Stability of steady states and algebraic parameterizations in chemical reaction networks.

Angélica Torres
February 20th - 2019
University of Copenhagen

GOAL

Given a chemical reaction network \mathcal{G} under mass action kinetics, with n species and m reactions, explore the existence of a region on the space of parameters (rate constants and total amounts) such that bistability arises.

GOAL

Given a chemical reaction network \mathcal{G} under mass action kinetics, with n species and m reactions, explore the existence of a region on the space of parameters (rate constants and total amounts) such that bistability arises.

Ingredients:

- Chemical reaction networks.

GOAL

Given a chemical reaction network \mathcal{G} under mass action kinetics, with n species and m reactions, explore the existence of a region on the space of parameters (rate constants and total amounts) such that bistability arises.

Ingredients:

- Chemical reaction networks.
- Stability criteria.

GOAL

Given a chemical reaction network \mathcal{G} under mass action kinetics, with n species and m reactions, explore the existence of a region on the space of parameters (rate constants and total amounts) such that bistability arises.

Ingredients:

- Chemical reaction networks.
- Stability criteria.
- Detecting bistability.

Chemical Reaction networks

$$
\begin{aligned}
& X_{1}+2 X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}+X_{2} \\
& 4 X_{1}+X_{2} \xrightarrow{\kappa_{2}} 3 X_{1}+2 X_{2} \\
& 3 X_{1}+X_{2} \xrightarrow{\kappa_{3}} 4 X_{1} \\
& 2 X_{1}+X_{2} \xrightarrow{\kappa_{4}} 3 X_{2}
\end{aligned}
$$

A chemical reaction network \mathcal{G} is a labelled directed graph whose nodes, called complexes, are integer linear combinations of a set $\mathcal{S}=\left\{X_{1}, \ldots, X_{n}\right\}$ called the set of species.

Chemical Reaction networks

$$
\begin{aligned}
& X_{1}+2 X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}+X_{2} \\
& 4 X_{1}+X_{2} \xrightarrow{\kappa_{2}} 3 X_{1}+2 X_{2} \\
& 3 X_{1}+X_{2} \xrightarrow{\kappa_{3}} 4 X_{1} \\
& 2 X_{1}+X_{2} \xrightarrow{\kappa_{4}} 3 X_{2}
\end{aligned}
$$

A chemical reaction network \mathcal{G} is a labelled directed graph whose nodes, called complexes, are integer linear combinations of a set $\mathcal{S}=\left\{X_{1}, \ldots, X_{n}\right\}$ called the set of species.

Chemical Reaction networks

$$
\begin{aligned}
& X_{1}+2 X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}+X_{2} \\
& 4 X_{1}+X_{2} \xrightarrow{\kappa_{2}} 3 X_{1}+2 X_{2} \\
& 3 X_{1}+X_{2} \xrightarrow{\kappa_{3}} 4 X_{1} \\
& 2 X_{1}+X_{2} \xrightarrow{\kappa_{4}} 3 X_{2}
\end{aligned}
$$

A chemical reaction network \mathcal{G} is a labelled directed graph whose nodes, called complexes, are integer linear combinations of a set $\mathcal{S}=\left\{X_{1}, \ldots, X_{n}\right\}$ called the set of species.

Chemical Reaction networks

$$
\begin{aligned}
& X_{1}+2 X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}+X_{2} \\
& 4 X_{1}+X_{2} \xrightarrow{\kappa_{2}} 3 X_{1}+2 X_{2} \\
& 3 X_{1}+X_{2} \xrightarrow{\kappa_{3}} 4 X_{1} \\
& 2 X_{1}+X_{2} \xrightarrow{\kappa_{4}} 3 X_{2}
\end{aligned}
$$

A chemical reaction network \mathcal{G} is a labelled directed graph whose nodes, called complexes, are integer linear combinations of a set $\mathcal{S}=\left\{X_{1}, \ldots, X_{n}\right\}$ called the set of species.

The concentration of the species is modelled by a polynomial system of ODEs. The coefficients $\left\{\kappa_{1}, \ldots, \kappa_{m}\right\} \subset \mathbb{R}_{>0}^{n}$ are called reaction rate constants.

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Chemical Reaction networks

$$
\begin{aligned}
& X_{1}+2 X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}+X_{2} \\
& 4 X_{1}+X_{2} \xrightarrow{\kappa_{2}} 3 X_{1}+2 X_{2} \\
& 3 X_{1}+X_{2} \xrightarrow{\kappa_{3}} 4 X_{1} \\
& 2 X_{1}+X_{2} \xrightarrow{\kappa_{4}} 3 X_{2}
\end{aligned}
$$

A chemical reaction network \mathcal{G} is a labelled directed graph whose nodes, called complexes, are integer linear combinations of a set $\mathcal{S}=\left\{X_{1}, \ldots, X_{n}\right\}$ called the set of species.

The concentration of the species is modelled by a polynomial system of ODEs. The coefficients $\left\{\kappa_{1}, \ldots, \kappa_{m}\right\} \subset \mathbb{R}_{>0}^{n}$ are called reaction rate constants.

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Chemical Reaction networks

The steady states are the non-negative points where the vector of derivatives of the concentrations is $\dot{x}=0$.

In our example

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Chemical Reaction networks

The steady states are the non-negative points where the vector of derivatives of the concentrations is $\dot{x}=0$.

In our example

$$
\begin{aligned}
& 0=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& 0=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Taking $\kappa_{1}=1, \kappa_{2}=1, \kappa_{3}=8$ and $\kappa_{4}=\frac{17}{4}$ the positive steady state variety is

Chemical Reaction networks

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Note that $\dot{x_{1}}+\dot{x_{2}}=0$. Therefore, $x_{1}+x_{2}=T$ through time. These linear combinations of the concentration variables are called conservation laws, and all points satisfying them form a stoichiometric compatibility class.

Chemical Reaction networks

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Note that $\dot{x_{1}}+\dot{x_{2}}=0$. Therefore, $x_{1}+x_{2}=T$ through time. These linear combinations of the concentration variables are called conservation laws, and all points satisfying them form a stoichiometric compatibility class.

Chemical Reaction networks

$$
\begin{aligned}
& \dot{x_{1}}=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& \dot{x_{2}}=-\kappa_{1} x_{1} x_{2}^{2}+\kappa_{2} x_{1}^{4} x_{2}-\kappa_{3} x_{1}^{3} x_{2}+2 \kappa_{4} x_{1}^{2} x_{2}
\end{aligned}
$$

Note that $\dot{x_{1}}+\dot{x_{2}}=0$. Therefore, $x_{1}+x_{2}=T$ through time. These linear combinations of the concentration variables are called conservation laws, and all points satisfying them form a stoichiometric compatibility class.

Figure 1: Conservation law $T=5$ and vector field.

Chemical Reaction networks

Multistationarity

The network exhibits multistationarity if there exist a set of reaction rate constants and total amounts, such that there are two positive steady states in one stoichiometric compatibility class.

Chemical Reaction networks

Multistationarity

The network exhibits multistationarity if there exist a set of reaction rate constants and total amounts, such that there are two positive steady states in one stoichiometric compatibility class.

The network in our example exhibits multistationarity for the set of parameters $\left\{\kappa_{1}=1, \kappa_{2}=1, \kappa_{3}=8, \kappa_{4}=\frac{17}{4}, T=10\right\}$.

Chemical Reaction networks

- The steady states in the stoichiometric compatibility class given by T are the solutions to the system

$$
\begin{aligned}
& 0=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& 0=x_{1}+x_{2}-T
\end{aligned}
$$

Chemical Reaction networks

- The steady states in the stoichiometric compatibility class given by T are the solutions to the system

$$
\begin{aligned}
& 0=\kappa_{1} x_{1} x_{2}^{2}-\kappa_{2} x_{1}^{4} x_{2}+\kappa_{3} x_{1}^{3} x_{2}-2 \kappa_{4} x_{1}^{2} x_{2} \\
& 0=x_{1}+x_{2}-T
\end{aligned}
$$

- The function obtained by removing all the redundant steady state equations and replacing them by the conservation laws will be denoted by $F_{T}(x)$.

Stability

STABILITY

Consider a system of differential equations $\frac{d x}{d t}=f(x)$, with $f \in \mathcal{C}^{1}$, and a steady state x^{*}.

The steady state x^{*} is asymptotically stable if all the eigenvalues of $J_{f}\left(x^{*}\right)$ have negative real part. If one of the eigenvalues of $J_{f}\left(x^{*}\right)$ has positive real part, then x^{*} is unstable.

Stability

STABILITY

Consider a system of differential equations $\frac{d x}{d t}=f(x)$, with $f \in \mathcal{C}^{1}$, and a steady state x^{*}.

The steady state x^{*} is asymptotically stable if all the eigenvalues of $J_{f}\left(x^{*}\right)$ have negative real part. If one of the eigenvalues of $J_{f}\left(x^{*}\right)$ has positive real part, then x^{*} is unstable.

In order to determine stability we will study the roots of the characteristic polynomial $p_{J_{f}}(\lambda)$.

Stability: Hurwitz criterion.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with $a_{i} \in \mathbb{R}, a_{n}>0$ and $a_{0} \neq 0$. The Hurwitz matrix associated to p is

$$
H=\left(\begin{array}{cccccc}
a_{n-1} & a_{n} & 0 & 0 & \cdots & 0 \\
a_{n-3} & a_{n-2} & a_{n-1} & a_{n} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & a_{6-n} & \cdots & a_{2} \\
0 & 0 & 0 & 0 & \cdots & a_{0}
\end{array}\right)
$$

The i-th Hurwitz determinant, is $H_{i}=\operatorname{det}\left(H_{I, I}\right)$, with $I=\{1, \ldots, i\}$.

Stability: Hurwitz criterion.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with $a_{i} \in \mathbb{R}, a_{n}>0$ and $a_{0} \neq 0$. The Hurwitz matrix associated to p is

$$
H=\left(\begin{array}{cccccc}
a_{n-1} & a_{n} & 0 & 0 & \cdots & 0 \\
a_{n-3} & a_{n-2} & a_{n-1} & a_{n} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & a_{6-n} & \cdots & a_{2} \\
0 & 0 & 0 & 0 & \cdots & a_{0}
\end{array}\right)
$$

The i-th Hurwitz determinant, is $H_{i}=\operatorname{det}\left(H_{I, I}\right)$, with $I=\{1, \ldots, i\}$.
All the roots of the polynomial p have negative real part if, and only if, $H_{i}>0$ for $i=1, \ldots, n$. If $H_{i}<0$ for some i, then p has a root with positive real part.

Stability: Hurwitz criterion.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with $a_{i} \in \mathbb{R}, a_{n}>0$ and $a_{0} \neq 0$. The Hurwitz matrix associated to p is

$$
H=\left(\begin{array}{cccccc}
a_{n-1} & a_{n} & 0 & 0 & \cdots & 0 \\
a_{n-3} & a_{n-2} & a_{n-1} & a_{n} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & a_{6-n} & \cdots & a_{2} \\
0 & 0 & 0 & 0 & \cdots & a_{0}
\end{array}\right)
$$

The i-th Hurwitz determinant, is $H_{i}=\operatorname{det}\left(H_{I, I}\right)$, with $I=\{1, \ldots, i\}$.
All the roots of the polynomial p have negative real part if, and only if, $H_{i}>0$ for $i=1, \ldots, n$. If $H_{i}<0$ for some i, then p has a root with positive real part.

Remark: $H_{n}=a_{0} H_{n-1}$.

Stability: Our approach

1. Establish the ODEs and conservation laws of the system.

$$
\begin{equation*}
\mathrm{X}_{1} \xrightarrow{\kappa_{1}} \mathrm{X}_{2} \quad \mathrm{X}_{2}+\mathrm{X}_{3} \xrightarrow{\kappa_{2}} \mathrm{X}_{1}+\mathrm{X}_{4} \quad \mathrm{X}_{4} \xrightarrow{\kappa_{3}} \mathrm{X}_{3} . \tag{1}
\end{equation*}
$$

Stability: Our approach

1. Establish the ODEs and conservation laws of the system.

$$
\begin{equation*}
\mathrm{X}_{1} \xrightarrow{\kappa_{1}} \mathrm{X}_{2} \quad \mathrm{X}_{2}+\mathrm{X}_{3} \xrightarrow{\kappa_{2}} \mathrm{X}_{1}+\mathrm{X}_{4} \quad \mathrm{X}_{4} \xrightarrow{\kappa_{3}} \mathrm{X}_{3} . \tag{1}
\end{equation*}
$$

The ODE system associated with the network is

$$
\begin{array}{ll}
\dot{x}_{1}=-\kappa_{1} x_{1}+\kappa_{2} x_{2} x_{3} & \dot{x}_{3}=-\kappa_{2} x_{2} x_{3}+\kappa_{3} x_{4} \\
\dot{x}_{2}=\kappa_{1} x_{1}-\kappa_{2} x_{2} x_{3} & \dot{x}_{4}=\kappa_{2} x_{2} x_{3}-\kappa_{3} x_{4} .
\end{array}
$$

The conservation laws are $x_{1}+x_{2}=T_{1}$ and $x_{3}+x_{4}=T_{2}$.

Stability: Our approach

2. Compute $J_{f}(x)$ and evaluate in a positive steady state given by the positive parameterization.

Stability: Our approach

2. Compute $J_{f}(x)$ and evaluate in a positive steady state given by the positive parameterization.

The positive steady states are

$$
\begin{equation*}
\phi\left(x_{2}, x_{4}\right)=\left(\frac{\kappa_{3} x_{4}}{\kappa_{1}}, x_{2}, \frac{\kappa_{3} x_{4}}{\kappa_{2} x_{2}}, x_{4}\right) . \tag{2}
\end{equation*}
$$

Stability: Our approach

2. Compute $J_{f}(x)$ and evaluate in a positive steady state given by the positive parameterization.

The positive steady states are

$$
\begin{equation*}
\phi\left(x_{2}, x_{4}\right)=\left(\frac{\kappa_{3} x_{4}}{\kappa_{1}}, x_{2}, \frac{\kappa_{3} x_{4}}{\kappa_{2} x_{2}}, x_{4}\right) . \tag{2}
\end{equation*}
$$

We compute J_{f} and evaluate in $\phi\left(x_{2}, x_{4}\right)$.

$$
J_{f}\left(\phi\left(x_{2}, x_{4}\right)\right)=\left(\begin{array}{cccc}
-\kappa_{1} & \frac{\kappa_{3} x_{4}}{x_{2}} & \kappa_{2} x_{2} & 0 \\
\kappa_{1} & -\frac{\kappa_{3} x_{4}}{x_{2}} & -\kappa_{2} x_{2} & 0 \\
0 & -\frac{\kappa_{3} x_{4}}{x_{2}} & -\kappa_{2} x_{2} & \kappa_{3} \\
0 & \frac{\kappa_{3} x_{4}}{x_{2}} & \kappa_{2} x_{2} & -\kappa_{3}
\end{array}\right)
$$

Stability: Our approach

3. Compute the characteristic polynomial of $J_{f}\left(x^{*}\right), p_{J_{f}}(\lambda)$, and factor λ^{d}, where d is the amount of conservation laws.

$$
\begin{aligned}
p_{J_{f}}(\lambda) & =\lambda^{4}+\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \lambda^{3}+\frac{\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}}{x_{2}} \lambda^{2} \\
& =\lambda^{2}\left(\lambda^{2}+\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \lambda+\frac{\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}}{x_{2}}\right)
\end{aligned}
$$

Stability: Our approach

4. Use the Hurwitz criterion to study the roots of the characteristic polynomial restricted to the stoichiometric compatibility class.

$$
q_{f}(\lambda)=\lambda^{2}+\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \lambda+\frac{\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}}{x_{2}}
$$

Stability: Our approach

4. Use the Hurwitz criterion to study the roots of the characteristic polynomial restricted to the stoichiometric compatibility class.

$$
q_{f}(\lambda)=\lambda^{2}+\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \lambda+\frac{\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}}{x_{2}}
$$

The Hurwitz determinants are

$$
\begin{gathered}
H_{1}=\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \\
H_{2}=\frac{\left(\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}\right)\left(\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}\right)}{x_{2}^{2}}
\end{gathered}
$$

Stability: Our approach

4. Use the Hurwitz criterion to study the roots of the characteristic polynomial restricted to the stoichiometric compatibility class.

$$
q_{f}(\lambda)=\lambda^{2}+\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \lambda+\frac{\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}}{x_{2}}
$$

The Hurwitz determinants are

$$
\begin{gathered}
H_{1}=\frac{\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}}{x_{2}} \\
H_{2}=\frac{\left(\kappa_{2} x_{2}^{2}+\kappa_{1} x_{2}+\kappa_{3} x_{2}+\kappa_{3} x_{4}\right)\left(\kappa_{1} \kappa_{2} x_{2}^{2}+\kappa_{1} \kappa_{3} x_{2}+\kappa_{3}^{2} x_{4}\right)}{x_{2}^{2}}
\end{gathered}
$$

For all choice of reaction rate constants and totl amounts, the steady state is asymptotically stable.

Stability: Our approach

One-site phosphorylation cycles

(1)
$\mathrm{S}_{0}+\mathrm{E} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{~S}_{1}+\mathrm{E} \quad \mathrm{S}_{0}+\mathrm{E} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{~S}_{1}+\mathrm{E}$
$\mathrm{S}_{1}+\mathrm{F} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\kappa_{6}} \mathrm{~S}_{0}+\mathrm{F} \quad \mathrm{S}_{1}+\mathrm{E} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{E} \xrightarrow{\kappa_{6}} \mathrm{~S}_{0}+\mathrm{E}$
(3)
$S_{0}+E_{1} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E_{1} \xrightarrow{\kappa_{3}} S_{1}+E_{1}$
$S_{0}+E_{2} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} S_{0} E_{2} \xrightarrow{\kappa_{6}} S_{1}+E_{2}$
$S_{1}+F \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} S_{1} F \xrightarrow{\kappa_{9}} S_{0}+F$
(4)

$$
\mathrm{S}_{0}+\mathrm{E}_{1} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\longrightarrow}} \mathrm{~S}_{0} \mathrm{E}_{1} \xrightarrow{\kappa_{3}} \mathrm{~S}_{1}+\mathrm{E}_{1}
$$

$$
\mathrm{S}_{0}+\mathrm{E}_{2} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E}_{2} \xrightarrow{\kappa_{6}} \mathrm{~S}_{1}+\mathrm{E}_{2}
$$

$$
\mathrm{S}_{1}+\mathrm{F}_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F}_{1} \xrightarrow{\kappa_{9}} \mathrm{~S}_{0}+\mathrm{F}_{1}
$$

$$
S_{1}+F_{2} \underset{\kappa_{11}}{\stackrel{\kappa_{10}}{\longrightarrow}} S_{1} F_{2} \xrightarrow{\kappa_{12}} S_{0}+F_{2}
$$

(5) Two-site modification
(6) Modification of two substrates
$S_{0}+E_{1} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E_{1} \xrightarrow{\kappa_{3}} S_{1}+E_{1}$
$\mathrm{S}_{1}+\mathrm{E}_{2} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{E}_{2} \xrightarrow{\kappa_{6}} \mathrm{~S}_{2}+\mathrm{E}_{2}$
$S_{1}+F_{1} \xrightarrow[\kappa_{8}]{\stackrel{\kappa 7}{\rightleftharpoons}} S_{1} F_{1} \xrightarrow{\kappa 9} S_{0}+F_{1}$
$S_{2}+F_{2} \stackrel{\kappa_{10}}{\stackrel{\kappa_{11}}{\rightleftharpoons}} S_{2} F_{2} \xrightarrow{\kappa_{12}} S_{1}+F_{2}$

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& P_{0}+E \underset{\kappa_{5}}{\kappa_{4}} P_{0} E \xrightarrow{\kappa_{6}} P_{1}+E \\
& S_{1}+F_{1} \stackrel{\kappa_{1}}{\underset{\kappa_{8}}{ }} S_{1} F_{1} \xrightarrow{\kappa_{9}} S_{0}+F_{1} \\
& P_{1}+F_{2} \stackrel{\kappa_{10}}{\underset{\kappa_{11}}{2}} P_{1} F_{2} \xrightarrow{\kappa_{12}} P_{0}+F_{2}
\end{aligned}
$$

(7) Two layer cascade

$\mathrm{S}_{0}+\mathrm{E} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{~S}_{1}+\mathrm{E}$
$P_{0}+S_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} P_{0} S_{1} \xrightarrow{\kappa_{9}} P_{1}+S_{1}$
$\mathrm{S}_{1}+\mathrm{F}_{1} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F}_{1} \xrightarrow{\kappa_{6}} \mathrm{~S}_{0}+\mathrm{F}_{1}$
$P_{1}+F_{2} \stackrel{\kappa_{10}}{\stackrel{\kappa_{11}}{\kappa}} P_{1} F_{2} \xrightarrow{\kappa_{12}} P_{0}+F_{2}$

We proved asymptotic stability for every set of parameters and total amounts for all these monostationary networks, except for the two layer cascade.
Downside: Computationally expensive. Some polynomials have more than one million monomials.

Stability: Our approach

As a second example, consider the Gene transcription network, that is known to be multistationary.

$$
\begin{aligned}
& X_{1} \xrightarrow{K_{1}} X_{1}+P_{1} \\
& P_{1} \xrightarrow{K_{3}} 0 \\
& X_{2}+P_{1} \stackrel{k_{5}}{\underset{k_{6}}{\rightleftharpoons}} X_{2} P_{1} \\
& X_{1}+P_{2} P_{2} \stackrel{K_{9}}{k_{10}} X_{1} P_{2} P_{2}
\end{aligned}
$$

Stability: Our approach

As a second example, consider the Gene transcription network, that is known to be multistationary.

$$
\begin{array}{rl}
X_{1} \xrightarrow{K_{1}} X_{1}+P_{1} & X_{2} \xrightarrow{K_{2}} X_{2}+P_{2} \\
P_{1} \xrightarrow{K_{3}} 0 & P_{2} \xrightarrow{K_{4}} 0 \\
X_{2}+P_{1} \stackrel{k_{5}}{\stackrel{k_{6}}{\rightleftharpoons}} X_{2} P_{1} & 2 P_{2} \xrightarrow[K_{8}]{\stackrel{K_{7}}{\rightleftharpoons}} P_{2} P_{2} \\
X_{1}+P_{2} P_{2} \stackrel{ }{\stackrel{K_{9}}{\rightleftharpoons}} X_{1} P_{2} P_{2} &
\end{array}
$$

We denote the concentration variables as $x_{1}=X_{1}, x_{2}=X_{2}, x_{3}=P_{1}, x_{4}=P_{2}$, $x_{5}=X_{2} P_{1}, x_{6}=P_{2} P_{2}$, and $X_{7}=X_{1} P_{2} P_{2}$.

Stability: Our approach

The system of ODEs is

$$
\begin{array}{ll}
\dot{x_{1}}=-\kappa_{9} x_{1} x_{6}+\kappa_{10} x_{7} & \dot{x_{5}}=\kappa_{5} x_{2} x_{3}-\kappa_{6} x_{5} \\
\dot{x_{2}}=-\kappa_{5} x_{2} x_{3}+\kappa_{6} x_{5} & \dot{x_{6}}=\kappa_{7} x_{4}^{2}-\kappa_{9} x_{1} x_{6}-\kappa_{8} x_{6}+\kappa_{10} x_{7} \\
\dot{x_{3}}=-\kappa_{5} x_{2} x_{3}+\kappa_{1} x_{1}-\kappa_{3} x_{3}+\kappa_{6} x_{5} & \dot{x_{7}}=\kappa_{9} x_{1} x_{6}-\kappa_{10} x_{7} \\
\dot{x_{4}}=-2 \kappa_{7} x_{4}^{2}+\kappa_{2} x_{2}-\kappa_{4} x_{4}+2 \kappa_{8} x_{6}, &
\end{array}
$$

and the conservations laws are

$$
x_{1}+x_{7}=T_{1} \quad \text { and } \quad x_{2}+x_{5}=T_{2}
$$

Stability: Our approach

The system of ODEs is

$$
\begin{array}{ll}
\dot{x_{1}}=-\kappa_{9} x_{1} x_{6}+\kappa_{10} x_{7} & \dot{x_{5}}=\kappa_{5} x_{2} x_{3}-\kappa_{6} x_{5} \\
\dot{x_{2}}=-\kappa_{5} x_{2} x_{3}+\kappa_{6} x_{5} & \dot{x_{6}}=\kappa_{7} x_{4}^{2}-\kappa_{9} x_{1} x_{6}-\kappa_{8} x_{6}+\kappa_{10} x_{7} \\
\dot{x_{3}}=-\kappa_{5} x_{2} x_{3}+\kappa_{1} x_{1}-\kappa_{3} x_{3}+\kappa_{6} x_{5} & \dot{x_{7}}=\kappa_{9} x_{1} x_{6}-\kappa_{10} x_{7} \\
\dot{x_{4}}=-2 \kappa_{7} x_{4}^{2}+\kappa_{2} x_{2}-\kappa_{4} x_{4}+2 \kappa_{8} x_{6}, &
\end{array}
$$

and the conservations laws are

$$
x_{1}+x_{7}=T_{1} \quad \text { and } \quad x_{2}+x_{5}=T_{2}
$$

A positive parameterization of the steady states is

$$
x_{1}=\frac{\kappa_{2} \kappa_{3} \kappa_{6} x_{5}}{\kappa_{1} \kappa_{4} \kappa_{5} x_{4}}, x_{2}=\frac{\kappa_{4} x_{4}}{\kappa_{2}}, x_{3}=\frac{\kappa_{6} x_{5} \kappa_{2}}{\kappa_{4} \kappa_{5} x_{4}}, x_{6}=\frac{\kappa_{7} x_{4}^{2}}{\kappa_{8}}, x_{7}=\frac{\kappa_{9} \kappa_{2} \kappa_{3} \kappa_{6} x_{5} x_{4} \kappa_{7}}{\kappa_{1} \kappa_{4} \kappa_{5} \kappa_{8} \kappa_{10}}
$$

Stability: Our approach

For this network the characteristic polynomial $p_{J_{f}}(\lambda)$ has degree 7. After factoring λ^{2} we apply the Hurwitz criterion to a polynomial of degree 5.

Stability: Our approach

For this network the characteristic polynomial $p_{J_{f}}(\lambda)$ has degree 7.
After factoring λ^{2} we apply the Hurwitz criterion to a polynomial of degree 5.

We found that H_{1}, H_{2}, H_{3} and H_{4} are rational functions with positive coefficients.

$$
H_{5}=-\frac{\kappa_{6} \kappa_{3}\left(\kappa_{2} \kappa_{7} \kappa_{9} X_{4}^{2} x_{5}-\kappa_{4} \kappa_{7} \kappa_{9} x_{4}^{3}-\kappa_{2} \kappa_{8} \kappa_{10} x_{5}-\kappa_{4} \kappa_{8} \kappa_{10} x_{4}\right)}{x_{4}} H_{4}
$$

Stability: Our approach

For this network the characteristic polynomial $p_{J_{f}}(\lambda)$ has degree 7 .
After factoring λ^{2} we apply the Hurwitz criterion to a polynomial of degree 5.

We found that H_{1}, H_{2}, H_{3} and H_{4} are rational functions with positive coefficients.

$$
H_{5}=-\frac{\kappa_{6} \kappa_{3}\left(\kappa_{2} \kappa_{7} \kappa_{9} x_{4}^{2} x_{5}-\kappa_{4} \kappa_{7} \kappa_{9} x_{4}^{3}-\kappa_{2} \kappa_{8} \kappa_{10} x_{5}-\kappa_{4} \kappa_{8} \kappa_{10} x_{4}\right)}{x_{4}} H_{4}
$$

This network is multistationary. Is it bistable?

Stability: Our approach

In this network the solutions of $F_{T}(x)=0$ are in one to one correspondence with the roots of

$$
\begin{gathered}
F_{T, 1}\left(\varphi\left(x_{1}\right)\right)=\frac{1}{\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right)^{2} \kappa_{4}^{2} \kappa_{8} \kappa_{10}}\left[\kappa_{1}^{2} \kappa_{4}^{2} \kappa_{5}^{2} \kappa_{8} \kappa_{10} x_{1}^{3}+\left(-T_{1} \kappa_{1}^{2} \kappa_{4}^{2} \kappa_{5}^{2} \kappa_{8} \kappa_{10}+2 \kappa_{1} \kappa_{3} \kappa_{4}^{2} \kappa_{5} \kappa_{6} \kappa_{8} \kappa_{10}\right) x_{1}^{2}+\right. \\
\left.\left(T_{2}^{2} \kappa_{2}^{2} \kappa_{3}^{2} \kappa_{6}^{2} \kappa_{7} \kappa_{9}-2 T_{1} \kappa_{1} \kappa_{3} \kappa_{4}^{2} \kappa_{5} \kappa_{6} \kappa_{8} \kappa_{10}+\kappa_{3}^{2} \kappa_{4}^{2} \kappa_{6}^{2} \kappa_{8} \kappa_{10}\right) x_{1}-T_{1} \kappa_{3}^{2} \kappa_{4}^{2} \kappa_{6}^{2} \kappa_{8} \kappa_{10}\right]
\end{gathered}
$$

Stability: Our approach

In this network the solutions of $F_{T}(x)=0$ are in one to one correspondence with the roots of

$$
\begin{gathered}
F_{T, 1}\left(\varphi\left(x_{1}\right)\right)=\frac{1}{\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right)^{2} \kappa_{4}^{2} \kappa_{8} \kappa_{10}}\left[\kappa_{1}^{2} \kappa_{4}^{2} \kappa_{5}^{2} \kappa_{8} \kappa_{10} x_{1}^{3}+\left(-T_{1} \kappa_{1}^{2} \kappa_{4}^{2} \kappa_{5}^{2} \kappa_{8} \kappa_{10}+2 \kappa_{1} \kappa_{3} \kappa_{4}^{2} \kappa_{5} \kappa_{6} \kappa_{8} \kappa_{10}\right) x_{1}^{2}+\right. \\
\left.\left(T_{2}^{2} \kappa_{2}^{2} \kappa_{3}^{2} \kappa_{6}^{2} \kappa_{7} \kappa_{9}-2 T_{1} \kappa_{1} \kappa_{3} \kappa_{4}^{2} \kappa_{5} \kappa_{6} \kappa_{8} \kappa_{10}+\kappa_{3}^{2} \kappa_{4}^{2} \kappa_{6}^{2} \kappa_{8} \kappa_{10}\right) x_{1}-T_{1} \kappa_{3}^{2} \kappa_{4}^{2} \kappa_{6}^{2} \kappa_{8} \kappa_{10}\right]
\end{gathered}
$$

This is a univariate polynomial of degree 3.
There is a maximum of 3 positive steady states in each stoichiometric compatibility class.

Stability: Our approach

Detecting bistability

If the solutions of $0=F_{T}(x)$ can be reduced to the study of one univariate polynomial $\left(F_{T, j} \circ \varphi\right)\left(x_{i}\right)$, then, for a steady state $x^{*}=\varphi\left(x_{i}\right)$ the following relation holds

$$
\operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)\right)=(-1)^{i+j}\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{i}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, I}\right)
$$

Stability: Our approach

Detecting bistability

If the solutions of $0=F_{T}(x)$ can be reduced to the study of one univariate polynomial $\left(F_{T, j} \circ \varphi\right)\left(x_{i}\right)$, then, for a steady state $x^{*}=\varphi\left(x_{i}\right)$ the following relation holds

$$
\operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)\right)=(-1)^{i+j}\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{i}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, I}\right)
$$

Stability: Our approach

Detecting bistability

If the solutions of $0=F_{T}(x)$ can be reduced to the study of one univariate polynomial $\left(F_{T, j} \circ \varphi\right)\left(x_{i}\right)$, then, for a steady state $x^{*}=\varphi\left(x_{i}\right)$ the following relation holds

$$
(-1)^{S} a_{0}=\operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)\right)=(-1)^{i+j}\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{i}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, I}\right)
$$

Stability: Our approach

Detecting bistability

If the solutions of $0=F_{T}(x)$ can be reduced to the study of one univariate polynomial $\left(F_{T, j} \circ \varphi\right)\left(x_{i}\right)$, then, for a steady state $x^{*}=\varphi\left(x_{i}\right)$ the following relation holds

$$
(-1)^{s} a_{0}=(-1)^{i+j}\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{i}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{ر, l}\right) .
$$

Stability: Our approach

Detecting bistability

If the solutions of $0=F_{T}(x)$ can be reduced to the study of one univariate polynomial $\left(F_{T, j} \circ \varphi\right)\left(x_{i}\right)$, then, for a steady state $x^{*}=\varphi\left(x_{i}\right)$ the following relation holds

$$
(-1)^{s} a_{0}=(-1)^{i+j}\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{i}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, l}\right)
$$

If additionally

- the sign of $\operatorname{det}\left(\int_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{, I}\right)$ is independent of $x_{i}>0$ and is nonzero, and
- All the Hurwitz determinants of $p_{J_{f}\left(\varphi\left(x_{i}\right)\right.}$ are positive, except for $H_{n}=a_{0} H_{n-1}$.

Then the positive solutions $z_{1}<\cdots<z_{\ell}$ of $F_{T, j}\left(\varphi\left(x_{i}\right)\right)=0$, satisfy that, either $\varphi\left(z_{1}\right), \varphi\left(z_{3}\right), \ldots$ are asymptotically stable and $\varphi\left(z_{2}\right), \varphi\left(z_{4}\right), \ldots$ are unstable, or the other way around.

Stability

Back to the Gene transcription network:

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial.

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{, I}\right)$ independent of x_{i}.

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, I}\right)$ independent of x_{i}.

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)$ independent of $x_{i \cdot \checkmark}$

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)$ independent of $x_{i \cdot \checkmark}$

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{ر, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

- All the Hurwitz determinants of $p_{J_{f}\left(\varphi\left(x_{i}\right)\right.}$ are positive, except for $H_{5}=a_{0} H_{4}$.

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)$ independent of $x_{i \cdot \checkmark}$

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

- All the Hurwitz determinants of $p_{J_{f}\left(\varphi\left(x_{i}\right)\right.}$ are positive, except for $H_{5}=a_{0} H_{4} \cdot \checkmark$

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)$ independent of $x_{i \cdot \checkmark}$

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

- All the Hurwitz determinants of $p_{J_{f}\left(\varphi\left(x_{i}\right)\right.}$ are positive, except for $H_{5}=a_{0} H_{4} \cdot \checkmark$

We conclude that $a_{0}=-\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{1}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, I}\right)$.

Stability

Back to the Gene transcription network:

- Reduce the solutions of $F_{T}(x)=0$ to one polynomial. \checkmark
- Sign of $\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{J, l}\right)$ independent of $x_{i \cdot \checkmark}$

$$
\operatorname{det}\left(J_{F_{T}}\left(\varphi\left(x_{i}\right)\right)_{ر, l}\right)=-\left(\kappa_{1} \kappa_{5} x_{1}+\kappa_{3} \kappa_{6}\right) \kappa_{4} \kappa_{8} \kappa_{10}
$$

- All the Hurwitz determinants of $p_{J_{f}\left(\varphi\left(x_{i}\right)\right.}$ are positive, except for $H_{5}=a_{0} H_{4} . \checkmark$

We conclude that $a_{0}=-\left(F_{T, j} \circ \varphi\right)^{\prime}\left(x_{1}\right) \operatorname{det}\left(J_{F_{T}}\left(x^{*}\right)_{J, I}\right)$.
If $\left(F_{T, j} \circ \varphi\right)\left(x_{1}\right)$ has 3 different positive roots $z_{1}<z_{2}<z_{3}$, then z_{1} and z_{3} are asymptotically stable and z_{2} is unstable.

Bistability

In other multistationary networks...

Allosteric kinase

$$
\begin{aligned}
& E_{1}+S_{0} \stackrel{\kappa_{1}}{\kappa_{2}} E_{1} S_{0} \xrightarrow[\longrightarrow]{\kappa_{3}} E_{1}+S_{1} \\
& E_{2}+S_{0} \stackrel{\kappa_{4}}{\stackrel{\kappa_{5}}{\kappa_{5}}} E_{2} S_{0} \xrightarrow{\kappa_{6}} E_{2}+S_{1} \\
& S_{1} \xrightarrow{\kappa_{7}} S_{0} \xlongequal{E_{1}} \stackrel{\kappa_{8}}{\rightleftharpoons} E_{2} \quad E_{1} S_{0} \underset{\kappa_{9}}{\stackrel{\kappa_{101}}{\kappa_{11}}} E_{2} S_{0}
\end{aligned}
$$

Two layer cascade 1

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\kappa_{2}}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+F \stackrel{\kappa_{4}}{\kappa_{5}} S_{1} F \xrightarrow{\kappa_{6}} S_{0}+F \\
& P_{0}+S_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\longrightarrow}} P_{0} S_{1} \xrightarrow{\kappa_{9}} P_{1}+S_{1} \\
& P_{1}+F \underset{\kappa_{11}}{\stackrel{\kappa_{10}}{\kappa_{11}}} P_{1} F \xrightarrow{\kappa_{12}} P_{0}+F
\end{aligned}
$$

Two site modification

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+E \underset{\kappa_{4}}{\stackrel{\kappa_{4}}{2}} S_{1} E \xrightarrow{\kappa_{6}} S_{2}+E \\
& S_{1}+F_{1} \underset{k_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} S_{1} F_{1} \xrightarrow{\kappa_{9}} S_{0}+F_{1} \\
& S_{2}+F_{2} \underset{\kappa_{11}}{\kappa_{10}} S_{2} F_{2} \xrightarrow{\kappa_{12}} S_{1}+F_{2}
\end{aligned}
$$

Bistability

Two site phosphorylation
$\mathrm{E}+\mathrm{S}_{0} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{E}+\mathrm{S}_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{E} \xrightarrow{\kappa_{9}} \mathrm{~S}_{2}+\mathrm{E}$
$F+S_{2} \xrightarrow[\kappa_{11}]{\stackrel{\kappa_{10}}{\rightleftharpoons}} S_{2} F \xrightarrow{\kappa_{12}} \mathrm{~F}+\mathrm{S}_{1} \xrightarrow[\kappa_{5}]{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\kappa_{6}} \mathrm{~F}+\mathrm{S}_{0}$
Phosphorylation of two substrates

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+F \underset{\kappa_{5}}{\kappa_{4}} S_{1} F \xrightarrow{\kappa_{6}} S_{0}+F \\
& P_{0}+E \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} P_{0} E \xrightarrow{\kappa_{9}} P_{1}+E \\
& P_{1}+F \underset{\kappa_{11}}{\kappa_{10}} P_{1} F \xrightarrow{\kappa_{12}} P_{0}+F
\end{aligned}
$$

Two layer cascade 2

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\Longrightarrow}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+F_{1} \stackrel{\kappa_{4}}{\stackrel{\kappa_{5}}{\rightleftharpoons}} S_{1} F_{1} \xrightarrow{\kappa_{6}} S_{0}+F_{1} \\
& P_{0}+S_{1} \underset{\kappa_{8}}{\kappa_{7}} P_{0} S_{1} \xrightarrow{\kappa_{9}} P_{1}+S_{1} \\
& P_{0}+E \underset{\kappa_{11}}{\stackrel{\kappa_{10}}{\rightleftharpoons}} P_{0} E \xrightarrow{\kappa_{12}} P_{1}+E \\
& P_{1}+F_{2} \underset{\kappa_{14}}{\kappa_{13}} P_{1} F_{2} \xrightarrow{\kappa_{15}} P_{0}+F_{2}
\end{aligned}
$$

Bistability

If it is not possible to apply the procedure directly, We use two reduction techniques that preserve multistationarity and stability properties

- Removal and addition of reactions that preserve the conservation laws. In particular, removing reversible reactions.

$$
\mathrm{C}_{1} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\top} \mathrm{C}_{2}
$$

Bistability

If it is not possible to apply the procedure directly, We use two reduction techniques that preserve multistationarity and stability properties

- Removal and addition of reactions that preserve the conservation laws. In particular, removing reversible reactions.

$$
\mathrm{C}_{1} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\top} \mathrm{C}_{2}
$$

- Adding or removing intermediates

$$
\mathrm{C}_{1} \xrightarrow{\mathrm{~K}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\mathrm{~K}_{1}} \mathrm{Y} \xrightarrow{\mathrm{~K}_{2}} \mathrm{C}_{2}
$$

Bistability

If it is not possible to apply the procedure directly, We use two reduction techniques that preserve multistationarity and stability properties

- Removal and addition of reactions that preserve the conservation laws. In particular, removing reversible reactions.

$$
\mathrm{C}_{1} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\top} \mathrm{C}_{2}
$$

- Adding or removing intermediates

$$
\mathrm{C}_{1} \xrightarrow{\mathrm{~K}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\mathrm{~K}_{1}} \mathrm{Y} \xrightarrow{\mathrm{~K}_{2}} \mathrm{C}_{2}
$$

Bistability

If it is not possible to apply the procedure directly, We use two reduction techniques that preserve multistationarity and stability properties

- Removal and addition of reactions that preserve the conservation laws. In particular, removing reversible reactions.

$$
\mathrm{C}_{1} \stackrel{\mathrm{~K}_{1}}{\stackrel{\mathrm{~K}_{2}}{ }} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\top} \mathrm{C}_{2}
$$

- Adding or removing intermediates

$$
\mathrm{C}_{1} \xrightarrow{\mathrm{~K}} \mathrm{C}_{2} \quad \text { can be transformed into } \quad \mathrm{C}_{1} \xrightarrow{\mathrm{~K}_{1}} \mathrm{Y} \xrightarrow{\mathrm{~K}_{2}} \mathrm{C}_{2}
$$

We were able to detect bistability with the following reductions

Bistability

Allosteric kinase

$$
\begin{gathered}
\mathrm{E}_{1}+\mathrm{S}_{0} \stackrel{\kappa_{1}}{\underset{\kappa_{2}}{\rightleftharpoons}} \mathrm{E}_{1} \mathrm{~S}_{0} \stackrel{\kappa_{3}}{\longrightarrow} \mathrm{E}_{1}+\mathrm{S}_{1} \\
\mathrm{E}_{2}+\mathrm{S}_{0} \stackrel{\kappa_{4}}{\stackrel{\kappa_{5}}{\rightleftharpoons}} \mathrm{E}_{2} \mathrm{~S}_{0} \xrightarrow{\kappa_{6}} \mathrm{E}_{2}+\mathrm{S}_{1} \\
\mathrm{~S}_{1} \xrightarrow{\kappa_{7}} \mathrm{~S}_{0} \stackrel{E_{1}}{\stackrel{\kappa_{8}}{\kappa_{9}}} \mathrm{E}_{2} \quad \mathrm{E}_{1} \mathrm{~S}_{0} \stackrel{\kappa_{10}}{\stackrel{\kappa_{11}}{\rightleftharpoons}} \mathrm{E}_{2} \mathrm{~S}_{0}
\end{gathered}
$$

Two layer cascade 1

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& \mathrm{~S}_{1}+\mathrm{F} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\kappa_{6}} \mathrm{~S}_{0}+\mathrm{F} \\
& P_{0}+S_{1} \stackrel{\kappa_{7}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} P_{0} S_{1} \xrightarrow{\kappa_{9}} P_{1}+S_{1} \\
& P_{1}+F \underset{\kappa_{11}}{\stackrel{\kappa_{10}}{\rightleftharpoons}} P_{1} F \xrightarrow{\kappa_{12}} P_{0}+F
\end{aligned}
$$

Two site modification

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+E \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} S_{1} E \xrightarrow{\kappa_{6}} S_{2}+E \\
& S_{1}+F_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} S_{1} F_{1} \xrightarrow{\kappa_{9}} S_{0}+F_{1} \\
& S_{2}+F_{2} \underset{\kappa_{11}}{\kappa_{10}} S_{2} F_{2} \xrightarrow{\kappa_{12}} S_{1}+F_{2}
\end{aligned}
$$

Reduced Allosteric kinase

$$
\begin{array}{ll}
\mathrm{E}_{1}+\mathrm{S}_{0} \xrightarrow{\tau_{1}} \mathrm{E}_{1} \mathrm{~S}_{0} \xrightarrow{\tau_{2}} \mathrm{E}_{1}+\mathrm{S}_{1} \\
\mathrm{E}_{2}+\mathrm{S}_{0} \xrightarrow{\tau_{3}} \mathrm{E}_{2}+\mathrm{S}_{1} & \mathrm{E}_{2}+\mathrm{S}_{0} \xrightarrow{\tau_{6}} \mathrm{E}_{1} \mathrm{~S}_{0} \\
\mathrm{~S}_{1} \xrightarrow{\tau_{4}} \mathrm{~S}_{0} & \mathrm{E}_{1} \xrightarrow{\tau_{5}} \mathrm{E}_{2}
\end{array}
$$

Reduced two layer cascade 1

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{E} \xrightarrow{\tau_{1}} \mathrm{~S}_{1}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{F} \xrightarrow{\tau_{2}} \mathrm{~S}_{0}+\mathrm{F} \\
& \mathrm{P}_{0}+\mathrm{S}_{1} \xrightarrow{\tau_{3}} \mathrm{P}_{0} \mathrm{~S}_{1} \xrightarrow{\tau_{4}} \mathrm{P}_{1}+\mathrm{S}_{1} \\
& \mathrm{P}_{1}+\mathrm{F} \xrightarrow{\tau_{5}} \mathrm{P}_{1} \mathrm{~F} \xrightarrow{\tau_{6}} \mathrm{P}_{0}+\mathrm{F}
\end{aligned}
$$

Two site modification reduced

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{E} \xrightarrow{\tau_{1}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\tau_{2}} \mathrm{~S}_{1}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{E} \xrightarrow{\tau_{3}} \mathrm{~S}_{1} \mathrm{E} \xrightarrow{\tau_{4}} \mathrm{~S}_{2}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{F}_{1} \xrightarrow{\tau_{5}} \mathrm{~S}_{0}+\mathrm{F}_{1} \\
& \mathrm{~S}_{2}+\mathrm{F}_{2} \xrightarrow{\tau_{6}} \mathrm{~S}_{1}+\mathrm{F}_{2}
\end{aligned}
$$

Bistability

Two site phosphorylation
$\mathrm{E}+\mathrm{S}_{0} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{E}+\mathrm{S}_{1} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{E} \xrightarrow{\kappa_{9}} \mathrm{~S}_{2}+\mathrm{E}$
$\mathrm{F}+\mathrm{S}_{2} \underset{\kappa_{11}}{\stackrel{\kappa_{10}}{\rightleftharpoons}} \mathrm{~S}_{2} \mathrm{~F} \xrightarrow{\kappa_{12}} \mathrm{~F}+\mathrm{S}_{1} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\kappa_{6}} \mathrm{~F}+\mathrm{S}_{0}$
Phosphorylation of two substrates

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{E} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\kappa_{3}} \mathrm{~S}_{1}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{F} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\longrightarrow}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\kappa_{6}} \mathrm{~S}_{0}+\mathrm{F} \\
& \mathrm{P}_{0}+\mathrm{E} \underset{\kappa_{8}}{\kappa_{7}} \mathrm{P}_{0} \mathrm{E} \xrightarrow{\kappa_{9}} \mathrm{P}_{1}+\mathrm{E} \\
& \mathrm{P}_{1}+\mathrm{F} \underset{\kappa_{11}}{\kappa_{10}} \mathrm{P}_{1} \mathrm{~F} \xrightarrow{\kappa_{12}} \mathrm{P}_{0}+\mathrm{F}
\end{aligned}
$$

Two layer cascade 2

$$
\begin{aligned}
& S_{0}+E \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} S_{0} E \xrightarrow{\kappa_{3}} S_{1}+E \\
& S_{1}+F_{1} \stackrel{\kappa_{4}}{\underset{\kappa_{5}}{ }} S_{1} F_{1} \xrightarrow{\kappa_{5}} S_{0}+F_{1} \\
& P_{0}+S_{1} \underset{\kappa_{8}}{\kappa_{7}} P_{0} S_{1} \xrightarrow{\kappa_{9}} P_{1}+S_{1} \\
& P_{0}+E \underset{\kappa_{11}}{\kappa_{10}} P_{0} E \xrightarrow{\kappa_{12}} P_{1}+E \\
& P_{1}+F_{2} \underset{\kappa_{14}}{\kappa_{13}} P_{1} F_{2} \xrightarrow{\kappa_{15}} P_{0}+F_{2}
\end{aligned}
$$

Two site phosphorylation reduced

$\mathrm{E}+\mathrm{S}_{0} \xrightarrow{\tau_{1}} \mathrm{~S}_{0} \mathrm{E} \xrightarrow{\tau_{2}} \mathrm{E}+\mathrm{S}_{1} \xrightarrow{\tau_{3}} \mathrm{~S}_{2}+\mathrm{E}$
$\mathrm{F}+\mathrm{S}_{2} \xrightarrow{\tau_{4}} \mathrm{~F}+\mathrm{S}_{1} \xrightarrow{\tau_{5}} \mathrm{~F}+\mathrm{S}_{0}$
Phosphorylation of two substrates reduced

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{E} \xrightarrow{\tau_{1}} \mathrm{~S}_{1}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{F} \xrightarrow{\tau_{2}} \mathrm{~S}_{1} \mathrm{~F} \xrightarrow{\tau_{3}} \mathrm{~S}_{0}+\mathrm{F} \\
& \mathrm{P}_{0}+\mathrm{E} \xrightarrow{\tau_{4}} \mathrm{P}_{0} \mathrm{E} \xrightarrow{\tau_{5}} \mathrm{P}_{1}+\mathrm{E} \\
& \mathrm{P}_{1}+\mathrm{F} \xrightarrow{\tau_{6}} \mathrm{P}_{0}+\mathrm{F}
\end{aligned}
$$

Two layer cascade 2 reduced

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{E} \xrightarrow{\tau_{1}} \mathrm{~S}_{1}+\mathrm{E} \\
& \mathrm{~S}_{1}+\mathrm{F}_{1} \xrightarrow{\tau_{2}} \mathrm{~S}_{1} \mathrm{~F}_{1} \xrightarrow{\tau_{3}} \mathrm{~S}_{0}+\mathrm{F}_{1} \\
& \mathrm{P}_{0}+\mathrm{S}_{1} \xrightarrow{\tau_{4}} \mathrm{P}_{1}+\mathrm{S}_{1} \\
& \mathrm{P}_{0}+\mathrm{E} \xrightarrow{\tau_{6}} \mathrm{P}_{0} \mathrm{E} \xrightarrow{\tau_{7}} \mathrm{P}_{1}+\mathrm{E} \\
& \mathrm{P}_{1}+\mathrm{F}_{2} \xrightarrow{\tau_{5}} \mathrm{P}_{0}+\mathrm{F}_{2}
\end{aligned}
$$

References

- C. Conradi et al. Identifying parameter regions for multistationarity". In: PLoS Comput. Biol.13.10 (2017), e1005751.
- B. Joshi and A. Shiu. Atoms of multistationarity in chemical reaction networks". In: J. Math. Chem. 51.1 (2013), pp. 153178.
- D. Carlson. A class of positive stable matrices". In: J. Res. Nat. Bur. Standards Sect B. 78.B (1974)
- B. L. Clarke. Theorems on chemical network stability". In: The Journal of Chemical Physics 62.3 (1975), p. 773.

Thank you

THANK YOU!

