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Conway-Coxeter Frieze patterns

A frieze pattern is an array of
- numbers:
121 @ all top and bottom entries are 1.
2(5]13(1
1{3[2]1(1
11121
1({2[5([3]1
13211
1{1(1]|2(1
1{2]5[3]|1
1(3[2]1]1
1{1]1]2]1
1|{2[5[3[1
1{3]2]1]|1
{1121
112[5[3]1
13211]
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numbers:
@ all top and bottom entries are 1.
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integers.
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to one.
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Conway-Coxeter Frieze patterns

A frieze pattern is an array of

numbers:
- 2
T @ all top and bottom entries are 1.
1N 2 . ay
SN 1 1 @ other entries are positive
DEIE integers.
T[N 2N
T2 531 3 2 @ every 2 X 2-determinant is equal
1({3]271]1 t
e 0 one.
1{2]5[3]|1
dEBRE Theorem (Conway-Coxeter 1973)
1{1]1]2]|1
L i 2 z 1 . There is a bijection between frieze
AR EREAR patterns and triangulations of convex
1({2]5([3]1
olygons.
1(3]2 llp yg
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Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

A representation of such a quiver over a field k arises from assigning a
k-vector-space to each vertex, and a linear map to each arrow.
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Representation theory and triangulations

There is a bijection

o { Triangulations of convex polygons with no internal triangles}

o {Quivers of type A}
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Representation theory and triangulations

There is a bijection

o { Triangulations of convex polygons with no internal triangles}

o {Quivers of type A}

In fact, each frieze pattern displays the indecomposable representations of
a given type A quiver, and the number of their subrepresentations!
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Persistence homology
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Conway-Coxeter frieze patterns Triangulations of a polygon
1
1/1
1/2]1
2/5[3]1
1/3]2]1]1
1/1[1[2]1
1/2[5]3]1
113[2[1]1
1(1[1]2]1
1]2[5[3]1
1/3[2]1]1
1/1]1]2]1
1/2[5]3]1
1{3}2]1]1
1(1[(1[2]1
1[2[s5[3[1]
1[3[2[1]1]
Representation of type A quiver Zig-zag persistence homology
o
i OO @
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Multi-dimensional versions
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Grassmannian cluster structure

The Grassmannian Gr(k, n) consists of the k-dimensional vector subspaces
of an n-dimensional vector space.
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Grassmannian cluster structure

The Grassmannian Gr(k, n) consists of the k-dimensional vector subspaces
of an n-dimensional vector space.

@ Two k-subsets [ and J of {1,2,--- , n} are non-crossing if there do
not exist cyclically order elements a,c € I\ (/N J) and
b,d e J\ (INJ)
e.g. if k =2, this describes when two arcs of a polygon do not cross.

@ A maximal collection of pairwise non-crossing k-subsets are called a
cluster. (within a certain cluster algebra structure determined by the
Grassmannian Gr(k, n)).

@ For example if k = 3, n = 6 there is a cluster

(124,134,145, 146
123,234, 345, 456,561, 612}

Jordan McMahon (University of Graz) February 19, 2019 14 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Jordan McMahon (University of Graz)

February 19, 2019

15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle

arrangement we mean a

collection of (pesudo-)circles

such that

@ Any two lines that meet

must cross, and only two
lines may cross at each
crossing.
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(Pseudo-)Great circle arrangements

{134,346,136, 146, 145, 126}

{125,235, 157, 257, 245, 457}
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