
Discrete Volume Computations

for Polyhedra

x

y

z

5

20

2

Matthias Beck

San Francisco State University

math.sfsu.edu/beck

Graduate Student Meeting

Applied Algebra & Combinatorics



Themes

Combinatorial
polynomials

Generating
functions

Polyhedra

Combinatorial
structures

Computation
(complexity)

Discrete Volume Computations for Polyhedra Matthias Beck 2



Themes

Combinatorial
polynomials

Generating
functions

Polyhedra

Combinatorial
structures

Computation
(complexity)

Linear Algebra

Nonlinear Algebra

Discrete Volume Computations for Polyhedra Matthias Beck 2



Motivation I: Birkho↵–von Neumann Polytope
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Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976]
The chromatic number of any
planar graph is at most 4.

This theorem had been a conjecture
(conceived by Guthrie when trying
to color maps) for 124 years.

Birkho↵ [1912] says:
Try polynomials!

[mathforum.org]

Four-Color Theorem Rephrased For a planar graph G, we have �G(4) > 0,
that is, 4 is not a root of the polynomial �G(k).
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Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976]
The chromatic number of any
planar graph is at most 4.

This theorem had been a conjecture
(conceived by Guthrie when trying
to color maps) for 124 years.

Birkho↵ [1912] says:
Try polynomials!

[mathforum.org]

Four-Color Theorem Rephrased For a planar graph G, we have �G(4) > 0,
that is, 4 is not a root of the polynomial �G(k).

Stanley [EC 1] says:
Try monomial algebras and
generating functions!
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Discrete Volumes

Rational polyhedron P ⇢ Rd – solution set of a system of linear equalities
& inequalities with integer coe�cients

Goal: understand P \ Zd . . .

I (list)
X

m2P\Zd

zm1
1 zm2

2 · · · zmd
d

I (count)
��P \ Zd

��
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Discrete Volumes

Rational polyhedron P ⇢ Rd – solution set of a system of linear equalities
& inequalities with integer coe�cients

Goal: understand P \ Zd . . .

I (list)
X

m2P\Zd

zm1
1 zm2

2 · · · zmd
d

I (count)
��P \ Zd

��

I (volume) vol(P) = lim
t!1

1

td

����P \ 1

t
Zd

����

Ehrhart function LP(t) :=

����P \ 1

t
Zd

���� =
��tP \ Zd

�� for t 2 Z>0
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Why Polyhedra?

I Linear systems are everywhere, and so polyhedra are everywhere.
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Why Polyhedra?

I Linear systems are everywhere, and so polyhedra are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

I Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.
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A Warm-Up Ehrhart Function

Lattice polytope P ⇢ Rd – convex hull of finitely points in Zd

For t 2 Z>0 let LP(t) :=
��tP \ Zd

��

Example 1:

� = conv {(0, 0), (1, 0), (0, 1)}

=
�
(x, y) 2 R2

�0 : x+ y  1
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A Warm-Up Ehrhart Function

Lattice polytope P ⇢ Rd – convex hull of finitely points in Zd

For t 2 Z>0 let LP(t) :=
��tP \ Zd

��

Example 1:

� = conv {(0, 0), (1, 0), (0, 1)}

=
�
(x, y) 2 R2

�0 : x+ y  1
 

Example 2:

2 = [0, 1]d (the unit cube in Rd)
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree dimP with
leading coe�cient volP and constant term 1.

Equivalently, EhrP(z) := 1 +
X

t�1

LP(t) z
t is rational:

EhrP(z) =
h⇤(z)

(1� z)dimP+1

where the Ehrhart h-vector h⇤(z) satisfies h⇤(0) = 1 and
h⇤(1) = (dimP)! vol(P).
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree dimP with
leading coe�cient volP and constant term 1.

Equivalently, EhrP(z) := 1 +
X

t�1

LP(t) z
t is rational:

EhrP(z) =
h⇤(z)

(1� z)dimP+1

where the Ehrhart h-vector h⇤(z) satisfies h⇤(0) = 1 and
h⇤(1) = (dimP)! vol(P).

Seeming dichotomy: vol(P) = lim
t!1

1

tdimP LP(t) can be computed

discretely via a finite amount of data.
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree d := dimP with
leading coe�cient volP and constant term 1.

EhrP(z) := 1 +
X

t�1

LP(t) z
t =

h⇤(z)

(1� z)d+1

Equivalent descriptions of an Ehrhart polynomial:

I LP(t) = cd td + cd�1 td�1 + · · ·+ c0

I via roots of LP(t)

I EhrP(z) �! LP(t) = h⇤
0

�t+d
d

�
+ h⇤

1

�t+d�1
d

�
+ · · ·+ h⇤

d

�t
d

�

h⇤(z) is the binomial transform of LP(t)
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree d := dimP with
leading coe�cient volP and constant term 1.

EhrP(z) := 1 +
X

t�1

LP(t) z
t =

h⇤(z)

(1� z)d+1

Equivalent descriptions of an Ehrhart polynomial:

I LP(t) = cd td + cd�1 td�1 + · · ·+ c0

I via roots of LP(t)

I EhrP(z) �! LP(t) = h⇤
0

�t+d
d

�
+ h⇤

1

�t+d�1
d

�
+ · · ·+ h⇤

d

�t
d

�

Open Problem Classify Ehrhart polynomials.
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Two-dimensional Ehrhart Polynomials

c1

c21

1 (i)

(ii)
(iii)

Essentially due to Pick
(1899) and Scott (1976)
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree d := dimP with
leading coe�cient volP and constant term 1.

EhrP(z) := 1 +
X

t�1

LP(t) z
t =

h⇤(z)

(1� z)d+1

�! LP(t) = h⇤
0

�t+d
d

�
+ h⇤

1

�t+d�1
d

�
+ · · ·+ h⇤

d

�t
d

�

Theorem (Macdonald 1971) (�1)dLP(�t) enumerates the interior lattice
points in tP. Equivalently,

LP�(t) = h⇤
d

�t+d�1
d

�
+ h⇤

d�1

�t+d�2
d

�
+ · · ·+ h⇤

0

�t�1
d

�
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree d := dimP with
leading coe�cient volP and constant term 1.

EhrP(z) := 1 +
X

t�1

LP(t) z
t =
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d
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�
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�

Theorem (Stanley 1980) h⇤
0, h

⇤
1, . . . , h

⇤
d are nonnegative integers.
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(t) is a polynomial in t of degree d := dimP with
leading coe�cient volP and constant term 1.

EhrP(z) := 1 +
X

t�1

LP(t) z
t =

h⇤(z)

(1� z)d+1

�! LP�(t) = h⇤
d

�t+d�1
d

�
+ h⇤

d�1

�t+d�2
d

�
+ · · ·+ h⇤

0

�t�1
d

�

Theorem (Stanley 1980) h⇤
0, h

⇤
1, . . . , h

⇤
d are nonnegative integers.

Corollary If h⇤
d+1�k > 0 then kP� contains an integer point.
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Interlude: Graph Coloring a la Ehrhart

�K2(k) = 2

✓
k

2

◆
...

1k + 

1k + 

1 = x 2x

2K

(Blass–Sagan)
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Nonequation Algebra
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Interlude: Graph Coloring a la Ehrhart

�K2(k) = 2

✓
k

2

◆
...

1k + 

1k + 

1 = x 2x

2K

(Blass–Sagan)Similarly, for any given graph
G on d nodes, we can write

�G(k) = �⇤
0

✓
k + d

d

◆
+ �⇤

1

✓
k + d� 1

d

◆
+ · · ·+ �⇤

d

✓
k

d

◆

for some (meaningful) nonnegative integers �⇤
0, . . . ,�

⇤
d
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Interlude: Graph Coloring a la Ehrhart

�K2(k) = 2

✓
k

2

◆
...

1k + 

1k + 

1 = x 2x

2K

(Blass–Sagan)Similarly, for any given graph
G on d nodes, we can write

�G(k) = �⇤
0

✓
k + d

d

◆
+ �⇤

1

✓
k + d� 1

d

◆
+ · · ·+ �⇤

d

✓
k

d

◆

Half-Open Problem Prove that �⇤
j > 0 for some 0  j  4 if G is planar.
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Ehrhart h⇤
Positivity Refined

EhrP(z) := 1 +
X

t�1

��tP \ Zd
�� zt =

h⇤(z)

(1� z)d+1

Theorem (Stanley 1980) h⇤
0, h

⇤
1, . . . , h

⇤
d are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If h⇤
d > 0 then

h⇤(z) = a(z) + z b(z)

where a(z) = zd a(1z) and b(z) = zd�1 b(1z) with nonnegative coe�cients.

Discrete Volume Computations for Polyhedra Matthias Beck 13



Ehrhart h⇤
Positivity Refined

EhrP(z) := 1 +
X

t�1

��tP \ Zd
�� zt =

h⇤(z)

(1� z)d+1

Theorem (Stanley 1980) h⇤
0, h

⇤
1, . . . , h

⇤
d are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If h⇤
d > 0 then

h⇤(z) = a(z) + z b(z)

where a(z) = zd a(1z) and b(z) = zd�1 b(1z) with nonnegative coe�cients.

Open Problem Try to prove the analogous theorem for your favorite
combinatorial polynomial with nonnegative coe�cients.
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More Binomial Transforms

Chromatic polynomial �G(k) = �⇤
0

✓
k + d

d

◆
+�⇤

1

✓
k + d� 1

d

◆
+· · ·+�⇤

d

✓
k

d

◆

�! binomial transform �⇤
G(z) := �⇤

d z
d + �⇤

d�1 z
d�1 + · · ·+ �⇤

0

Theorem (MB–León 2019+) Let G be a graph on d vertices. Then there
exist symmetric polynomials aG(z) = zdaG(

1
z) and bG(z) = zd�1bG(

1
z) with

positive integer coe�cients such that

�⇤
G(z) = aG(z)� bG(z) .

Moreover, a0  a1  aj where 1  j  d � 1 , and b0  b1  bj where
1  j  d� 2.
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Chromatic polynomial �G(k) = �⇤
0

✓
k + d

d

◆
+�⇤

1

✓
k + d� 1

d

◆
+· · ·+�⇤

d

✓
k

d

◆

�! binomial transform �⇤
G(z) := �⇤

d z
d + �⇤

d�1 z
d�1 + · · ·+ �⇤

0

Theorem (MB–León 2019+) Let G be a graph on d vertices. Then there
exist symmetric polynomials aG(z) = zdaG(

1
z) and bG(z) = zd�1bG(

1
z) with

positive integer coe�cients such that

�⇤
G(z) = aG(z)� bG(z) .

Moreover, a0  a1  aj where 1  j  d � 1 , and b0  b1  bj where
1  j  d� 2.

Theorem (Hersh–Swartz 2008) �⇤
d�j � �⇤

j for 2  j  d�1
2

Similar results hold for flow polynomials of graphs (Breuer–Dall 2011).
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Unimodal & Real-rooted Polynomials

The polynomial h⇤(z) =
Pd

j=0 h
⇤
jz

j is unimodal if for some k 2 {0, 1, . . . , d}

h⇤
0  h⇤

1  · · ·  h⇤
k � · · · � h⇤

d

Crucial Example h⇤(z) has only real roots
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Unimodal & Real-rooted Polynomials

The polynomial h⇤(z) =
Pd

j=0 h
⇤
jz

j is unimodal if for some k 2 {0, 1, . . . , d}

h⇤
0  h⇤

1  · · ·  h⇤
k � · · · � h⇤

d

Crucial Example h⇤(z) has only real roots

Classic Example P = [0, 1]d comes with the Eulerian polynomial h⇤(z)

Theorem (Schepers–Van Langenhoven 2013) h⇤(z) is unimodal for lattice
parallelepipeds.

Theorem (MB–Jochemko–McCullough 2019) h⇤(z) is real rooted for lattice
zonotopes.
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Unimodal & Real-rooted Polynomials

The polynomial h⇤(z) =
Pd

j=0 h
⇤
jz

j is unimodal if for some k 2 {0, 1, . . . , d}

h⇤
0  h⇤

1  · · ·  h⇤
k � · · · � h⇤

d

Crucial Example h⇤(z) has only real roots

Conjectures h⇤(z) is unimodal/real-rooted for

I hypersimplices

I alcoved polytopes

I lattice polytopes with unimodular triangulations

I IDP polytopes (integer decomposition property)

I order polytopes
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V,E) is an assignment E ! Z>0 such that

I each edge label 1, 2, . . . , |E| is used exactly once;

I the sum of the labels on all edges incident with a given node is unique.

Discrete Volume Computations for Polyhedra Matthias Beck 16



A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V,E) is an assignment E ! Z>0 such that

I each edge label 1, 2, . . . , |E| is used exactly once;

I the sum of the labels on all edges incident with a given node is unique.

Conjecture [Hartsfield & Ringel 1990] Every connected graph except K2

has an antimagic labeling.

I [Alon et al 2004] connected graphs with minimum degree � c log |V |
I [Bérczi et al 2017] connected regular graphs

I open for trees
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V,E) is an assignment E ! Z>0 such that

I each edge label 1, 2, . . . , |E| is used exactly once;

I the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let A⇤
G(k) be the number of assignments

of positive integers to the edges of G such that

I each edge label is in {1, 2, . . . , k} and is distinct;

I the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if A⇤
G(|E|) > 0.
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V,E) is an assignment E ! Z>0 such that

I each edge label 1, 2, . . . , |E| is used exactly once;
I the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let A⇤
G(k) be the number of assignments

of positive integers to the edges of G such that

I each edge label is in {1, 2, . . . , k} and is distinct;
I the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if A⇤
G(|E|) > 0.

Bad News The counting function A⇤
G(k) is in general not a polynomial:

A⇤
C4
(k) = k4 � 22

3 k
3 + 17k2 � 38

3 k +

(
0 if k is even,

2 if k is odd.

Discrete Volume Computations for Polyhedra Matthias Beck 17



A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V,E) is an assignment E ! Z>0 such that

I each edge label 1, 2, . . . , |E| is used exactly once;

I the sum of the labels on all edges incident with a given node is unique.

New Idea Introduce another counting function: let AG(k) be the number
of assignments of positive integers to the edges of G such that

I each edge label is in {1, 2, . . . , k};
I the sum of the labels on all edges incident with a given node is unique.

Theorem (MB–Farahmand 2017) AG(k) is a quasipolynomial in k of period
at most 2. If G minus its loops is bipartite then AG(k) is a polynomial.

Corollary For bipartite graphs, A⇤
G(|E|) > 0.
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One Last Picture: Birkho↵–von Neumann Roots

For more about roots of

(Ehrhart) polynomials,

see Braun (2008) and

Pfeifle (2010).
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