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GOAL
Given a chemical reaction network G under mass action kinetics,
with n species and m reactions, explore the existence of a region on
the space of parameters (rate constants and total amounts) such
that bistability arises.

Ingredients:

• Chemical reaction networks.
• Stability criteria.
• Detecting bistability.
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Chemical Reaction networks

X1 + 2X2
κ1−−→ 2X1 + X2

4X1 + X2
κ2−−→ 3X1 + 2X2

3X1 + X2
κ3−−→ 4X1

2X1 + X2
κ4−−→ 3X2

A chemical reaction network G
is a labelled directed graph
whose nodes, called complexes,
are integer linear combinations
of a set S = {X1, . . . , Xn} called
the set of species.
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ẋ2 =− κ1x1x22 + κ2x41x2 − κ3x31x2 + 2κ4x21x2

2



Chemical Reaction networks

The steady states are the non-negative points where the vector of
derivatives of the concentrations is ẋ = 0.

In our example

ẋ1 =κ1x1x22 − κ2x41x2 + κ3x31x2 − 2κ4x21x2
ẋ2 =− κ1x1x22 + κ2x41x2 − κ3x31x2 + 2κ4x21x2

Taking κ1 = 1, κ2 = 1, κ3 = 8 and κ4 =
17
4 the positive steady state

variety is
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Chemical Reaction networks

ẋ1 =κ1x1x22 − κ2x41x2 + κ3x31x2 − 2κ4x21x2
ẋ2 =− κ1x1x22 + κ2x41x2 − κ3x31x2 + 2κ4x21x2

Note that ẋ1 + ẋ2 = 0. Therefore, x1 + x2 = T through time. These
linear combinations of the concentration variables are called
conservation laws, and all points satisfying them form a
stoichiometric compatibility class.

Figure 1: Conservation law T = 5 and vector field.
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ẋ2 =− κ1x1x22 + κ2x41x2 − κ3x31x2 + 2κ4x21x2
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Chemical Reaction networks

Multistationarity
The network exhibits multistationarity if there exist a set of reaction
rate constants and total amounts, such that there are two positive
steady states in one stoichiometric compatibility class.

The network in our example exhibits multistationarity for the set of
parameters {κ1 = 1, κ2 = 1, κ3 = 8, κ4 = 17

4 , T = 10}.
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Chemical Reaction networks

• The steady states in the stoichiometric compatibility class given
by T are the solutions to the system

0 =κ1x1x22 − κ2x41x2 + κ3x31x2 − 2κ4x21x2
0 =x1 + x2 − T

• The function obtained by removing all the redundant steady
state equations and replacing them by the conservation laws
will be denoted by FT(x).
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Stability

STABILITY
Consider a system of differential equations dx

dt = f(x), with f ∈ C1, and
a steady state x∗.

The steady state x∗ is asymptotically stable if all the eigenvalues of
Jf(x∗) have negative real part. If one of the eigenvalues of Jf(x∗) has

positive real part, then x∗ is unstable.

In order to determine stability we will study the roots of the
characteristic polynomial pJf(λ).
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Stability: Hurwitz criterion.

Let p(x) = anxn + an−1xn−1 + . . .+ a1x+ a0 be a polynomial with
ai ∈ R, an > 0 and a0 ̸= 0. The Hurwitz matrix associated to p is

H =


an−1 an 0 0 · · · 0
an−3 an−2 an−1 an · · · 0
...

...
...

...
...

...
0 0 0 a6−n · · · a2
0 0 0 0 · · · a0


The i-th Hurwitz determinant, is Hi = det(HI,I), with I = {1, . . . , i}.

All the roots of the polynomial p have negative real part if, and only
if, Hi > 0 for i = 1, . . . ,n. If Hi < 0 for some i, then p has a root with
positive real part.

Remark: Hn = a0Hn−1.
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Stability: Our approach

1. Establish the ODEs and conservation laws of the system.

X1
κ1−−→ X2 X2 + X3

κ2−−→ X1 + X4 X4
κ3−−→ X3. (1)

The ODE system associated with the network is

ẋ1 = −κ1x1 + κ2x2x3 ẋ3 = −κ2x2x3 + κ3x4
ẋ2 = κ1x1 − κ2x2x3 ẋ4 = κ2x2x3 − κ3x4.

The conservation laws are x1 + x2 = T1 and x3 + x4 = T2.
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Stability: Our approach

2. Compute Jf(x) and evaluate in a positive steady state given by the
positive parameterization.

The positive steady states are

ϕ(x2, x4) =
(
κ3x4
κ1

, x2,
κ3x4
κ2x2

, x4
)
. (2)

We compute Jf and evaluate in ϕ(x2, x4).

Jf(ϕ(x2, x4)) =


−κ1

κ3x4
x2 κ2x2 0

κ1 −κ3x4
x2 −κ2x2 0

0 −κ3x4
x2 −κ2x2 κ3

0 κ3x4
x2 κ2x2 −κ3
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Stability: Our approach

3. Compute the characteristic polynomial of Jf(x∗), pJf(λ), and factor
λd, where d is the amount of conservation laws.

pJf(λ) =λ4 +
κ2x22 + κ1x2 + κ3x2 + κ3x4

x2
λ3 +

κ1κ2x22 + κ1κ3x2 + κ23x4
x2

λ2

=λ2
(
λ2 +

κ2x22 + κ1x2 + κ3x2 + κ3x4
x2

λ+
κ1κ2x22 + κ1κ3x2 + κ23x4

x2

)
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Stability: Our approach

4. Use the Hurwitz criterion to study the roots of the characteristic
polynomial restricted to the stoichiometric compatibility class.

qf(λ) = λ2 +
κ2x22 + κ1x2 + κ3x2 + κ3x4

x2
λ+

κ1κ2x22 + κ1κ3x2 + κ23x4
x2

The Hurwitz determinants are

H1 =
κ2x22+κ1x2+κ3x2+κ3x4

x2

H2 =
(κ2x22+κ1x2+κ3x2+κ3x4)(κ1κ2x22+κ1κ3x2+κ23x4)

x22
For all choice of reaction rate constants and totl amounts, the steady
state is asymptotically stable.
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Stability: Our approach

One-site phosphorylation cycles

(1)

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F κ4−−⇀↽−−κ5
S1F

κ6−−→ S0 + F

(2)

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + E κ4−−⇀↽−−κ5
S1E

κ6−−→ S0 + E

(3)

S0 + E1
κ1−−⇀↽−−κ2

S0E1
κ3−−→ S1 + E1

S0 + E2
κ4−−⇀↽−−κ5

S0E2
κ6−−→ S1 + E2

S1 + F κ7−−⇀↽−−κ8
S1F

κ9−−→ S0 + F

(4)

S0 + E1
κ1−−⇀↽−−κ2

S0E1
κ3−−→ S1 + E1

S0 + E2
κ4−−⇀↽−−κ5

S0E2
κ6−−→ S1 + E2

S1 + F1
κ7−−⇀↽−−κ8

S1F1
κ9−−→ S0 + F1

S1 + F2
κ10−−⇀↽−−κ11

S1F2
κ12−−→ S0 + F2

(5) Two-site modification

S0 + E1
κ1−−⇀↽−−κ2

S0E1
κ3−−→ S1 + E1

S1 + E2
κ4−−⇀↽−−κ5

S1E2
κ6−−→ S2 + E2

S1 + F1
κ7−−⇀↽−−κ8

S1F1
κ9−−→ S0 + F1

S2 + F2
κ10−−⇀↽−−κ11

S2F2
κ12−−→ S1 + F2

(6) Modification of two substrates

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

P0 + E κ4−−⇀↽−−κ5
P0E

κ6−−→ P1 + E

S1 + F1
κ7−−⇀↽−−κ8

S1F1
κ9−−→ S0 + F1

P1 + F2
κ10−−⇀↽−−κ11

P1F2
κ12−−→ P0 + F2

(7) Two layer cascade

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F1
κ4−−⇀↽−−κ5

S1F1
κ6−−→ S0 + F1

P0 + S1
κ7−−⇀↽−−κ8

P0S1
κ9−−→ P1 + S1

P1 + F2
κ10−−⇀↽−−κ11

P1F2
κ12−−→ P0 + F2

We proved asymptotic
stability for every set of

parameters and total amounts
for all these monostationary
networks, except for the two

layer cascade.
Downside: Computationally
expensive. Some polynomials
have more than one million

monomials.
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Stability: Our approach

As a second example, consider the Gene transcription network, that
is known to be multistationary.

X1
κ1−−→ X1 + P1 X2

κ2−−→ X2 + P2
P1

κ3−−→ 0 P2
κ4−−→ 0

X2 + P1
κ5−−⇀↽−−κ6 X2P1 2P2

κ7−−⇀↽−−κ8 P2P2

X1 + P2P2
κ9−−⇀↽−−κ10 X1P2P2

We denote the concentration variables as x1 =X1, x2 =X2, x3=P1, x4= P2,
x5 = X2P1, x6 = P2P2, and X7 = X1P2P2.
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Stability: Our approach

The system of ODEs is

ẋ1 = −κ9x1x6 + κ10x7 ẋ5 = κ5x2x3 − κ6x5
ẋ2 = −κ5x2x3 + κ6x5 ẋ6 = κ7x24 − κ9x1x6 − κ8x6 + κ10x7
ẋ3 = −κ5x2x3 + κ1x1 − κ3x3 + κ6x5 ẋ7 = κ9x1x6 − κ10x7
ẋ4 = −2κ7x24 + κ2x2 − κ4x4 + 2κ8x6,

and the conservations laws are

x1 + x7 = T1 and x2 + x5 = T2.

A positive parameterization of the steady states is

x1 =
κ2κ3κ6x5
κ1κ4κ5x4

, x2 =
κ4x4
κ2

, x3 =
κ6x5κ2
κ4κ5x4

, x6 =
κ7x24
κ8

, x7 =
κ9κ2κ3κ6x5x4κ7
κ1κ4κ5κ8κ10
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ẋ4 = −2κ7x24 + κ2x2 − κ4x4 + 2κ8x6,

and the conservations laws are

x1 + x7 = T1 and x2 + x5 = T2.

A positive parameterization of the steady states is

x1 =
κ2κ3κ6x5
κ1κ4κ5x4

, x2 =
κ4x4
κ2

, x3 =
κ6x5κ2
κ4κ5x4

, x6 =
κ7x24
κ8

, x7 =
κ9κ2κ3κ6x5x4κ7
κ1κ4κ5κ8κ10

15



Stability: Our approach

For this network the characteristic polynomial pJf(λ) has degree 7.

After factoring λ2 we apply the Hurwitz criterion to a polynomial of
degree 5.

We found that H1,H2,H3 and H4 are rational functions with positive
coefficients.

H5 = −κ6κ3(κ2κ7κ9x24x5 − κ4κ7κ9x34 − κ2κ8κ10x5 − κ4κ8κ10x4)
x4

H4

This network is multistationary. Is it bistable?
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Stability: Our approach

In this network the solutions of FT(x) = 0 are in one to one
correspondence with the roots of

FT,1(φ(x1)) =
1

(κ1κ5x1 + κ3κ6)2κ24κ8κ10

[
κ
2
1κ

2
4κ

2
5κ8κ10x

3
1 + (−T1κ

2
1κ

2
4κ

2
5κ8κ10 + 2κ1κ3κ

2
4κ5κ6κ8κ10)x

2
1+

(T22κ
2
2κ

2
3κ

2
6κ7κ9 − 2T1κ1κ3κ

2
4κ5κ6κ8κ10 + κ

2
3κ

2
4κ

2
6κ8κ10)x1 − T1κ

2
3κ

2
4κ

2
6κ8κ10

]

This is a univariate polynomial of degree 3.

There is a maximum of 3 positive steady states in each
stoichiometric compatibility class.
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stoichiometric compatibility class.
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Stability: Our approach

Detecting bistability
If the solutions of 0 = FT(x) can be reduced to the study of one univariate
polynomial (FT,j ◦ φ)(xi), then, for a steady state x∗ = φ(xi) the following
relation holds

det(JFT(x∗)) =(−1)i+j(FT,j ◦ φ)′(xi) det(JFT(x∗)J,I).
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Stability: Our approach

Detecting bistability
If the solutions of 0 = FT(x) can be reduced to the study of one univariate
polynomial (FT,j ◦ φ)(xi), then, for a steady state x∗ = φ(xi) the following
relation holds

(−1)sa0 = (−1)i+j(FT,j ◦ φ)′(xi) det(JFT(x∗)J,I).

If additionally

• the sign of det(JFT(φ(xi))J,I) is independent of xi > 0 and is nonzero, and

• All the Hurwitz determinants of pJf(φ(xi) are positive, except for
Hn = a0Hn−1.

Then the positive solutions z1 < · · · < zℓ of FT,j(φ(xi)) = 0, satisfy that, either
φ(z1), φ(z3), . . . are asymptotically stable and φ(z2), φ(z4), . . . are unstable,
or the other way around.
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Stability

Back to the Gene transcription network:

• Reduce the solutions of FT(x) = 0 to one polynomial.
• Sign of det(JFT(φ(xi))J,I) independent of xi.
• All the Hurwitz determinants of pJf(φ(xi) are positive, except for
H5 = a0H4.
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Stability

Back to the Gene transcription network:

• Reduce the solutions of FT(x) = 0 to one polynomial. ✓
• Sign of det(JFT(φ(xi))J,I) independent of xi.✓

det(JFT(φ(xi))J,I) = −(κ1κ5x1 + κ3κ6)κ4κ8κ10

• All the Hurwitz determinants of pJf(φ(xi) are positive, except for
H5 = a0H4. ✓

We conclude that a0 = −(FT,j ◦ φ)′(x1) det(JFT(x∗)J,I).

If (FT,j ◦ φ)(x1) has 3 different positive roots z1 < z2 < z3, then z1 and
z3 are asymptotically stable and z2 is unstable.
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Bistability

In other multistationary networks...

Allosteric kinase

E1 + S0
κ1−−⇀↽−−κ2

E1S0
κ3−−→ E1 + S1

E2 + S0
κ4−−⇀↽−−κ5

E2S0
κ6−−→ E2 + S1

E1
κ8−−⇀↽−−κ9

E2 E1S0
κ10−−⇀↽−−κ11

E2S0S1
κ7−−→ S0

Two layer cascade 1

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F κ4−−⇀↽−−κ5
S1F

κ6−−→ S0 + F

P0 + S1
κ7−−⇀↽−−κ8

P0S1
κ9−−→ P1 + S1

P1 + F κ10−−⇀↽−−κ11
P1F

κ12−−→ P0 + F

Two site modification

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + E κ4−−⇀↽−−κ5
S1E

κ6−−→ S2 + E

S1 + F1
κ7−−⇀↽−−κ8

S1F1
κ9−−→ S0 + F1

S2 + F2
κ10−−⇀↽−−κ11

S2F2
κ12−−→ S1 + F2
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Bistability

Two site phosphorylation

E+ S0
κ1−−⇀↽−−κ2

S0E
κ3−−→ E+ S1

κ7−−⇀↽−−κ8
S1E

κ9−−→ S2 + E

F+ S2
κ10−−⇀↽−−κ11

S2F
κ12−−→ F+ S1

κ4−−⇀↽−−κ5
S1F

κ6−−→ F+ S0

Phosphorylation of two substrates

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F κ4−−⇀↽−−κ5
S1F

κ6−−→ S0 + F

P0 + E κ7−−⇀↽−−κ8
P0E

κ9−−→ P1 + E

P1 + F κ10−−⇀↽−−κ11
P1F

κ12−−→ P0 + F

Two layer cascade 2

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F1
κ4−−⇀↽−−κ5

S1F1
κ6−−→ S0 + F1

P0 + S1
κ7−−⇀↽−−κ8

P0S1
κ9−−→ P1 + S1

P0 + E κ10−−⇀↽−−κ11
P0E

κ12−−→ P1 + E

P1 + F2
κ13−−⇀↽−−κ14

P1F2
κ15−−→ P0 + F2
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Bistability

If it is not possible to apply the procedure directly, We use two
reduction techniques that preserve multistationarity and stability
properties

• Removal and addition of reactions that preserve the
conservation laws. In particular, removing reversible reactions.

C1
κ1−−⇀↽−−κ2 C2 can be transformed into C1

τ−−→ C2

• Adding or removing intermediates

C1
κ−−→ C2 can be transformed into C1

κ1−−→ Y κ2−−→ C2

We were able to detect bistability with the following reductions
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Bistability

Allosteric kinase

E1 + S0
κ1−−⇀↽−−κ2

E1S0
κ3−−→ E1 + S1

E2 + S0
κ4−−⇀↽−−κ5

E2S0
κ6−−→ E2 + S1

E1
κ8−−⇀↽−−κ9

E2 E1S0
κ10−−⇀↽−−κ11

E2S0S1
κ7−−→ S0

Two layer cascade 1

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F κ4−−⇀↽−−κ5
S1F

κ6−−→ S0 + F

P0 + S1
κ7−−⇀↽−−κ8

P0S1
κ9−−→ P1 + S1

P1 + F κ10−−⇀↽−−κ11
P1F

κ12−−→ P0 + F

Two site modification

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + E κ4−−⇀↽−−κ5
S1E

κ6−−→ S2 + E

S1 + F1
κ7−−⇀↽−−κ8

S1F1
κ9−−→ S0 + F1

S2 + F2
κ10−−⇀↽−−κ11

S2F2
κ12−−→ S1 + F2

Reduced Allosteric kinase

E1 + S0
τ1−−→ E1S0

τ2−−→ E1 + S1

E2 + S0
τ3−−→ E2 + S1 E2 + S0

τ6−−→ E1S0

E1
τ5−−→ E2S1

τ4−−→ S0
Reduced two layer cascade 1

S0 + E τ1−−→ S1 + E

S1 + F τ2−−→ S0 + F

P0 + S1
τ3−−→ P0S1

τ4−−→ P1 + S1

P1 + F τ5−−→ P1F
τ6−−→ P0 + F

Two site modification reduced

S0 + E τ1−−→ S0E
τ2−−→ S1 + E

S1 + E τ3−−→ S1E
τ4−−→ S2 + E

S1 + F1
τ5−−→ S0 + F1

S2 + F2
τ6−−→ S1 + F2
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Bistability

Two site phosphorylation

E+ S0
κ1−−⇀↽−−κ2

S0E
κ3−−→ E+ S1

κ7−−⇀↽−−κ8
S1E

κ9−−→ S2 + E

F+ S2
κ10−−⇀↽−−κ11

S2F
κ12−−→ F+ S1

κ4−−⇀↽−−κ5
S1F

κ6−−→ F+ S0

Phosphorylation of two substrates

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F κ4−−⇀↽−−κ5
S1F

κ6−−→ S0 + F

P0 + E κ7−−⇀↽−−κ8
P0E

κ9−−→ P1 + E

P1 + F κ10−−⇀↽−−κ11
P1F

κ12−−→ P0 + F

Two layer cascade 2

S0 + E κ1−−⇀↽−−κ2
S0E

κ3−−→ S1 + E

S1 + F1
κ4−−⇀↽−−κ5

S1F1
κ6−−→ S0 + F1

P0 + S1
κ7−−⇀↽−−κ8

P0S1
κ9−−→ P1 + S1

P0 + E κ10−−⇀↽−−κ11
P0E

κ12−−→ P1 + E

P1 + F2
κ13−−⇀↽−−κ14

P1F2
κ15−−→ P0 + F2

Two site phosphorylation reduced

E+ S0
τ1−−→ S0E

τ2−−→ E+ S1
τ3−−→ S2 + E

F+ S2
τ4−−→ F+ S1

τ5−−→ F+ S0

Phosphorylation of two substrates reduced

S0 + E τ1−−→ S1 + E

S1 + F τ2−−→ S1F
τ3−−→ S0 + F

P0 + E τ4−−→ P0E
τ5−−→ P1 + E

P1 + F τ6−−→ P0 + F

Two layer cascade 2 reduced

S0 + E τ1−−→ S1 + E

S1 + F1
τ2−−→ S1F1

τ3−−→ S0 + F1

P0 + S1
τ4−−→ P1 + S1

P0 + E τ6−−→ P0E
τ7−−→ P1 + E

P1 + F2
τ5−−→ P0 + F2
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