Tropical Linear Algebra

Jorge Alberto Olarte

February 18, 2019

Joint work with Alex Fink, Benjamin Schröter and Marta Panizzut

Classical linear spaces

Let \mathbb{K} be any field. A d-dimensional linear subspace $L \subseteq \mathbb{K}^{n}$ can be given in several forms:
(1) As a span of vectors d vectors $v_{1}, \ldots, v_{d} \in \mathbb{K}^{d}$. This can be represented by a matrix $A \in \mathbb{K}^{d \times n}$ where the rows are given by the vectors v_{1}, \ldots, v_{d}.

Classical linear spaces

Let \mathbb{K} be any field. A d-dimensional linear subspace $L \subseteq \mathbb{K}^{n}$ can be given in several forms:
(1) As a span of vectors d vectors $v_{1}, \ldots, v_{d} \in \mathbb{K}^{d}$. This can be represented by a matrix $A \in \mathbb{K}^{d \times n}$ where the rows are given by the vectors v_{1}, \ldots, v_{d}.
(2) As the solution set of $n-d$ linear equations. This can be represented by a matrix $A^{\perp} \in \mathbb{K}^{(n-d) \times n}$ where rows give the coefficients of the linear equations.

Classical linear spaces

Let \mathbb{K} be any field. A d-dimensional linear subspace $L \subseteq \mathbb{K}^{n}$ can be given in several forms:
(1) As a span of vectors d vectors $v_{1}, \ldots, v_{d} \in \mathbb{K}^{d}$. This can be represented by a matrix $A \in \mathbb{K}^{d \times n}$ where the rows are given by the vectors v_{1}, \ldots, v_{d}.
(2) As the solution set of $n-d$ linear equations. This can be represented by a matrix $A^{\perp} \in \mathbb{K}^{(n-d) \times n}$ where rows give the coefficients of the linear equations.
(3) By its Plücker coordinates.

Classical Plücker coordinates

For any $B \in\binom{[n]}{d}$ (a subset of size d of $\{1, \ldots, n\}$) let $A_{B} \in \mathbb{K}^{d \times d}$ be the submatrix of A consisting of the columns indexed by B.

Definition

The Plücker coordinates of L consist in a vector in $\mathbb{P K K}\binom{n}{d_{0}}^{-1}$ whose entries are the maximal minors $\left[\operatorname{det}\left(A_{B}\right)\right]_{B \in\binom{[n]}{d}}$ of any matrix A whose rows form a basis of L. This does not depend on the choice of basis.

Classical Plücker coordinates

For any $B \in\binom{[n]}{d}$ (a subset of size d of $\{1, \ldots, n\}$) let $A_{B} \in \mathbb{K}^{d \times d}$ be the submatrix of A consisting of the columns indexed by B.

Definition

The Plücker coordinates of L consist in a vector in $\mathbb{P K K}\binom{n}{d_{0}}^{-1}$ whose entries are the maximal minors $\left[\operatorname{det}\left(A_{B}\right)\right]_{B \in\binom{[n]}{d}}$ of any matrix A whose rows form a basis of L. This does not depend on the choice of basis.

A vector $W \in \mathbb{P K}\left(\begin{array}{l}\binom{n}{d}-1\end{array}\right.$ is the vector of Plücker coordinates of a linear space if and only if it satisfies the Plücker relations:

$$
\forall S \in\binom{[n]}{d-1}, \quad \forall T \in\binom{[n]}{d+1}, \quad \sum_{i \in T \backslash S} W_{T \backslash i} \cdot W_{S \cup i}=0
$$

Classical Plücker coordinates

For any $B \in\binom{[n]}{d}$ (a subset of size d of $\{1, \ldots, n\}$) let $A_{B} \in \mathbb{K}^{d \times d}$ be the submatrix of A consisting of the columns indexed by B.

Definition

The Plücker coordinates of L consist in a vector in $\mathbb{P K K}\binom{n}{d}-1$ whose entries are the maximal minors $\left[\operatorname{det}\left(A_{B}\right)\right]_{B \in\binom{[n]}{d}}$ of any matrix A whose rows form a basis of L. This does not depend on the choice of basis.

A vector $W \in \mathbb{P} \mathbb{K}^{\binom{n}{d}-1}$ is the vector of Plücker coordinates of a linear space if and only if it satisfies the Plücker relations:

$$
\forall S \in\binom{[n]}{d-1}, \quad \forall T \in\binom{[n]}{d+1}, \quad \sum_{i \in T \backslash S} W_{T \backslash i} \cdot W_{S \cup i}=0
$$

The linear space L can be recovered from the Plücker coordinates:

$$
L=\left\{x \in \mathbb{K}^{n} \left\lvert\, \forall T \in\binom{[n]}{d+1}\right., \sum_{i \in T} W_{T \backslash i} \cdot x_{i}=0\right\}
$$

The tropical semiring

The tropical semiring is $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot, \infty, 0)$ where

$$
\begin{aligned}
& a \oplus b=\min (a, b) \\
& a \odot b=a+b
\end{aligned}
$$

The tropical semiring

The tropical semiring is $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot, \infty, 0)$ where

$$
\begin{aligned}
& a \oplus b=\min (a, b) \\
& a \odot b=a+b
\end{aligned}
$$

The tropical projective space is $\mathbb{T}^{n-1}=\left(\mathbb{T}^{n} \backslash\{(\infty, \ldots, \infty)\}\right) / \sim$ where $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ if and only if there exists $\lambda \in \mathbb{T}$ such that

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1} \odot \lambda, \ldots, y_{n} \odot \lambda\right)
$$

The tropical semiring

The tropical semiring is $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot, \infty, 0)$ where

$$
\begin{aligned}
& a \oplus b=\min (a, b) \\
& a \odot b=a+b
\end{aligned}
$$

The tropical projective space is $\mathbb{T}^{n-1}=\left(\mathbb{T}^{n} \backslash\{(\infty, \ldots, \infty)\}\right) / \sim$ where $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ if and only if there exists $\lambda \in \mathbb{T}$ such that

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1} \odot \lambda, \ldots, y_{n} \odot \lambda\right)
$$

A tropical polynomial is of the form

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =\bigoplus_{\alpha \in \Delta} c_{\alpha} \odot x^{\odot \alpha} \\
& =\min _{\alpha \in \Delta}\left(c_{\alpha}+\alpha_{1} \cdot x_{1}+\cdots+\alpha_{n} \cdot x_{n}\right)
\end{aligned}
$$

where the coefficients $c_{\alpha} \in \mathbb{T}$ are tropical numbers and Δ is a finite subset of \mathbb{N}^{n}. The tropical analogous of the 'zeros' of f consists of al $x \in \mathbb{T}^{n}$ where the minimum in f is either ∞ or achieved twice.

Tropical linear spaces

Definition

A valuated matroid W is a vector in $\mathbb{P T} T_{\binom{n}{d}-1}$ that satisfies the 3 -term tropical Plücker relations: for every $S \in\binom{[n]}{d-2}$ and $i, j, k, I \in[n] \backslash S$, the minimum of

$$
\left(W_{s i j} \odot W_{s k l}\right) \oplus\left(W_{s i j} \odot W_{s k l}\right) \oplus\left(W_{S i j} \odot W_{s k l}\right)
$$

is achieved twice. The tropical linear space associated to W is

$$
L:=\left\{x \in \mathbb{T}^{n} \left\lvert\, \forall T \in\binom{[n]}{d+1}\right. \text {, the minimum } \bigoplus_{i \in T} W_{T \backslash i} \cdot x_{i} \text { is achieved twice }\right\}
$$

Tropical linear spaces are polyhedral complexes.

Matroid polytopes

Definition

The hypersimplex $\Delta_{d, n}$ is the intersection of unit hypercube $[0,1]^{n}$ with the hyperplane $\left\{x_{1}+\cdots+x_{n}=d\right\}$. A matroid polytope M is a subpolytope of $\Delta_{d, n}$ such that all of its edges are also edges of $\Delta_{d, n}$

The hypersimplex $\Delta_{2,4}$ is an octahedron.

This square pyramid is matroid polytope.

This symplex is NOT a matroid polytope.

Regular subdivisions

Definition

Given a polytope P with vertex set V and a height function $h: V \rightarrow \mathbb{R}$ the lower faces of $\operatorname{conv}\left(\left\{(v, h(v)) \in \mathbb{R}^{n+1} \mid v \in V\right\}\right)$ project onto P to form a polyhedral subdivision Sub(h). Such subdivisions are called regular. This gives \mathbb{R}^{V} a fan structure $\operatorname{Sec}(P)$ called the secondary fan of P, which consists of cones $\sigma(\mathcal{S})=\left\{h \in \mathbb{R}^{V} \mid \operatorname{Sub}(h)=\mathcal{S}\right\}$ for each regular subdivision \mathcal{S}.

Matroid subdivisions

Theorem (Speyer)

- A vector $W \in \mathbb{P T}^{\binom{n}{d}-1}$ is a valuated matroid if and only if the polytope $\operatorname{conv}\left(\left\{e_{B} \mid W_{B}<\infty\right\}\right)$ is a matroid polytope and the regular subdivision Sub(W) consists of only matroid polytopes.

Matroid subdivisions

Theorem (Speyer)

- A vector $W \in \mathbb{P T}^{\binom{n}{d}-1}$ is a valuated matroid if and only if the polytope $\operatorname{conv}\left(\left\{e_{B} \mid W_{B}<\infty\right\}\right)$ is a matroid polytope and the regular subdivision Sub(W) consists of only matroid polytopes.
- The tropical linear space L associated to W is dual to the subcomplex of Sub(W) which consists of all polytopes of Sub(W) that are not contained in any of the coordinate hyperplanes $\left\{x_{i}=0\right\}$

Example

The matroid subdivision of $W \in \mathbb{P} \mathbb{T}^{\binom{4}{2}-1}$ where $W_{B}=0$ for $B \in\binom{4}{2} \backslash\{34\}$ and $W_{34}=1$ consists of the two square pyramids and its faces:

The Dressian

Given a matroid polytope M, the space of all valuated matroids with support in M is called the $\operatorname{Dressian~} \operatorname{Dr}(M)$. It is a subfan of the secondary fan $\operatorname{Sec}(M)$.

Theorem (O.-Panizzut-Schröter)

The fan structure of the $\operatorname{Dressian~} \operatorname{Dr}(M)$ given by 3-term Plücker relations is the same as the fan structure as a subfan of $\operatorname{Sec}(M)$. In other words, matroid subdivisions are determined by their 3-skeleta.

The Dressian

Given a matroid polytope M, the space of all valuated matroids with support in M is called the Dressian $\operatorname{Dr}(M)$. It is a subfan of the secondary fan $\operatorname{Sec}(M)$.

Theorem (O.-Panizzut-Schröter)

The fan structure of the $\operatorname{Dressian~} \operatorname{Dr}(M)$ given by 3-term Plücker relations is the same as the fan structure as a subfan of $\operatorname{Sec}(M)$. In other words, matroid subdivisions are determined by their 3-skeleta.

Corollary

Binary matroid polytopes are indecomposable, that is, matroid polytopes that do not admit non-trivial regular matroid subdivisions.

However there are non binary indecomposable matroids.

Problem

Classify all indecomposable matroids.

Tropical matrices and the Stiefel Map

Definition

Given a tropical matrix $A \in \mathbb{T}^{d \times n}$, the tropical Stiefel map

$$
\begin{aligned}
\pi: \mathbb{T}^{d \times n} & \longrightarrow \mathbb{P T}^{\binom{n}{d}-1} \\
A & \mapsto\left[\operatorname{tdet}\left(A_{B}\right)\right]_{B \in\binom{[n]}{d}}
\end{aligned}
$$

maps A to its tropical minors.
This is the tropical analog of taking the linear span of d points. Not all tropical linear spaces arise this way:

Transversal Matroids

There is a special kind of matroids that come from matchings in bipartite graphs. Such matroids are called transversal.

Theorem (Fink-Rincón, Fink-O.)

A valuated matroid is in the image of the tropical Stiefel map if and only if all the facets of its matroid subdivision come from transversal matroids.

Transversal Matroids

There is a special kind of matroids that come from matchings in bipartite graphs. Such matroids are called transversal.

Theorem (Fink-Rincón, Fink-O.)

A valuated matroid is in the image of the tropical Stiefel map if and only if all the facets of its matroid subdivision come from transversal matroids.

We explicitly describe the fibres of the tropical Stiefel map.

Theorem (Fink-O.)

Given a transversal valuated matroid W its preimage $\pi^{-1}(W)$ consists of the S_{d}-orbit (by permuting rows) of a certain product of fans.

Example

 $B \in\binom{4}{2} \backslash\{34\}$ and $W_{34}=1$.

Matrices in $\pi^{-1}(W)$:

$$
\begin{array}{lll}
\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & 0 & * & 1
\end{array}\right) & \left(\begin{array}{llll}
0 & * & 0 & 0 \\
0 & 0 & * & 1
\end{array}\right) \\
\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & 0 & 1 & *
\end{array}\right) & \left(\begin{array}{llll}
0 & * & 0 & 0 \\
0 & 0 & 1 & *
\end{array}\right)
\end{array}
$$

Thanks for your attention!

