Frieze patterns and the Grassmannian

Jordan McMahon

University of Graz

February 19, 2019

A *frieze pattern* is an array of numbers:

• all top and bottom entries are 1.

A *frieze pattern* is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.

A *frieze pattern* is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2 × 2-determinant is equal to one.

A *frieze pattern* is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2 × 2-determinant is equal to one.

Theorem (Conway-Coxeter 1973)

There is a bijection between frieze patterns and triangulations of convex polygons.

A *frieze pattern* is an array of numbers:

- all top and bottom entries are 1.
- other entries are positive integers.
- every 2 × 2-determinant is equal to one.

Theorem (Conway-Coxeter 1973)

There is a bijection between frieze patterns and triangulations of convex polygons.

A *quiver* is an oriented graph. A quiver is of type A if it is linear.

A *quiver* is an oriented graph. A quiver is of type A if it is linear.

A *quiver* is an oriented graph. A quiver is of type A if it is linear.

A representation of such a quiver over a field k arises from assigning a k-vector-space to each vertex, and a linear map to each arrow.

A quiver is an oriented graph. A quiver is of type A if it is linear.

A representation of such a quiver over a field k arises from assigning a k-vector-space to each vertex, and a linear map to each arrow.

$$0 \longrightarrow k \longleftarrow 1 \qquad k \longrightarrow 0 \longrightarrow 0$$

Theorem

There is a bijection

- { Triangulations of convex polygons with no internal triangles}
- {Quivers of type A}

Theorem

There is a bijection

- {Triangulations of convex polygons with no internal triangles}
- {Quivers of type A}

In fact, each frieze pattern displays the indecomposable representations of a given type A quiver, and the number of their subrepresentations!

Persistence homology

Persistence homology

Representation of type A quiver

$$0 \longrightarrow 0 \longrightarrow k \longrightarrow k \longrightarrow 0$$

Multi-dimensional versions

The *Grassmannian* Gr(k, n) consists of the *k*-dimensional vector subspaces of an *n*-dimensional vector space.

The *Grassmannian* Gr(k, n) consists of the *k*-dimensional vector subspaces of an *n*-dimensional vector space.

• Two k-subsets I and J of $\{1,2,\cdots,n\}$ are non-crossing if there do not exist cyclically order elements $a,c\in I\setminus (I\cap J)$ and $b,d\in J\setminus (I\cap J)$

The *Grassmannian* Gr(k, n) consists of the *k*-dimensional vector subspaces of an *n*-dimensional vector space.

• Two k-subsets I and J of $\{1, 2, \dots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \setminus (I \cap J)$ and $b, d \in J \setminus (I \cap J)$ e.g. if k = 2, this describes when two arcs of a polygon do not cross.

The *Grassmannian* Gr(k, n) consists of the *k*-dimensional vector subspaces of an *n*-dimensional vector space.

- Two k-subsets I and J of $\{1, 2, \cdots, n\}$ are non-crossing if there do not exist cyclically order elements $a, c \in I \setminus (I \cap J)$ and $b, d \in J \setminus (I \cap J)$ e.g. if k = 2, this describes when two arcs of a polygon do not cross.
- A maximal collection of pairwise non-crossing k-subsets are called a *cluster*. (within a certain cluster algebra structure determined by the Grassmannian Gr(k, n)).

The *Grassmannian* Gr(k, n) consists of the *k*-dimensional vector subspaces of an *n*-dimensional vector space.

- Two k-subsets I and J of {1, 2, · · · , n} are non-crossing if there do not exist cyclically order elements a, c ∈ I \ (I ∩ J) and b, d ∈ J \ (I ∩ J)
 e.g. if k = 2, this describes when two arcs of a polygon do not cross.
- A maximal collection of pairwise non-crossing k-subsets are called a *cluster*. (within a certain cluster algebra structure determined by the Grassmannian Gr(k, n)).
- For example if k = 3, n = 6 there is a cluster

By a *great pseudo-circle* arrangement we mean a collection of (pesudo-)circles such that

 Any two lines that meet must cross, and only two lines may cross at each crossing.

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

- Any two lines that meet must cross, and only two lines may cross at each crossing.
- Each pair of circles cross (twice).
- The crossing of any two circles is separated by all other circles.

 $\{134, 346, 136, 146, 145, 126\}$

{125, 235, 157, 257, 245, 457}

