Discrete Volume Computations for Polyhedra

Matthias Beck
San Francisco State University math.sfsu.edu/beck

Graduate Student Meeting
Applied Algebra \& Combinatorics

Themes

Combinatorial polynomials

> Computation (complexity)

Generating functions

Combinatorial structures

Polyhedra

Themes

Motivation I: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane
(Greetings from The On-Line Encyclopedia of Integer Sequences!) Search Hints
Greetings from The On-Line Encyclopedia of Integer Sequences!)

$$
\begin{aligned}
& \text { A037302 Normalized volume of Birkhoff polytope of } \mathrm{n} \mathrm{X} \mathrm{n} \text { doubly-stochastic square matrices. If the volume }{ }^{2} \\
& \text { is } v(n) \text {, then } a(n)=\left((n-1)^{\wedge} 2\right)!^{*} v(n) / n^{\wedge}(n-1) \text {. } \\
& 1,1,3,352,4718075,14666561365176,17832560768358341943028 \text {, } \\
& \text { 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, } \\
& 5091038988117504946842559205930853037841762820367901333706255223000 \text { (list; graph; refs; listen; history; } \\
& \text { text; internal format) } \\
& \text { OFFSET 1, } \\
& \text { COMMENTS The Birkhoff polytope is an (} \mathrm{n}-1)^{\wedge} 2 \text {-dimensional polytope in } \mathrm{n}^{\wedge} 2 \text {-dimensional } \\
& \text { space; its vertices are the } \mathrm{n} \text { ! permutation matrices. } \\
& \text { Is } a(n) \text { divisible by } n^{\wedge} 2 \text { for all } n>=4 \text { ? - Dean Hickerson, Nov } 272002 \\
& B_{n}=\left\{\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right) \in \mathbb{R}_{\geq 0}^{n^{2}}: \quad \sum_{j} x_{j k}=1 \text { for all } 1 \leq k \leq n\right.
\end{aligned}
$$

Motivation II: Polynomial Method 101

Theorem [Appel \& Haken 1976] The chromatic number of any planar graph is at most 4 .

This theorem had been a conjecture (conceived by Guthrie when trying to color maps) for 124 years.

Birkhoff [1912] says:
Try polynomials!

Four-Color Theorem Rephrased For a planar graph G, we have $\chi_{G}(4)>0$, that is, 4 is not a root of the polynomial $\chi_{G}(k)$.

Motivation II: Polynomial Method 101

Theorem [Appel \& Haken 1976] The chromatic number of any planar graph is at most 4 .

This theorem had been a conjecture (conceived by Guthrie when trying to color maps) for 124 years.

Birkhoff [1912] says:
Try polynomials!

Stanley [EC 1] says:
Try monomial algebras and generating functions!

Four-Color Theorem Rephrased For a planar graph G, we have $\chi_{G}(4)>0$, that is, 4 is not a root of the polynomial $\chi_{G}(k)$.

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^{d}$ - solution set of a system of linear equalities \& inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^{d} \ldots$

- (list) $\sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^{d}} z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{d}^{m_{d}}$

- (count) $\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^{d}$ - solution set of a system of linear equalities \& inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^{d} \ldots$

- (list) $\sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^{d}} z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{d}^{m_{d}}$

- (count) $\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|$
- (volume) $\operatorname{vol}(\mathcal{P})=\lim _{t \rightarrow \infty} \frac{1}{t^{d}}\left|\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^{d}$ - solution set of a system of linear equalities \& inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^{d} \ldots$

- (list) $\sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^{d}} z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{d}^{m_{d}}$

- (count) $\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|$
- (volume) $\operatorname{vol}(\mathcal{P})=\lim _{t \rightarrow \infty} \frac{1}{t^{d}}\left|\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right|$

Ehrhart function $L_{\mathcal{P}}(t):=\left|\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right|=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$ for $t \in \mathbb{Z}_{>0}$

Why Polyhedra?

- Linear systems are everywhere, and so polyhedra are everywhere.

Why Polyhedra?

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

Why Polyhedra?

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

Why Polyhedra?

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

Why Polyhedra?

- Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

A Warm-Up Ehrhart Function

Lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ - convex hull of finitely points in \mathbb{Z}^{d}
For $t \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(t):=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$

Example 1:

$$
\begin{aligned}
\Delta & =\operatorname{conv}\{(0,0),(1,0),(0,1)\} \\
& =\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: x+y \leq 1\right\}
\end{aligned}
$$

A Warm-Up Ehrhart Function

Lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ - convex hull of finitely points in \mathbb{Z}^{d}
For $t \in \mathbb{Z}_{>0}$ let $L_{\mathcal{P}}(t):=\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right|$

Example 1:

$$
\begin{aligned}
\Delta & =\operatorname{conv}\{(0,0),(1,0),(0,1)\} \\
& =\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}: x+y \leq 1\right\}
\end{aligned}
$$

Example 2:

$\square=[0,1]^{d}$ (the unit cube in \mathbb{R}^{d})

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}$ is rational:

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h^{*}(z)}{(1-z)^{\operatorname{dim} \mathcal{P}+1}}
$$

where the Ehrhart h-vector $h^{*}(z)$ satisfies $h^{*}(0)=1$ and $h^{*}(1)=(\operatorname{dim} \mathcal{P})!\operatorname{vol}(\mathcal{P})$.

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}$ is rational:

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h^{*}(z)}{(1-z)^{\operatorname{dim} \mathcal{P}+1}}
$$

where the Ehrhart h-vector $h^{*}(z)$ satisfies $h^{*}(0)=1$ and $h^{*}(1)=(\operatorname{dim} \mathcal{P})!\operatorname{vol}(\mathcal{P})$.

Seeming dichotomy: $\operatorname{vol}(\mathcal{P})=\lim _{t \rightarrow \infty} \frac{1}{t^{\operatorname{dim} \mathcal{P}}} L_{\mathcal{P}}(t)$ can be computed discretely via a finite amount of data.

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Equivalent descriptions of an Ehrhart polynomial:

- $L_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0}$
- via roots of $L_{\mathcal{P}}(t)$
$-\operatorname{Ehr}_{\mathcal{P}}(z) \longrightarrow \quad L_{\mathcal{P}}(t)=h_{0}^{*}\binom{t+d}{d}+h_{1}^{*}\binom{t+d-1}{d}+\cdots+h_{d}^{*}\binom{t}{d}$
$h^{*}(z)$ is the binomial transform of $L_{\mathcal{P}}(t)$

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Equivalent descriptions of an Ehrhart polynomial:

- $L_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0}$
- via roots of $L_{\mathcal{P}}(t)$
$-\operatorname{Ehr}_{\mathcal{P}}(z) \quad \longrightarrow \quad L_{\mathcal{P}}(t)=h_{0}^{*}\binom{t+d}{d}+h_{1}^{*}\binom{t+d-1}{d}+\cdots+h_{d}^{*}\binom{t}{d}$

Open Problem Classify Ehrhart polynomials.

Two-dimensional Ehrhart Polynomials

Essentially due to Pick (1899) and Scott (1976)

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\begin{array}{ll}
\text { 1㑩 } & \operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}} \\
\longrightarrow & L_{\mathcal{P}}(t)=h_{0}^{*}\binom{t+d}{d}+h_{1}^{*}\binom{t+d-1}{d}+\cdots+h_{d}^{*}\binom{t}{d}
\end{array}
$$

Theorem (Macdonald 1971) $(-1)^{d} L_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t \mathcal{P}$. Equivalently,

$$
L_{\mathcal{P}^{\circ}}(t)=h_{d}^{*}\binom{t+d-1}{d}+h_{d-1}^{*}\binom{t+d-2}{d}+\cdots+h_{0}^{*}\binom{(t-1}{d}
$$

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\begin{array}{ll}
\text { 7 } & \operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}} \\
\longrightarrow & L_{\mathcal{P} \circ}(t)=h_{d}^{*}\binom{t+d-1}{d}+h_{d-1}^{*}\binom{t+d-2}{d}+\cdots+h_{0}^{*}\binom{t-1}{d}
\end{array}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.

Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P}, $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\operatorname{dim} \mathcal{P}$ with leading coefficient vol \mathcal{P} and constant term 1.

$$
\begin{array}{ll}
\text { 7 } & \operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}} \\
\longrightarrow & L_{\mathcal{P} \circ}(t)=h_{d}^{*}\binom{t+d-1}{d}+h_{d-1}^{*}\binom{t+d-2}{d}+\cdots+h_{0}^{*}\binom{t-1}{d}
\end{array}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.

Corollary If $h_{d+1-k}^{*}>0$ then $k \mathcal{P}^{\circ}$ contains an integer point.

Interlude: Graph Coloring a la Ehrhart

$$
\begin{gathered}
\chi_{K_{2}}(k)=2\binom{k}{2} \ldots \\
\bullet \\
K_{2}
\end{gathered}
$$

Interlude: Graph Coloring a la Ehrhart

Interlude: Graph Coloring a la Ehrhart

$\chi_{K_{2}}(k)=2\binom{k}{2} \ldots$

Similarly, for any given graph
(Blass-Sagan) G on d nodes, we can write

$$
\chi_{G}(k)=\chi_{0}^{*}\binom{k+d}{d}+\chi_{1}^{*}\binom{k+d-1}{d}+\cdots+\chi_{d}^{*}\binom{k}{d}
$$

for some (meaningful) nonnegative integers $\chi_{0}^{*}, \ldots, \chi_{d}^{*}$

Interlude: Graph Coloring a la Ehrhart

$\chi_{K_{2}}(k)=2\binom{k}{2} \ldots$

Similarly, for any given graph G on d nodes, we can write

$$
\chi_{G}(k)=\chi_{0}^{*}\binom{k+d}{d}+\chi_{1}^{*}\binom{k+d-1}{d}+\cdots+\chi_{d}^{*}\binom{k}{d}
$$

Half-Open Problem Prove that $\chi_{j}^{*}>0$ for some $0 \leq j \leq 4$ if G is planar.

Ehrhart h^{*} Positivity Refined

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1}\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right| z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.

Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_{d}^{*}>0$ then

$$
h^{*}(z)=a(z)+z b(z)
$$

where $a(z)=z^{d} a\left(\frac{1}{z}\right)$ and $b(z)=z^{d-1} b\left(\frac{1}{z}\right)$ with nonnegative coefficients.

Ehrhart h^{*} Positivity Refined

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1}\left|t \mathcal{P} \cap \mathbb{Z}^{d}\right| z^{t}=\frac{h^{*}(z)}{(1-z)^{d+1}}
$$

Theorem (Stanley 1980) $h_{0}^{*}, h_{1}^{*}, \ldots, h_{d}^{*}$ are nonnegative integers.
Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_{d}^{*}>0$ then

$$
h^{*}(z)=a(z)+z b(z)
$$

where $a(z)=z^{d} a\left(\frac{1}{z}\right)$ and $b(z)=z^{d-1} b\left(\frac{1}{z}\right)$ with nonnegative coefficients.
Open Problem Try to prove the analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

More Binomial Transforms

Chromatic polynomial $\chi_{G}(k)=\chi_{0}^{*}\binom{k+d}{d}+\chi_{1}^{*}\binom{k+d-1}{d}+\cdots+\chi_{d}^{*}\binom{k}{d}$
\longrightarrow binomial transform $\chi_{G}^{*}(z):=\chi_{d}^{*} z^{d}+\chi_{d-1}^{*} z^{d-1}+\cdots+\chi_{0}^{*}$
Theorem (MB-León 2019+) Let G be a graph on d vertices. Then there exist symmetric polynomials $a_{G}(z)=z^{d} a_{G}\left(\frac{1}{z}\right)$ and $b_{G}(z)=z^{d-1} b_{G}\left(\frac{1}{z}\right)$ with positive integer coefficients such that

$$
\chi_{G}^{*}(z)=a_{G}(z)-b_{G}(z) .
$$

Moreover, $a_{0} \leq a_{1} \leq a_{j}$ where $1 \leq j \leq d-1$, and $b_{0} \leq b_{1} \leq b_{j}$ where $1 \leq j \leq d-2$.

More Binomial Transforms

Chromatic polynomial $\chi_{G}(k)=\chi_{0}^{*}\binom{k+d}{d}+\chi_{1}^{*}\binom{k+d-1}{d}+\cdots+\chi_{d}^{*}\binom{k}{d}$
\longrightarrow binomial transform $\chi_{G}^{*}(z):=\chi_{d}^{*} z^{d}+\chi_{d-1}^{*} z^{d-1}+\cdots+\chi_{0}^{*}$
Theorem (MB-León 2019+) Let G be a graph on d vertices. Then there exist symmetric polynomials $a_{G}(z)=z^{d} a_{G}\left(\frac{1}{z}\right)$ and $b_{G}(z)=z^{d-1} b_{G}\left(\frac{1}{z}\right)$ with positive integer coefficients such that

$$
\chi_{G}^{*}(z)=a_{G}(z)-b_{G}(z) .
$$

Moreover, $a_{0} \leq a_{1} \leq a_{j}$ where $1 \leq j \leq d-1$, and $b_{0} \leq b_{1} \leq b_{j}$ where $1 \leq j \leq d-2$.

Theorem (Hersh-Swartz 2008) $\chi_{d-j}^{*} \geq \chi_{j}^{*}$ for $2 \leq j \leq \frac{d-1}{2}$
Similar results hold for flow polynomials of graphs (Breuer-Dall 2011).

Unimodal \& Real-rooted Polynomials

The polynomial $h^{*}(z)=\sum_{j=0}^{d} h_{j}^{*} z^{j}$ is unimodal if for some $k \in\{0,1, \ldots, d\}$

$$
h_{0}^{*} \leq h_{1}^{*} \leq \cdots \leq h_{k}^{*} \geq \cdots \geq h_{d}^{*}
$$

Crucial Example $h^{*}(z)$ has only real roots

Unimodal \& Real-rooted Polynomials

The polynomial $h^{*}(z)=\sum_{j=0}^{d} h_{j}^{*} z^{j}$ is unimodal if for some $k \in\{0,1, \ldots, d\}$

$$
h_{0}^{*} \leq h_{1}^{*} \leq \cdots \leq h_{k}^{*} \geq \cdots \geq h_{d}^{*}
$$

Crucial Example $h^{*}(z)$ has only real roots
Classic Example $\mathcal{P}=[0,1]^{d}$ comes with the Eulerian polynomial $h^{*}(z)$
Theorem (Schepers-Van Langenhoven 2013) $h^{*}(z)$ is unimodal for lattice parallelepipeds.

Theorem (MB-Jochemko-McCullough 2019) $h^{*}(z)$ is real rooted for lattice zonotopes.

Unimodal \& Real-rooted Polynomials

The polynomial $h^{*}(z)=\sum_{j=0}^{d} h_{j}^{*} z^{j}$ is unimodal if for some $k \in\{0,1, \ldots, d\}$

$$
h_{0}^{*} \leq h_{1}^{*} \leq \cdots \leq h_{k}^{*} \geq \cdots \geq h_{d}^{*}
$$

Crucial Example $h^{*}(z)$ has only real roots

Conjectures $h^{*}(z)$ is unimodal/real-rooted for

- hypersimplices
- order polytopes
- alcoved polytopes
- lattice polytopes with unimodular triangulations
- IDP polytopes (integer decomposition property)

A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of $G=(V, E)$ is an assignment $E \rightarrow \mathbb{Z}_{>0}$ such that

- each edge label $1,2, \ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of $G=(V, E)$ is an assignment $E \rightarrow \mathbb{Z}_{>0}$ such that

- each edge label $1,2, \ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

Conjecture [Hartsfield \& Ringel 1990] Every connected graph except K_{2} has an antimagic labeling.

- [Alon et al 2004] connected graphs with minimum degree $\geq c \log |V|$
- [Bérczi et al 2017] connected regular graphs
- open for trees

A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of $G=(V, E)$ is an assignment $E \rightarrow \mathbb{Z}_{>0}$ such that

- each edge label $1,2, \ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let $A_{G}^{*}(k)$ be the number of assignments of positive integers to the edges of G such that

- each edge label is in $\{1,2, \ldots, k\}$ and is distinct;
- the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if $A_{G}^{*}(|E|)>0$.

A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of $G=(V, E)$ is an assignment $E \rightarrow \mathbb{Z}_{>0}$ such that

- each edge label $1,2, \ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let $A_{G}^{*}(k)$ be the number of assignments of positive integers to the edges of G such that

- each edge label is in $\{1,2, \ldots, k\}$ and is distinct;
- the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if $A_{G}^{*}(|E|)>0$.

Bad News The counting function $A_{G}^{*}(k)$ is in general not a polynomial:

$$
A_{C_{4}}^{*}(k)=k^{4}-\frac{22}{3} k^{3}+17 k^{2}-\frac{38}{3} k+ \begin{cases}0 & \text { if } k \text { is even } \\ 2 & \text { if } k \text { is odd }\end{cases}
$$

A Polynomial Ansatz to Antimagic Graph Labelings

An antimagic labeling of $G=(V, E)$ is an assignment $E \rightarrow \mathbb{Z}_{>0}$ such that

- each edge label $1,2, \ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

New Idea Introduce another counting function: let $A_{G}(k)$ be the number of assignments of positive integers to the edges of G such that

- each edge label is in $\{1,2, \ldots, k\}$;
- the sum of the labels on all edges incident with a given node is unique.

Theorem (MB-Farahmand 2017) $A_{G}(k)$ is a quasipolynomial in k of period at most 2. If G minus its loops is bipartite then $A_{G}(k)$ is a polynomial.

Corollary For bipartite graphs, $A_{G}^{*}(|E|)>0$.

One Last Picture: Birkhoff-von Neumann Roots

For more about roots of (Ehrhart) polynomials, see Braun (2008) and Pfeifle (2010).

