partitionable;

Non-constructible, hence
non-shellable;

Contractible;

Non-collapsible;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Low dimensional pathological example.
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Results in dimension 2

Theorem (V.)
The vertex-minimal balanced triangulation of the dunce hat has 11 vertices.

1

2

3

4

1

4

3

2

1
234

8

610

9 7

511

The non-balanced vertex minimal triangulation has 8 vertices.
The proof of balanced vertex-minimality is more technical, and divided in several
cases.
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Results in dimension 2

∣∆∣ Min f (∆) f (Bd(∆)) Min. Bal. f known Notes
S2 (1,4,6,4) (1,14,36,24) (1,6,12,8)∗ ∂C3

T (1,7,21,14) (1,42,126,84) (1,9,24,16)∗ Klee-Novik
T#2 (1,10,36,24) (1,70,216,144) (1,12,42,28)
T#3 (1,10,42,28) (1,80,252,168) (1,14,54,36)
T#4 (1,11,51,34) (1,96,306,204) (1,14,60,36)
T#5 (1,12,60,40) (1,112,360,240) (1,16,72,48)
RP2 (1,6,15,10) (1,31,90,60) (1,9,24,16)∗ ∆RP2

9

(RP2)#2 (1,8,24,16) (1,48,144,96) (1,11,33,22)∗ Klee-Novik
(RP2)#3 (1,9,30,20) (1,59,180,120) (1,12,39,26)
(RP2)#4 (1,9,33,22) (1,64,198,132) (1,12,42,28)
(RP2)#5 (1,9,36,24) (1,69,216,144) (1,13,48,32)

⋮ ⋮ ⋮ ⋮
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Results in dimension 3

Theorem (V.)

The vertex-minimal balanced triangulations of RP3 have 16 vertices.

Zheng proved that any balanced triangulation of a manifold M with H1(M;Z) ≅ Zn has
at least four vertices per color class.
The balanced triangulation on 16 vertices is not unique.
In particular there exists a balanced triangulation of RP3 on 16 vertices that is
centrally symmetric and has all vertex links isomorphic to the following 2-sphere.
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Results in dimension 3

Theorem (V.)

The vertex-minimal balanced triangulations of RP3 have 16 vertices.

Zheng proved that any balanced triangulation of a manifold M with H1(M;Z) ≅ Zn has
at least four vertices per color class.
The balanced triangulation on 16 vertices is not unique.
In particular there exists a balanced triangulation of RP3 on 16 vertices that is
centrally symmetric and has all vertex links isomorphic to the following 2-sphere.

Conjecture (by the engineer’s induction)

The balanced vertex-minimal triangulations of RPd have (d + 1)2 vertices.
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Results in dimension 3

∣∆∣ Min f(∆) Min. Bal. f known Notes
S3

(1,5,10,10,5) (1,8,24,32,16)∗ ∂C4

S2
× S1

(1,10,42,64,32) (1,14,64,100,50)∗ Klee-Novik
S2

" S1
(1,9,36,54,27) (1,12,54,84,42)∗ Klee-Novik

RP3
(1,11,51,80,40) (1,16,88,144,72)∗ ∆RP3

16
L(3,1) (1,12,66,108,54) (1,16,96,160,80)∗ Zheng
L(4,1) (1,14,84,140,70) (1,20,132,224,112)
L(5,1) (1,15,97,164,82) (1,22,152,260,130)
L(5,2) (1,14,86,144,72) (1,20,132,224,112)
L(6,1) (1,16,110,188,94) (1,24,176,304,152)
(S2

× S1
)

#2
(1,12,58,92,46) (1,16,84,136,68)

(S2
" S1

)
#2

(1,12,58,92,46) (1,16,84,136,68)
(S2

× S1
)#RP3

(1,14,73,118,59) (1,20,118,196,98)
(RP3

)
#2

(1,15,86,142,71) (1,21,137,232,116)
(S2

× S1
)

#3
(1,13,72,118,59) (1,20,118,196,98)

(S2
" S1

)
#3

(1,13,72,118,59) (1,19,111,184,92)
S1

× S1
× S1

(1,15,105,180,90) (1,24,168,288,144)
Oct. space (1,15,102,174,87) (1,24,168,288,144)
Cube space (1,15,90,150,75) (1,23,157,268,134)
Poincaré (1,16,106,180,90) (1,26,180,308,154)
RP2

× S1
(1,14,84,140,70) (1,24,156,264,132)
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Non-combinatorial spheres

Theorem (V.)
There exists a balanced triangulation of Poincaré homology 3-sphere, with f -vector
(1,26,180,308,154).

A result of Cannon and Edwards states that the double suspension of an homology
3-sphere ∆ is homeomorphic to S5. Still ∆ will appear as one of the links, which is an
obstruction to being combinatorial.

Corollary
There exist balanced non-combinatorial d-spheres on 2d + 20 vertices, for every
d ≥ 5.
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Two triangulations of S3

Definition
A pure d-dimensional simplicial complex is shellable if there exists an ordering
F1, . . . ,Fm of its facets such that the complex ⟨F1, . . . ,Fi−1⟩ ∩ ⟨Fi⟩ is pure and
(d − 1)-dimensional for every 1 ≤ i ≤ m.

Boundary complexes of simplicial polytopes are shellable.

It is interesting and challenging to find balanced non-shellable triangulations of
spheres.

Barycentric subdivision typically turns non-shellable combinatorial sphere into
shellable ones (if allow iterated subdivisions the "typically" becomes "always" by a
result of Adiprasito and Benedetti).

Theorem (V.)
There exists a balanced non-shellable combinatorial 3-sphere with f -vector
(1,28,204,352,176).

Universität Osnabrück Balanced triangulations on few vertices 19/02/2019 17 / 19



Figure: 3-ball containing a triple-trefoil knot. (Benedetti and Ziegler, 2011).

There is a triangulation of the 3-sphere containing a triple-trefoil knot on three
edges, with the f -vector (1,18,143,250,125) (Benedetti-Lutz). By a result of
Lickorish it is not shellable.

Ehrenborg and Hachimori proved that the barycentric subdivision of a 3-sphere
with such a knot is not shellable.

We run our computer program applying only flips that do not untie the knot.

Starting from a 3-sphere containing a double trefoil-knot we obtain a balanced
triangulation of S3 that is shellable but not vertex-decomposable.
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Thanks for your attention
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