Tope Arrangements and Determinantal Varieties

Ben Smith

Queen Mary University of London

Graduate Student Meeting on Applied Algebra and Combinatorics Joint with Georg Loho, LSE

Tope Arrangements

What is a tope arrangement?

Consider the bipartite node sets $[n] \sqcup [d]$.

Definition

A *tope* is a bipartite graph whose left nodes [n] all have degree one.

Let $P_{k,d} = k\Delta_{d-1} \cap \mathbb{Z}^d$ be the of lattice points (d-1)-simplex scaled by k.

Definition

An (n, d)-tope arrangement is a collection of topes on $[n] \sqcup [d]$ such that:

- the right degree vectors are in bijection with $P_{n-d,d}$, the lattice points of $(n-d)\Delta_{d-1}$.
- if two topes contain a matching on a subset of nodes J

 I, it is the same matching.

Tope Arrangements

Definition

An (n, d)-tope arrangement is a collection of topes on $[n] \sqcup [d]$ such that:

- the right degree vectors are in bijection with $P_{n-d,d}$, the lattice points of $(n-d)\Delta_{d-1}$.
- if two topes contain a matching on a subset of nodes $J \sqcup I$, it is the same matching.

Lattice points of $3\Delta_2$

(6, 3)-tope arrangement

Example 1: Tropical Hyperplane Arrangements

Where do tope arrangements naturally occur?

A *tropical hyperplane* is a fan in \mathbb{R}^{d-1} with d maximal cones, labelled by $\{1,\ldots,d\}$.

An arrangement of n tropical hyperplanes decomposes \mathbb{R}^{d-1} into regions. Each region has a corresponding bipartite graph on $[n] \sqcup [d]$ with edges

Example 1: Tropical Hyperplane Arrangements

Proposition (Ardila, Develin, Sturmfels)

The bipartite graphs from the bounded regions of an arrangement of n tropical hyperplanes in \mathbb{R}^{d-1} form an (n,d)-tope arrangement.

Where do tope arrangements occur classically?

Let $\nabla_{d,n}$ be the variety of degenerate $(d \times n)$ -matrices

$$abla_{d,n} = \left\{ X \in \mathbb{C}^{d imes n} \mid \operatorname{rk}(X) < d
ight\} .$$

It is cut out by the ideal

$$I_{d,n} = \langle \det(M|_J) \mid J \subset [n] , |J| = d \rangle \subset \mathbb{C}[x_{ij}] , M = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}$$

generated by the maximal minors of the $(d \times n)$ -matrix of indeterminates.

Example

$$\nabla_{2,3}\subset\mathbb{C}^6$$
 is the variety cut out by the ideal

$$I_{2,3} = \langle x_{11}x_{22} - x_{12}x_{21}, x_{11}x_{23} - x_{13}x_{21}, x_{12}x_{23} - x_{13}x_{22} \rangle \subset \mathbb{C}[x_{11}, \dots, x_{23}] ,$$

the ideal generated by the maximal minors of the matrix $\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$.

Definition

Let $W = (w_{ij}) \in \mathbb{R}^{d \times n}$ be a (generic) matrix of weights. The *weight* of a monomial x^a is

$$\sum_{\substack{1 \le i \le d \\ 1 \le i \le n}} w_{ij} a_{ij} .$$

The initial form $in_W(f)$ of a polynomial f w.r.t W is the monomial of least weight.

Term orderings and initial forms are the main tools of Gröbner bases.

Example

$$I_{2,3} = \langle x_{11}x_{22} - x_{12}x_{21}, x_{11}x_{23} - x_{13}x_{21}, x_{12}x_{23} - x_{13}x_{22} \rangle \subset \mathbb{C}[x_{11}, \dots, x_{23}]$$

Let $W = \begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$. The initial forms of each of the generators of $I_{2,3}$ are

$$in_W(x_{11}x_{22} - x_{12}x_{21}) = x_{11}x_{22}$$

 $in_W(x_{11}x_{23} - x_{13}x_{21}) = x_{11}x_{23}$
 $in_W(x_{12}x_{23} - x_{13}x_{22}) = x_{12}x_{23}$

$$M = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}$$
 with term order induced by W .

Definition

A tope monomial is a set of n variables from M such that

- There is exactly one variable from each column of M.
- For any subset with exactly one variable from each row of M, the product of those variables is the initial form of a maximal minor of M.

Theorem (Sturmfels, Zelevinksy / Loho, S)

The indices of a tope monomial form a tope. The set of all tope monomials w.r.t a weight matrix form a tope arrangement.

Example

Consider the previous example, the initial forms were $\{x_{11}x_{22}, x_{11}x_{23}, x_{12}x_{23}\}$. There are precisely two tope monomials:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} , \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$$

The corresponding tope arrangement is in bijection with the lattice points of Δ_1 .

This was not the language Sturmfels and Zelevinksy used. They instead observed that the initial forms of a maximal minor induce a matching on $[n] \sqcup [d]$. The set of all these define a *matching field*.

Matching Fields

What is a matching field?

Definition

A *matching field* $\mathcal{M} = (m_J)$ on $[n] \sqcup [d]$ is a collection of matchings on $J \sqcup [d]$, one for each d-subset $J \subset [n]$.

- It is *coherent* if induced by a weight matrix.
- It is *linkage* if for each m_J and $k \in [n] \setminus J$, there exists $j \in J$ such that m_J and $m_{J \setminus j \cup k}$ differ by a flip (basis exchange axiom).

Correspondence with Matching Fields

How are matching fields and tope arrangements related?

Theorem (Loho, S'18)

Tope arrangements and linkage matching fields are cryptomorphic.

Chow Graphs

What have tope arrangements got over matching fields?

Sturmfels and Zelevinksy were interested in the Chow polytope $Ch(\nabla_{d,n})$ of $\nabla_{d,n}$. In studying this, they considered the following graphs:

Definition

Fix a matching field $\mathcal{M}=(m_J)$. A *Chow graph* Ω is a minimal bipartite graph such that $\Omega \cap m_J \neq \emptyset$ for all m_J .

Example

Chow Conjecture

Conjecture (Sturmfels, Zelevinsky '93)

- The Chow graphs of a linkage matching field are in bijection with $P_{n-d+1,d}$, the lattice points of $(n-d+1)\Delta_{d-1}$ via their right degree vector.
- The Chow graphs determine the linkage matching field.

- Bernstein, Zelevinsky '93 holds for coherent matching fields.
- Loho, S '18 holds for all linkage matching fields.

Chow Conjecture

Theorem (Loho, S'18)

The Chow graphs of \mathcal{M} can be recovered from the associated tope arrangement via intersections. This induces the bijection with $P_{n-d+1,d}$. Furthermore, they determine the tope arrangement via unions.

Final Thoughts

Question

Can one formulate a characterisation of Chow graphs that doesn't depend on the matching field or tope arrangement?

References: Matching fields and lattice points of simplices, Georg Loho and Ben Smith, arXiv:1804.01595, (2018)

Maximal minors and their leading terms, Bernd Sturmfels and Andrei Zelevinsky, Advances in Mathematics, $\bf 98~(1993),~65-112$

Combinatorics of maximal minors, David Bernstein and Andrei Zelevinsky, Journal of Algebraic Combinatorics, **2** (1993), 111–121