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Low-rank approximation from rows and columns of A

Idea [Goreinov/Tyrtyshnikov/Zamarashkin’1997, Bebendorf’2000, many others...]:
Use selected rows and columns of A to build “cross approximation”

≈
−1

· ·

Boundary element method [Bebendorf’2000]
General tool for assembling H-matrices, H2-matrices, . . . [Hackbusch’2015]
Uncertainty quantification [Harbrecht/Peters/ Schneider’2012]
Kernel-based learning [Bach/Jordan’2005] and spectral clustering
[Fowlkes/Belongie/Chung/Malik’2004] (Nyström method)
Extension to low-rank tensor approximation [Oseledets/Tyrtyshnikov’2010,
Ballani/Grasedyck/Kluge’2013, Savostyanov’2014, . . .]
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Overview

1 Maxvol submatrices
Connection to low-rank approximation problem
NP hardness

2 Maxvol submatrices for structured matrices
symmetric positive semidefinite matrices;
diagonally dominant matrices.

3 Error bounds for cross approximation
general matrices;
symmetric positive semidefinite matrices;
(doubly) diagonally dominant matrices.

4 Cross approximation for functions
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Maxvol submatrices
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Quasi-optimal choice of rows and columns

How close is error of cross approximation

error = −
−1

· ·

to best rank-m approximation error min
B,C∈Rn×m

‖A−BCT ‖2 = σm+1(A)?

Theorem ([Goreinov/Tyrtyshnikov’2001])

If is m×m submatrix of maximum volume (maximum absolute value of
the determinant), then

‖error‖max ≤ (m+ 1)σm+1(A),

where ‖B‖max = maxi,j=1,...,n |bij |.
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Proof idea by [Goreinov/Tyrtyshnikov’2001]. Assume w.l.o.g. n = m+ 1. Then

‖A−1‖2 = 1
σm+1(A) .

On the other hand,
A−1 = 1

detAadj(A)

implies that maximum element of A−1 is at entry (m+ 1,m+ 1). In turn,

‖error‖max =
∣∣(A−1)

m+1,m+1

∣∣ = ‖A−1‖max.

Hence,

σm+1(A)−1 = ‖A−1‖2 ≤ (m+ 1)‖A−1‖max = (m+ 1)|(A−1)m+1,m+1|.
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Remark.
Maxvol approximation is actually optimal in some weird sense. Consider
mixed norm

‖B‖∞→1 := sup ‖Bx‖1/‖x‖∞, ‖B‖1→∞ := sup ‖Bx‖∞/‖x‖1= ‖B‖max.

and approximation numbers

βk+1(A) := min{‖E‖∞→1 : rank(A+ E) ≤ k}, k = 0, . . . , n− 1.

Then βn(A) = ‖A−1‖−1
max see [Higham’2002]. An extension of the proof

shows
‖error‖max = βm+1(A).

By norm equivalence,

‖error‖max ≤ (m+ 1)2 min{‖E‖max : rank(A+ E) ≤ m}.

and the constant is tight. Recovers result by [Goreinov/Tyrtyshnikov’2011].
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(Approximate) maxvol is NP hard

Papadimitriou’1984 reduced NP-complete SAT via a subgraph selection
problem to maxvol for 0/1 matrices  maxvol is NP hard.
Di Summa et al.’2014 showed that it is NP-hard to approximate maxvol
within factor that does not grow at least exponentially with m.

Remark. Due to nature of determinants, second result has little implication for
low-rank approximation. Consider

A =
[
Im 0
0 Bm

]
, Bm = tridiag[ 12 , 1,−

1
2 ]

Note that
|det(Im)| = 1, |det(Bm)| ∼

(
1 +
√

2
2

)m
.

Nevertheless, the first m rows/columns constitute an excellent choice for cross
approximation:

‖error‖max = ‖Bm‖max = 1 = σm+1(B).

Is it NP hard to find cross approximation with polynomial constant?
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Maxvol submatrices
for structured matrices
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Maxvol submatrix for SPSD

Let A be symmetric positive semidefinite (SPSD).

Obvious: Element of maximum absolute value of A on the diagonal.

Less obvious: Submatrix of maximum volume of A can always be chosen to be
principal.

Principal submatrix Not principal
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Maxvol submatrix for SPSD

Theorem ([Cortinovis/K./Massei’2019])
If A is symmetric positive semidefinite then the maximum volume m×m
submatrix is attained by a principal submatrix.

Volume of a (rectangular) matrix = product of its singular values.

1 Cholesky decomposition A = CT · C: = ·

2 Inequality for product of singular values of a product [Horn/Johnson’1991]:

Volume of ≤ Volume of · Volume of

3 Relate volume of and to volume of principal submatrices and

conclude.
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Consequences

1 One-to-one correspondence with column selection problem:
Given n× k matrix B, find n×m submatrix of maximum volume.

Also arises in low-rank approximation problems [Deshpande/Rademacher/
Vempala/Wang’2006] and rank-revealing LU factorizations [Pan’2000].

←→ · =

2 Column selection problem is NP-hard [Çivril/Magdon-Ismail’2009]  
maximum volume submatrix problem is NP-hard even when restricted to
symmetric positive semidefinite matrices.
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Maxvol submatrix for diagonally dominant

Definition
A ∈ Rn×n is (row) diagonally dominant if

∑
j=1,...,n; j 6=i |aij | ≤ |aii| for all

i = 1, . . . , n.

Theorem ([Cortinovis/K./Massei’2019])
If A is diagonally dominant then the maxvol m×m submatrix is attained by a
principal submatrix.
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Proof idea.
1 Reduction to upper triangular case via LU factorization.

0

0
= ·A(I, J) =

0

0
= ·A(I, I) =

2 Factor U inherits diagonal dominance from A! For unit upper triangular
diagonally dominant matrix: Each submatrix has |det | ≤ 1.

Known special case: for m = n− 1, the result of the theorem is covered in the
proof of Theorem 2.5.12 in [Horn/Johnson’1991].
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Cross approximation

Daniel Kressner On maximum volume submatrices and cross approximation 15 / 28



Cross approximation algorithm with full pivoting

Aim: Finding quasi-optimal row/column indices.

≈
−1

· ·
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Cross approximation algorithm with full pivoting
ACA = Adaptive Cross Approximation [Bebendorf’2000, Carvajal/Chapman/
Geddes’2005, . . .]
Greedy algorithm for volume maximization.

First step: Select element of maximum absolute value, p1 (first pivot).

· ·≈
−1

p1

Denote

· ·− −1
R1 := =

0 0 0 0 0 0 0
0

0
0
0
0
0

Daniel Kressner On maximum volume submatrices and cross approximation 17 / 28



Cross approximation algorithm with full pivoting

Situation after k − 1 steps:

p3

= Rk−1 = − ·
−1
·

p1

p20 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0
0
0

0

0

0
0
0

0

At k-th step: Choose element of maximum absolute value in remainder Rk−1
(k-th pivot pk).

−1

· ·= Rk = −

p1

p2

p3

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0

0
0

0

0

0
0

0

0

0
0

0
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Equivalence to Gaussian elimination and LDU factorization

Cross approximation = greedy algorithm for volume maximization.

Equivalent to Gaussian elimination with complete pivoting [Bebendorf’2000].
In particular, no need to compute inverses at each step!

(Up to permutations) we obtain an incomplete LDU factorization

A−Rm = LmDmUm = · ·
0

0
0

0

where
Dm = diag(p1, . . . , pm) contains pivot elements;
Lm and Um have ones on the diagonal.
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Error of cross approximation

Analysis of error ‖Rm‖max obtained after m steps of cross approximation: By
performing one additional step

‖Rm‖max = ‖Schur complement of A11 in A‖max = |pm+1|.

Ideally |pm+1| is close to σm+1(A).

Wlog, restrict to (m+ 1)× (m+ 1) matrices and consider factorization A = LDU :

1
σm+1(A) = ‖A−1‖2 ≤ ‖U−1‖2‖D−1‖2‖L−1‖2.

What can go wrong?
1 Intermediate pivots can be � |pm+1|  ‖D−1‖2 6. 1

|pm+1| .
2 ‖L−1‖2 and ‖U−1‖2 can be large.

Closely related to but not covered by numerical linear algebra literature on error
analysis of (rank-revealing) LU decompositions.
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Error bounds for the general case
1 Consider growth factor = ρk := sup

{
‖Rk‖max
‖A‖max

| rank(A) ≥ k
}

, playing
prominent role in error analysis of LU factorization.
[Wilkinson’1961] proved for complete pivoting

ρk ≤ 2
√
k + 1(k + 1)ln(k+1)/4.

Note that bound is not tight; usually ρk = O(1). Obtain

‖D−1‖2 ≤
ρm
|pm+1|

.

2 L and U have ones on the diagonal and all other entries have absolute value
≤ 1 because of full pivoting  ‖L−1‖2 ≤ 2m and ‖U−1‖2 ≤ 2m; see
[Higham’1987].

Theorem ([Cortinovis/K./Massei’2019])
After m steps, error of cross approximation satisfies

‖Rm‖max ≤ 4mρm · σm+1(A).
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Symmetric positive semidefinite case
Benefits for SPSD matrices:

1 Huge: Diagonal pivoting is sufficient (SPSD preserved by Schur compl)
2 Minor: Pivots do not grow  ρm replaced by 1 in the theorem.

Corollary
If A is symmetric positive semidefinite then

‖Rm‖max ≤ 4m · σm+1(A).

This matches a result of [Harbrecht/Peters/Schneider’2012].
Bound is tight for SPSD. Kahan’1966:

U = LT =


1 −1 · · · −1

0 1
. . .

...
...

. . .
. . . −1

0 · · · 0 1

 ∈ R(m+1)×(m+1)

‖A−1‖2 = ‖U−1‖2
2 ∼ 4m  σm+1(A) ∼ 4−m

On the other hand, |pm+1| = 1.
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Diagonally dominant case

Benefits for diagonally dominant matrices:
1 Diagonal pivoting is sufficient (diagonal dominance preserved by Schur compl)
2 Small growth factor: ‖Rk‖max ≤ 2‖A‖max for every k. [Wilkinson’1961]
3 In the LDU factorization, U is diagonally dominant. Hence, ‖U−1‖2 ≤ m.

[Peña’2004]

Corollary
If A is diagonally dominant then ‖Rm‖max ≤ (m+ 1) · 2m+1 · σm+1(A).

4 If A is doubly diagonally dominant (that is, A and AT are diag. dom.) then
also LT is diagonally dominant.

Corollary
If A is doubly diagonally dominant then ‖Rm‖max ≤ 2(m+ 1)2 · σm+1(A).

Result relevant in spectral clustering based on cross approximation.
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Diagonally dominant case: Tightness of bounds

Diagonally dominant case: example with

‖Rm‖max

σm+1(A) = Θ(m2).

Related to studies on stability of LDU factorizations [e.g. Demmel/
Koev’2004, Dopico/Koev’2011, Barreras/Peña’2012/13].
Doubly diagonally dominant case: example with

‖Rm‖max

σm+1(A) = Θ(m).
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Extension to functions
Consider bivariate function f : [−1, 1]× [−1, 1]→ R and choose point (x1, y1) of
maximum absolute value.

(x1, y1)

1 x−1

1
y

−1

“Rank-1 approximation” of f is separable function

f1(x, y) = f(x, y1) · 1
f(x1, y1) · f(x1, y).

Next steps  analogous to matrix algorithm.
[Bebendorf’2000, Carvajal/Chapman/Geddes’2005, Townsend/Trefethen’2015]
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Error bounds for functional approximation

Definition
Bernstein ellipse Er = ellipse with foci ±1 and sum of semiaxes r.

Theorem ([Cortinovis/K./Massei’2019])

Assume that f(·, y) admits an analytic extension f̃ to the Bernstein ellipse Er0 for
each y ∈ [−1, 1]. Choose 1 < r < r0. Denote

M := sup
η∈∂Er, ξ∈[−1,1]

|f̃(η, ξ)|.

Then the error after m steps satisfies

‖errorm‖max ≤
2Mρm
1− 1/r ·

(r
4

)−m
.

Idea of proof: error bound for cross approximation for general matrices applied to
matrix interpolating the function in suitable points + standard polynomial
approximation arguments.
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Comparison to existing convergence results
ρm has subexponential growth  Algorithm converges linearly with rate 4

r for
r > 4.

Previous convergence results for complete pivoting [Townsend/Trefethen’2015]:
they need the functions f(·, y) to have an analytic extension in

Kr := {points at distance ≤ r from the segment [−1, 1]}

for linear convergence with rate 4
r .

E4

K4

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4
-3
-2
-1

1
2
3
4
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Conclusions

New results:
1 Maxvol submatrix of symmetric positive semidefinite or diagonally dominant

matrices attained by principal submatrix.
2 Error analysis of cross approximation (both for matrix and function case).

Major open problem:
3 Cross approximation with complete pivoting always works well in practice.

Find appropriate framework that captures this!
Next step:

4 Tensors!
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