MOMENT IDEALS OF LOCAL DIRAC MIXTURES

Alexandros Grosdos and Markus Wageringel Osnabrück University

Graduate Student Meeting on Applied Algebra and Combinatorics, 18–20 February 2019

DIRAC DISTRIBUTIONS AND THEIR MOMENTS

• Dirac distribution centered at $\xi \in \mathbb{K}$

$$\delta_{\xi}(x) = \begin{cases} +\infty & \text{if } x = \xi \\ 0 & \text{if } x \neq \xi \end{cases}, \qquad \int \varphi(x) \mathrm{d} \delta_{\xi}(x) = \varphi(\xi)$$

- Moments of a Dirac $m_i = \int x^i \mathrm{d} \delta_\xi(x) = \xi^i$

Toy problems

- What is the variety consisting of the closure of all points $\{[m_0:m_1:\ldots:m_d]\mid m_i=\xi^i,\xi\in\mathbb{K}\}$?
- Assuming a sample coming from Diracs, how do we estimate the parameter ξ ?

In [Améndola–Faugère–Sturmfels 2016] the corresponding questions were answered for Gaussians and their mixtures.

MIXTURES OF DIRAC DISTRIBUTIONS

Let $\xi_j \in \mathbb{K}$ be points, $1 \leq j \leq r$.

Mixture of Dirac distributions

$$\mu(x)\coloneqq \sum_{j=1}^r \lambda_j \delta_{\xi_j}(x)$$
 , with $0\le \lambda_j$ and $\lambda_1+\dots+\lambda_r=1.$

Moments

$$m_i = \int_{\mathbb{K}} x^i \mathrm{d}\mu(x) = \sum_{j=1}^r \lambda_j \xi_j^i$$

Solved problems

- Defining equations for the moment variety.
- Recovery of parameters ξ_i, λ_i from moments m_i .

VARIETY OF MIXTURES OF DIRAC DISTRIBUTIONS

For a single Dirac we get $m_i=\xi^i$. These give the Veronese variety defined by the vanishing of all 2×2 minors of

$$H_{1,d-1} \coloneqq (m_{i+j})_{0 \le i \le 1, \atop 0 \le j \le d-1} = (\begin{smallmatrix} m_0 & m_1 & \dots & m_{d-1} \\ m_1 & m_2 & \dots & m_d \end{smallmatrix}).$$

Moment variety for mixtures of Diracs

• Parametric description:

$$\left\{[m_0:m_1:\ldots:m_d]\mid m_i=\textstyle\sum_{j=1}^r\lambda_j\xi_j^i,\lambda_j\in\mathbb{K},\xi_j\in\mathbb{K}\right\}\!.$$

• Implicit description (defining equations): $(r+1) \times (r+1)$ -minors of the moment matrix

$$H_{r,d-r} \coloneqq \left(m_{i+j}\right)_{0 \leq i \leq r, \atop 0 \leq j \leq d-r} = \left(\begin{smallmatrix} m_0 & m_1 & \dots & m_{d-r} \\ m_1 & m_2 & \dots & m_{d-r+1} \\ \vdots & \vdots & \ddots & \vdots \\ m_r & m_{r+1} & \dots & m_d \end{smallmatrix}\right).$$

· Local mixture of a Dirac:

$$\mu_\xi\coloneqq \delta_\xi-\alpha\delta_\xi',\quad \alpha\in\mathbb{K},$$
 so that $\int\!\!\varphi(x)\mathrm{d}\mu_\xi(x)=\varphi(\xi)+\alpha\varphi'(\xi).$ Moments: $m_i=\xi^i+\alpha i\xi^{i-1}.$

· Mixture of local mixtures of Diracs:

$$\mu \coloneqq \sum_{j=1}^r \lambda_j \mu_{\xi_j} = \sum_{j=1}^r \lambda_j \left(\delta_{\xi_j} + \alpha_j \delta'_{\xi_j} \right)$$

Problems

- Defining equations for the moment variety.
- Recovery of parameters $\xi_j, \alpha_j, \lambda_j$ from minimal number of moments.

MOMENT VARIETY

The moment variety of a single local mixture is

$$\overline{\{[m_0:m_1:\ldots:m_d]\in\mathbb{P}^d\mid m_i=\xi^i+\alpha i\xi^{i-1}\ \text{for}\ \xi,\alpha\in\mathbb{K}\}}.$$

Theorem (Eisenbud 1992; —, Wageringel 2018)

For $d \geq 5$, the moment variety is defined by the relations

$$(j-i+3)m_im_j-2(j-i+2)m_{i+1}m_{j-1}+(j-i+1)m_{i+2}m_{j-2}$$

for all $2 \le i \le j \le d-2$.

This is the tangent variety of the Veronese curve, i. e. the closure of the union of all lines tangent to the curve.

THE PARETO DISTRIBUTION

Let
$$\xi, \alpha \in \mathbb{R}_{>0}$$
.

$$\varphi(x) \coloneqq \frac{\alpha \xi^{\alpha}}{x^{\alpha+1}} \mathbb{1}_{\{x \ge \xi\}}, \qquad m_i = \begin{cases} \frac{\alpha}{\alpha - i} \xi^i, & i < \alpha, \\ \infty, & i \ge \alpha. \end{cases}$$

Theorem (-, Wageringel 2018)

The moment variety of the Pareto distribution is the closure of the image of the moment variety of local mixtures of Diracs under the map

$$m_i \longmapsto m_i^{-1}$$
.

Symbolic parameter recovery of a 2-mixture from moments

Let
$$r=2$$
, i. e. $m_i = \lambda(\xi_1^i + \alpha_1 i \xi_1^{i-1}) + (1-\lambda)(\xi_2^i + \alpha_2 i \xi_2^{i-1}).$

Theorem (-, Wageringel 2018)

Let $R=\mathbb{K}[m_1,...,m_5]$. Then there exist polynomials $g_0,g_1\in R[x]$ of degree 4, such that

$$g_0(\xi_1 + \xi_2) = 0 = g_1(\xi_1 \xi_2).$$

Moment map: $(\xi_1,\xi_2,\alpha_1,\alpha_2,\lambda)\mapsto (m_1,m_2,...,m_d)$

Algebraic identifiability: finitely many solutions. The moment map is finite-to-one for d=5.

Rational identifiability: unique solution given rationally in the m_i . The moment map is one-to-one for d=6.

Symbolic parameter recovery of a 2-mixture from moments

Let
$$Z=\xi_1+\xi_2$$
, $Y=\xi_1\xi_2$.

Strategy

- 1. Compute the 4 solutions of $g_0(Z) = 0$.
- 2. From Z and the moments m_i , uniquely determine Y via

$$(2Zk_2-2k_3)Y+6Zk_2^2-Z^2k_3-10k_2k_3+2Zk_4-k_5=0\\$$

(where each k_i is some polynomial in $m_1, m_2, ..., m_i$.)

- 3. Uniquely recover ξ_1,ξ_2 from the system $Z=\xi_1+\xi_2,Y=\xi_1\xi_2.$
- 4. From ξ_1, ξ_2 , uniquely recover $\lambda, \alpha_1, \alpha_2$ from the moment relations (linear problem).

DIFFERENT APPROACH: PRONY'S METHOD (APOLARITY)

For r-mixtures of Diracs $m_i = \sum_{j=1}^r \lambda_j \xi^i_j$, we have:

$$\begin{split} H_{r-1,r} \colon \mathbb{K}[x]_{\leq r} &\longrightarrow \mathbb{K}[x]_{\leq r-1}^*, \\ p &\longmapsto \Big(q \mapsto \sum_{j=1}^r \lambda_j p(\xi_j) q(\xi_j) \Big). \end{split}$$

Recovery of parameters via Prony's method (Prony 1795)

- 1. Recover points ξ_j by solving $H_{r-1,r}(p)=0$ for $p=\prod_{i=1}^r(x-\xi_i).$
- 2. Recover parameters λ_j from linear system $m_i = \sum_{j=1}^r \lambda_j \xi_j^i.$

Local mixture setting: pairwise colliding nodes

$$p = \prod_{j=1}^r \lim_{\xi_j' \to \xi_j} (x - \xi_j') (x - \xi_j) = \prod_{j=1}^r (x - \xi_j)^2.$$

RECOVERY OF PARAMETERS OF AN r-MIXTURE FROM MOMENTS

An r-mixture of local mixtures of Diracs is a degenerate 2r-mixture of Diracs for which each point has multiplicity 2 (cf. Mourrain 2017).

Strategy

Apply Prony's method to
$$H_{2r-1,2r}=\left(m_{i+j}
ight)_{0\leq i\leq 2r-1,top 0\leq j\leq 2r}$$
 to get Prony polynomial $p^2=\prod_{j=1}^r(x-\xi_j)^2=\left(\sum_{i=0}^rp_ix^i\right)^2$.

This requires 4r moments (linear).

Recovery of parameters of an r-mixture from moments

An r-mixture of local mixtures of Diracs is a degenerate 2r-mixture of Diracs for which each point has multiplicity 2 (cf. Mourrain 2017).

Strategy

Apply Prony's method to $H_{2r-1,2r}=\left(m_{i+j}\right)_{0\leq i\leq 2r-1,\atop 0\leq j\leq 2r}$ to get Prony

polynomial
$$p^2 = \prod_{j=1}^r \big(x-\xi_j\big)^2 = \Big(\sum_{i=0}^r p_i x^i\Big)^2.$$

This requires 4r moments (linear).

Refinement: Note that $p^2 \in \ker H_{r-1,2r}$, i. e.,

$$\mathbb{C}[x]_{\leq r} \longrightarrow \mathbb{C}[x]_{\leq 2r} \xrightarrow{H_{r-1,2r}} \mathbb{C}[x]_{\leq r-1},$$

$$p \longmapsto p^2 \longmapsto 0,$$

requiring 3r moments (non-linear), i. e.,

$$H_{r-1,2r} \cdot (p_0^2, 2p_0p_1, 2p_0p_2 + p_1^2, ..., p_r^2)^{\top} = 0.$$

Question: Can this system of quadratic equations be solved efficiently?

Recovery of parameters of an r-mixture from moments (refined)

Algorithm

Input: Number of components $r \in \mathbb{N}$, moments m_0, m_1, \dots

- 1. Let s := r.
- 2. Solve $\{p\in\mathbb{C}[x]_{\leq r}\mid H_{s,2r}(p^2)=0\}.$ If solution is not unique, increment s and repeat.
- 3. Compute roots $\xi_1,...,\xi_r$ of $p=\prod_{j=1}^r(x-\xi_j)$.
- 4. Compute weights λ_j, α_j , $1 \leq j \leq r$.

Output: Parameters satisfying $m_i = \sum_{j=1}^r \lambda_j (\xi_j^i + \alpha_j i \xi_j^{i-1})$.

Best case: Moments up to m_{3r} needed (if s=r).

Remark: The moment variety has dimension $\min(3r-1,d)$, so algebraic identifiability holds if $d \geq 3r-1$.

APPLICATION: PIECEWISE-CONSTANT FUNCTIONS

- A piecewise-constant function with jumps at $t_j \in [-\pi, \pi[$ corresponds to $\sum_{j=1}^r \lambda_j \delta_{\xi_j}$, $\xi_j := \mathrm{e}^{\mathrm{i} t_j}$.
- Reconstruction from Fourier samples.

Piecewise-linear function with jumps at $t_j \in [-\pi, \pi[$ corresponds to

$$\sum_{j=1}^r \lambda_j \delta_{\xi_j} + \lambda_j' \delta_{\xi_j}', \quad \xi_j \coloneqq \mathrm{e}^{\mathrm{i} t_j}.$$

Example: r = 10 jumping points, 3r + 1 = 31 samples.

Piecewise-linear function with jumps at $t_j \in [-\pi, \pi[$ corresponds to

$$\sum_{j=1}^r \lambda_j \delta_{\xi_j} + \lambda_j' \delta_{\xi_j}', \quad \xi_j \coloneqq \mathrm{e}^{\mathrm{i} t_j}.$$

Example: r = 10 jumping points, 3r + 1 = 31 samples.

Piecewise-linear function with jumps at $t_j \in [-\pi, \pi[$ corresponds to

$$\sum_{j=1}^{r} \lambda_j \delta_{\xi_j} + \lambda_j' \delta_{\xi_j}', \quad \xi_j \coloneqq e^{it_j}.$$

Example: r=10 jumping points, 3r+1=31 samples.

Piecewise-linear function with jumps at $t_j \in [-\pi, \pi[$ corresponds to

$$\sum_{j=1}^r \lambda_j \delta_{\xi_j} + \lambda_j' \delta_{\xi_j}', \quad \xi_j \coloneqq \mathrm{e}^{\mathrm{i} t_j}.$$

Example: r=10 jumping points, 3r+1=31 samples.

Piecewise-linear function with jumps at $t_j \in [-\pi, \pi[$ corresponds to

$$\sum_{j=1}^r \lambda_j \delta_{\xi_j} + \lambda_j' \delta_{\xi_j}', \quad \xi_j \coloneqq \mathrm{e}^{\mathrm{i} t_j}.$$

Example: r=10 jumping points, 3r+1=31 samples.

Local mixture of a Dirac:

$$\mu_\xi \coloneqq \delta_\xi - \alpha \delta_\xi' + \beta \delta_\xi'', \quad \alpha, \beta \in \mathbb{K},$$

so that
$$\int\!\!\varphi(x)\mathrm{d}\mu_\xi(x)=\varphi(\xi)+\alpha\varphi'(\xi)+\beta\varphi''(\xi).$$

Moments: $m_i = \xi^i + \alpha i \xi^{i-1} + \beta i (i-1) \xi^{i-2}$.

Conjecture

For $d \ge 12$ the $2^{\rm nd}$ -order moment ideal is generated by

$$c_0 m_{i+3} m_j + c_1 m_{i+2} m_{j+1} + c_2 m_{i+1} m_{j+2} + c_3 m_i m_{j+3} \\$$

for $i \geq 0$, $j \geq 0$ and $i \geq j - 3$, where

$$\begin{split} c_0 &= (j-i+1)(j-i+2) \qquad c_1 = -3(j-i-1)(j-i+2) \\ c_2 &= 3(j-i+1)(j-i-2) \qquad c_3 = -(j-i-1)(j-i-2). \end{split}$$

APPLICATION IN GAUSSIAN LOCAL MIXTURES

[Marriott 2002] considers local mixture models, for example the local Gaussian distribution has p.d.f.

$$\varphi(x) \coloneqq \varphi_{\xi,\sigma}(x) + \alpha \frac{\partial}{\partial \xi} \varphi_{\xi,\sigma}(x) + \beta \frac{\partial^2}{\partial \xi^2} \varphi_{\xi,\sigma}(x).$$

These can be expressed as a convolution of $\mathcal{N}_{0,\sigma}$ and $\mu_{\mathcal{E}} = \delta_{\mathcal{E}} - \alpha \delta_{\mathcal{E}}' + \beta \delta_{\mathcal{E}}''$.

REFERENCES

Améndola, C., J.-C. Faugère, and B. Sturmfels (2016). "Moment varieties of Gaussian mixtures". In: *J. Algebr. Stat.* 7.1, pp. 14–28.

Eisenbud, D. (1992). "Green's conjecture: an orientation for algebraists". In: *Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990)*. Vol. 2. Res. Notes Math. Jones and Bartlett, Boston, MA, pp. 51–78.

Mourrain, B. (Oct. 2017). "Polynomial–Exponential Decomposition From Moments". In: *Foundations of Computational Mathematics*.

Marriott, P. (Mar. 2002). "On the local geometry of mixture models". In: *Biometrika* 89, pp. 77–93.

Grosdos Koutsoumpelias, A. and M. Wageringel (Sept. 2018). "Moment ideals of local Dirac mixtures". In: *ArXiv e-prints*.