Frieze patterns and the Grassmannian

Jordan McMahon
University of Graz
February 19, 2019

Conway-Coxeter Frieze patterns

Conway-Coxeter Frieze patterns

Conway-Coxeter Frieze patterns

Conway-Coxeter Frieze patterns

Conway-Coxeter Frieze patterns

A frieze pattern is an array of numbers:

- all top and bottom entries are 1.

Conway-Coxeter Frieze patterns

A frieze pattern is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.

Conway-Coxeter Frieze patterns

A frieze pattern is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2×2-determinant is equal to one.

Conway-Coxeter Frieze patterns

A frieze pattern is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2×2-determinant is equal to one.

Theorem (Conway-Coxeter 1973)

There is a bijection between frieze patterns and triangulations of convex polygons.

Conway-Coxeter Frieze patterns

A frieze pattern is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2×2-determinant is equal to one.

Theorem (Conway-Coxeter 1973)

There is a bijection between frieze patterns and triangulations of convex polygons.

Representation theory of type A quivers

Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

A representation of such a quiver over a field k arises from assigning a k-vector-space to each vertex, and a linear map to each arrow.

Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

A representation of such a quiver over a field k arises from assigning a k-vector-space to each vertex, and a linear map to each arrow.

Representation theory and triangulations

Representation theory and triangulations

Representation theory and triangulations

Representation theory and triangulations

Theorem

There is a bijection

- \{Triangulations of convex polygons with no internal triangles\}
- \{Quivers of type $A\}$

Representation theory and triangulations

Theorem

There is a bijection

- \{Triangulations of convex polygons with no internal triangles\}
- \{Quivers of type $A\}$

In fact, each frieze pattern displays the indecomposable representations of a given type A quiver, and the number of their subrepresentations!

Persistence homology

Persistence homology

Multi-dimensional versions

SL_{k} Frieze Patterns	cluster in Grassmannian \{ $124,134,145,146\}$
Representation of type $A \otimes A$ quiver	Commutative ladder persistence

Grassmannian cluster structure

The Grassmannian $\operatorname{Gr}(k, n)$ consists of the k-dimensional vector subspaces of an n-dimensional vector space.

Grassmannian cluster structure

The Grassmannian $\operatorname{Gr}(k, n)$ consists of the k-dimensional vector subspaces of an n-dimensional vector space.

- Two k-subsets I and J of $\{1,2, \cdots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \backslash(I \cap J)$ and $b, d \in J \backslash(I \cap J)$

Grassmannian cluster structure

The Grassmannian $\operatorname{Gr}(k, n)$ consists of the k-dimensional vector subspaces of an n-dimensional vector space.

- Two k-subsets I and J of $\{1,2, \cdots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \backslash(I \cap J)$ and $b, d \in J \backslash(I \cap J)$
e.g. if $k=2$, this describes when two arcs of a polygon do not cross.

Grassmannian cluster structure

The Grassmannian $\operatorname{Gr}(k, n)$ consists of the k-dimensional vector subspaces of an n-dimensional vector space.

- Two k-subsets I and J of $\{1,2, \cdots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \backslash(I \cap J)$ and $b, d \in J \backslash(I \cap J)$
e.g. if $k=2$, this describes when two arcs of a polygon do not cross.
- A maximal collection of pairwise non-crossing k-subsets are called a cluster. (within a certain cluster algebra structure determined by the Grassmannian $\operatorname{Gr}(k, n))$.

Grassmannian cluster structure

The Grassmannian $\operatorname{Gr}(k, n)$ consists of the k-dimensional vector subspaces of an n-dimensional vector space.

- Two k-subsets I and J of $\{1,2, \cdots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \backslash(I \cap J)$ and $b, d \in J \backslash(I \cap J)$
e.g. if $k=2$, this describes when two arcs of a polygon do not cross.
- A maximal collection of pairwise non-crossing k-subsets are called a cluster. (within a certain cluster algebra structure determined by the Grassmannian $\operatorname{Gr}(k, n))$.
- For example if $k=3, n=6$ there is a cluster

$$
\begin{aligned}
& \{124,134,145,146 \\
& 123,234,345,456,561,612\}
\end{aligned}
$$

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

- Any two lines that meet must cross, and only two lines may cross at each crossing.

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

(Pseudo-)Great circle arrangements

By a great pseudo-circle arrangement we mean a collection of (pesudo-)circles such that

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

(Pseudo-)Great circle arrangements

(Pseudo-)Great circle arrangements

$\{134,346,136,146,145,126\}$

$\{125,235,157,257,245,457\}$

