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Motivation I: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. ]. A. Sloane

Search  Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A037302 Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume >

is v(n), then a(n) = ((n-1)A2)! * v(n) / nA(n-1).
1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028,
12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099,

5091038988117504946842559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;
text; internal format)

OFFSET 1,3
COMMENTS The Birkhoff polytope is an (n-1)"2-dimensional polytope in n”“2-dimensional
space; its vertices are the n! permutation matrices.
Is a(n) divisible by n"2 for all n>=4? - Dean Hickerson, Nov 27 2002

r11 -+ Tin ng;jkzlforalllékﬁn

2
B, = : : c R, : .
" =0 Yazip=1forall1<j<n
xnl e o o xnn

Discrete Volume Computations for Polyhedra ()  Matthias Beck



Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976] — e \
The chromatic number of any e e [ RN
planar graph is at most 4. | T =
aaaaaaaaaaaaaaaaaaaaaaa =
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa §
- - e A
This theorem had been a conjecture el P e e e
(conceived by Guthrie when trying N
to color maps) for 124 years. Y
Bi . o E— T
irkhoff [1912] says: NS =X
TI’ | n m. | | /\WLDJZ—‘\ /w</
y polynomials! /\/\/\\\W/ \\/ e —
& o \W/W\\m/
RN —
LTS

[mathforum.org]

Four-Color Theorem Rephrased For a planar graph GG, we have xg(4) > 0,
that is, 4 is not a root of the polynomial xg(k).
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Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976]
The chromatic number of any
planar graph is at most 4.

This theorem had been a conjecture
(conceived by Guthrie when trying
to color maps) for 124 years.

Birkhoff [1912] says:
Try polynomials!

Stanley [EC 1] says:
Try monomial algebras and
generating functions!
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[mathforum.org]

Four-Color Theorem Rephrased For a planar graph GG, we have xg(4) > 0,
that is, 4 is not a root of the polynomial xa(k).
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Discrete Volumes

Rational polyhedron P C R? — solution set of a system of linear equalities
& inequalities with integer coefficients

. e

e o

e o | o

Goal: understand P NZ% . . .

e o |o
> (list) E 2y 2yt 2y &@ il Py
mePNZA ¢ € |

> (count) |PNZY
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Discrete Volumes

Rational polyhedron P C R? — solution set of a system of linear equalities
& inequalities with integer coefficients

. e

e o

e o | o

Goal: understand P NZ% . . .

e o |o
> (list) E 2y 2yt 2y &@ il Py
mePNZA ¢ € |

> (count) |PNZY

1

PN-Z°
t

» (volume) vol(P) = lim 1

t—oo td
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Discrete Volumes

Rational polyhedron P C R? — solution set of a system of linear equalities
& inequalities with integer coefficients

o
@1
Goal: understand P NZ% . . . 9/“3* x

o o | o
e o |o
¢ o ¢
. mi m2 . my ¢ €
» (list) Z 2y T2yt 2, o o f
mePNZA ¢ € ‘
» (count) |PNZY
14
» (volume) vol(P) = lim — PN Z

t—oo td

1
Ehrhart function Lp(t) := ‘73 N ZZd = ‘tP N Zd’ for t € Z~o
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Why Polyhedra?

» Linear systems are everywhere, and so polyhedra are everywhere.
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Why Polyhedra?

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).
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Why Polyhedra?

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

» Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.
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Why Polyhedra?

» Linear systems are everywhere, and so polyhedra are everywhere.

» In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

» Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

» Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.
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Why Polyhedra?

Linear systems are everywhere, and so polyhedra are everywhere.

In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

Much discrete geometry can be modeled using polynomials
and, conversely, many combinatorial polynomials can be modeled
geometrically.
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A Warm-Up Ehrhart Function

Lattice polytope P C R? — convex hull of finitely points in Z¢

Fort € Zsg let Lp(t) := [tP N 24 .

Example 1: ° °

A = conv{(0,0),(1,0),(0,1)}
= {(z,y) eRLy: 24y <1}
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A Warm-Up Ehrhart Function

Lattice polytope P C R? — convex hull of finitely points in Z¢

Fort € Z~g let Lp(t) = ’tP N Zd| °

Example 1: ° °

A = conv{(0,0),(1,0),(0,1)}
= {(z,y) eRLy: 24y <1}

Example 2:

O = [0,1]¢ (the unit cube in R%)
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(z) := 1+ ZLp(t) 2" is rational:

1959 EhrP(Z) - (1 _ Z)dimP—i—l

where the Ehrhart h-vector h*(z) satisfies h*(0) = 1 and
h*(1) = (dim P)! vol(P).
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Seeming

dichotomy:  vol(P) = lim

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree dim P with
leading coefficient vol P and constant term 1.

Equivalently, Ehrp(z) := 1+ ZLp(t) 2" is rational:

h*(2)

Bhrp(z) = (1 2)dmP+1

where the Ehrhart h-vector h*(z) satisfies h*(0) = 1 and
h*(1) = (dim P)! vol(P).

1

Lp(t) can be computed

discretely via a finite amount of data.
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Ehrhart Polynomials

oy, m%”
,_ 3 Theorem (Ehrhart 1962) For any lattice polytope P,
~# Lp(t) is a polynomial in ¢ of degree d := dim P with

leading coefficient vol P and constant term 1.

h*(2)

Equivalent descriptions of an Ehrhart polynomial:
> Lp(t) = cdtd—l—cd_l td_l—l-”'—l—CO
» via roots of Lp(t)

> Ehrp(z) —  Lp(t) = hg("5) +pi("FY) + -+ b))

h*(z) is the binomial transform of Lp(t)
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

Ehrp(z) = 1—|—ZLP(t) 2= (1 }i*ijzi—l—l

Equivalent descriptions of an Ehrhart polynomial:
> Lp(t) = Cdtd+0d_1 td_1—|—"'—|—CQ
» via roots of Lp(t)

> Ehrp(z) —  Lp(t) = b5("5) + () 4+ ha())

Open Problem Classify Ehrhart polynomials.
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Two-dimensional Ehrhart Polynomials

Essentially due to Pick
(1899) and Scott (1976)
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Ehrhart Polynomials
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Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

h*(z)
(1 — z)d+1

— Lp(®) = k(5 +p1 (T )+ + 0 (0)

Theorem (Macdonald 1971) (—1)YLp(—t) enumerates the interior lattice

points in tP. Equivalently,

Lpo() = h5(7 ) + ki (PY2) o R (MY
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

h*(z)
(1 — z)d+1

s Lpe(t) = h;(tﬂé—l) 4 h§_1(t+2_2) + -+ h (t;1>

Theorem (Stanley 1980) hj, kT, ..., h}; are nonnegative integers.
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
Lp(t) is a polynomial in ¢ of degree d := dim P with
leading coefficient vol P and constant term 1.

h*(z)
(1 — z)d+1

= Lpe(t) = hg("a ) F R () A5 ()
Theorem (Stanley 1980) hj, kT, ..., h}; are nonnegative integers.

Corollary If A ;_; > 0 then £P° contains an integer point.
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Interlude: Graph Coloring a la Ehrhart

(Blass—Sagan)
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Interlude: Graph Coloring a la Ehrhart

Nonequation Algebra
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Interlude: Graph Coloring a la Ehrhart

Similarly, for any given graph
(G on d nodes, we can write

(k+d\ L (k+d—1 (k

for some (meaningful) nonnegative integers X, ..., X
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Interlude: Graph Coloring a la Ehrhart

A

(Blass—Sagan)

X1 =X

Similarly, for any given graph
(G on d nodes, we can write

(k+d (k+d—1 (k
xa(k) = xg g )t p +otxal

Half-Open Problem Prove that x; > 0 for some 0 < j < 4 if G is planar.
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Ehrhart h* Positivity Refined

h*
Ehrp(z) :== 1+ » [tPNZY 2" = (ZZZH
= (1—2)
Theorem (Stanley 1980) h{, hi, ..., h’ are nonnegative integers.

Theorem (Betke-McMullen 1985, Stapledon 2009) If A% > 0 then
h*(z) = a(z) + 2 b(2)

where a(z) = z%a(2) and b(z) = 2471 b(2) with nonnegative coefficients.
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Ehrhart h* Positivity Refined

h*
Ehrp(z) = 1+Z‘tPﬂZd}zt = (Z2l+1
= (1—2)
Theorem (Stanley 1980) h{, hi, ..., h} are nonnegative integers.

Theorem (Betke-McMullen 1985, Stapledon 2009) If i’ > 0 then
h*(z) = a(z) + zb(2)
where a(z) = z%a() and b(z) = 21 b(2) with nonnegative coefficients.

Open Problem Try to prove the analogous theorem for your favorite
combinatorial polynomial with nonnegative coefficients.
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More Binomial Transforms

_ _ (k+d k+d—1 Lk
Chromatic polynomial xa(k) = x; g +x1 g +- Xy g

— binomial transform x5(2) := x5 24+ x5_, 24+ 4+ X3
Theorem (MB—Ledn 2019+) Let G be a graph on d vertices. Then there

exist symmetric polynomials ai(z) = z%a¢(2) and bi(2) = 2% be(2) with
positive integer coefficients such that

XG(2) = ag(z) —ba(z).

Moreover, ag < a; < a; where 1 < 57 <d—1, and by < b; < b; where
1<j53<d-2.
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More Binomial Transforms

| | k+d\ L (k+d—1 (k
Chromatic polynomial x¢ (k) = x; p +x1 p +-- -+ Xy J

— binomial transform x5(2) := x5 24+ x5, 24 + - 4+ xd
Theorem (MB-Ledn 2019+) Let GG be a graph on d vertices. Then there

exist symmetric polynomials ai(z) = 2%ac(2) and ba(z) = 2% b (L) with
positive integer coefficients such that

xg(2) = aa(z) —ba(z).

Moreover, agp < a; < a; where 1 < 57 < d—1, and by < b; < b; where
1 <9<d-—2.

Theorem (Hersh—Swartz 2008) xj , > xj for 2<j < %

Similar results hold for flow polynomials of graphs (Breuer-Dall 2011).
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Unimodal & Real-rooted Polynomials

The polynomial h*(z) = S"%_ h*2J is unimodal if for some k € {0, 1, ..., d}

J=0""

Crucial Example h*(z) has only real roots
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Unimodal & Real-rooted Polynomials

The polynomial h*(z) = >_%_, k%27 is unimodal if for some & € {0,1,...,d}
Crucial Example h*(z) has only real roots
Classic Example P = [0, 1]¢ comes with the Eulerian polynomial h* ()

Theorem (Schepers—Van Langenhoven 2013) h*(z) is unimodal for lattice
parallelepipeds.

Theorem (MB—Jochemko—McCullough 2019) h*(z) is real rooted for lattice
zonotopes.
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Unimodal & Real-rooted Polynomials

The polynomial 2*(z) = S"%_ h*27 is unimodal if for some k € {0,1, . ..

J=0""

Crucial Example h*(z) has only real roots

Conjectures h*(z) is unimodal/real-rooted for

» hypersimplices
» order polytopes
» alcoved polytopes

» lattice polytopes with unimodular triangulations

» IDP polytopes (integer decomposition property)

Discrete Volume Computations for Polyhedra ()  Matthias Beck
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V, E) is an assignment E' — Z~( such that
» each edge label 1,2,...,|F| is used exactly once;

» the sum of the labels on all edges incident with a given node is unique.
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V, E) is an assignment E' — Z~( such that
» each edge label 1,2,...,|F| is used exactly once;

» the sum of the labels on all edges incident with a given node is unique.

Conjecture [Hartsfield & Ringel 1990] Every connected graph except K>
has an antimagic labeling.

» [Alon et al 2004] connected graphs with minimum degree > ¢ log |V/|
» [Bérczi et al 2017] connected regular graphs

» open for trees
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V, E) is an assignment E' — Z~( such that
» each edge label 1,2,...,|F| is used exactly once;

» the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let A} (k) be the number of assignments
of positive integers to the edges of G such that

» each edge label isin {1,2,...,k} and is distinct;

» the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if A%L(|E|) > 0.
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V, E) is an assignment E' — Z~( such that
» each edge label 1,2,...,|F| is used exactly once;
» the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let A% (k) be the number of assignments
of positive integers to the edges of G such that

» each edge label isin {1,2,...,k} and is distinct;
» the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if A%L(|E|) > 0.

Bad News The counting function A (k) is in general not a polynomial:

0O if kis even,

AL (k) = k* — 22k3 + 17k% — 38k
Cu(F) e 3" N9 it kis odd.
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A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of G = (V, E) is an assignment E' — Z~( such that
» each edge label 1,2,...,|F| is used exactly once;

» the sum of the labels on all edges incident with a given node is unique.

New ldea Introduce another counting function: let Az (k) be the number
of assignments of positive integers to the edges of GG such that

» each edge label isin {1,2,... k};

» the sum of the labels on all edges incident with a given node is unique.

Theorem (MB—Farahmand 2017) Aq(k) is a quasipolynomial in k of period
at most 2. If G minus its loops is bipartite then A (k) is a polynomial.

Corollary For bipartite graphs, A%(|E|) > 0.
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One Last Picture: Birkhoff-von Neumann Roots

Zeros of H_9(n)
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For more about roots of
(Ehrhart) polynomials,
see Braun (2008) and
Pfeifle (2010).
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