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A frieze pattern is an array of
numbers:

all top and bottom entries are 1.

other entries are positive
integers.

every 2× 2-determinant is equal
to one.

Theorem (Conway-Coxeter 1973)

There is a bijection between frieze
patterns and triangulations of convex
polygons.
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Representation theory of type A quivers

A quiver is an oriented graph. A quiver is of type A if it is linear.

• • • • • •

A representation of such a quiver over a field k arises from assigning a
k-vector-space to each vertex, and a linear map to each arrow.

0 k k k 0 0
1 1
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Representation theory and triangulations

Theorem

There is a bijection

{Triangulations of convex polygons with no internal triangles}
{Quivers of type A}

In fact, each frieze pattern displays the indecomposable representations of
a given type A quiver, and the number of their subrepresentations!
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Persistence homology

0 0 k k 0
1
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Conway-Coxeter frieze patterns Triangulations of a polygon
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Representation of type A quiver Zig-zag persistence homology

0 0 k k 0
1
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Multi-dimensional versions

SLk Frieze Patterns cluster in Grassmannian
0
1 0

0
0

2

0
1

4

0
1 0

0
0

0
0
1
4
4

1
0

0
0

0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

4
1 1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

0

2

2

2
2

1

1
4

4

4

4

4

4

2

2
2

{ 124,134,145,146}
Representation of type A⊗ A quiver Commutative ladder persistence

0 0 0

0 k k
1
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Grassmannian cluster structure

The Grassmannian Gr(k , n) consists of the k-dimensional vector subspaces
of an n-dimensional vector space.

Two k-subsets I and J of {1, 2, · · · , n} are non-crossing if there do
not exist cyclically order elements a, c ∈ I \ (I ∩ J) and
b, d ∈ J \ (I ∩ J)
e.g. if k = 2, this describes when two arcs of a polygon do not cross.

A maximal collection of pairwise non-crossing k-subsets are called a
cluster. (within a certain cluster algebra structure determined by the
Grassmannian Gr(k , n)).

For example if k = 3, n = 6 there is a cluster

{124, 134, 145, 146

123, 234, 345, 456, 561, 612}
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(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 15 / 22



(Pseudo-)Great circle arrangements

By a great pseudo-circle
arrangement we mean a
collection of (pesudo-)circles
such that

Any two lines that meet
must cross, and only two
lines may cross at each
crossing.

Each pair of circles cross
(twice).

The crossing of any two
circles is separated by all
other circles.

Jordan McMahon (University of Graz) February 19, 2019 16 / 22



(Pseudo-)Great circle arrangements
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(Pseudo-)Great circle arrangements

{134, 346, 136, 146, 145, 126}

{125, 235, 157, 257, 245, 457}
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