On maximum volume submatrices and cross approximation

Alice Cortinovis Daniel Kressner Stefano Massei

ANCHP
Institute of Mathematics
Ecole Polytechnique Fédérale de Lausanne

Low－Rank Optimization and Applications
Leipzig， 04 April 2019

Low-rank approximation from rows and columns of A

Idea [Goreinov/Tyrtyshnikov/Zamarashkin'1997, Bebendorf'2000, many others...]: Use selected rows and columns of A to build "cross approximation"

- Boundary element method [Bebendorf'2000]
- General tool for assembling \mathcal{H}-matrices, \mathcal{H}^{2}-matrices, ... [Hackbusch'2015]
- Uncertainty quantification [Harbrecht/Peters/ Schneider'2012]
- Kernel-based learning [Bach/Jordan'2005] and spectral clustering [Fowlkes/Belongie/Chung/Malik'2004] (Nyström method)
- Extension to low-rank tensor approximation [Oseledets/Tyrtyshnikov'2010, Ballani/Grasedyck/Kluge'2013, Savostyanov'2014, ...]

Overview

(1) Maxvol submatrices

- Connection to low-rank approximation problem
- NP hardness
(2) Maxvol submatrices for structured matrices
- symmetric positive semidefinite matrices;
- diagonally dominant matrices.
(0) Error bounds for cross approximation
- general matrices;
- symmetric positive semidefinite matrices;
- (doubly) diagonally dominant matrices.
(1) Cross approximation for functions

Maxvol submatrices

Quasi-optimal choice of rows and columns

How close is error of cross approximation

to best rank- m approximation error $\min _{B, C \in \mathbb{R}^{n \times m}}\left\|A-B C^{T}\right\|_{2}=\sigma_{m+1}(A)$?

Theorem ([Goreinov/Tyrtyshnikov'2001])

 is $m \times m$ submatrix of maximum volume (maximum absolute value of the determinant), then

$$
\| \text { error } \|_{\max } \leq(m+1) \sigma_{m+1}(A),
$$

where $\|B\|_{\max }=\max _{i, j=1, \ldots, n}\left|b_{i j}\right|$.

Proof idea by [Goreinov/Tyrtyshnikov'2001]. Assume w.l.o.g. $n=m+1$. Then

$$
\left\|A^{-1}\right\|_{2}=\frac{1}{\sigma_{m+1}(A)}
$$

On the other hand,

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj}(A)
$$

implies that maximum element of A^{-1} is at entry $(m+1, m+1)$. In turn,

$$
\| \text { error }\left\|_{\max }=\left|\left(A^{-1}\right)_{m+1, m+1}\right|=\right\| A^{-1} \|_{\max }
$$

Hence,

$$
\sigma_{m+1}(A)^{-1}=\left\|A^{-1}\right\|_{2} \leq(m+1)\left\|A^{-1}\right\|_{\max }=(m+1)\left|\left(A^{-1}\right)_{m+1, m+1}\right| .
$$

Remark.

- Maxvol approximation is actually optimal in some weird sense. Consider mixed norm

$$
\|B\|_{\infty \rightarrow 1}:=\sup \|B x\|_{1} /\|x\|_{\infty}, \quad\|B\|_{1 \rightarrow \infty}:=\sup \|B x\|_{\infty} /\|x\|_{1}=\|B\|_{\max }
$$

and approximation numbers

$$
\beta_{k+1}(A):=\min \left\{\|E\|_{\infty \rightarrow 1}: \operatorname{rank}(A+E) \leq k\right\}, \quad k=0, \ldots, n-1 .
$$

Then $\beta_{n}(A)=\left\|A^{-1}\right\|_{\max }^{-1}$ see [Higham'2002]. An extension of the proof shows

$$
\| \text { error } \|_{\max }=\beta_{m+1}(A)
$$

By norm equivalence,

$$
\|e r r o r\|_{\max } \leq(m+1)^{2} \min \left\{\|E\|_{\max }: \operatorname{rank}(A+E) \leq m\right\} .
$$

and the constant is tight. Recovers result by [Goreinov/Tyrtyshnikov'2011].

(Approximate) maxvol is NP hard

- Papadimitriou'1984 reduced NP-complete SAT via a subgraph selection problem to maxvol for $0 / 1$ matrices \rightsquigarrow maxvol is NP hard.
- Di Summa et al.'2014 showed that it is NP-hard to approximate maxvol within factor that does not grow at least exponentially with m.
Remark. Due to nature of determinants, second result has little implication for low-rank approximation. Consider

$$
A=\left[\begin{array}{cc}
I_{m} & 0 \\
0 & B_{m}
\end{array}\right], \quad B_{m}=\operatorname{tridiag}\left[\frac{1}{2}, 1,-\frac{1}{2}\right]
$$

Note that

$$
\left|\operatorname{det}\left(I_{m}\right)\right|=1, \quad\left|\operatorname{det}\left(B_{m}\right)\right| \sim\left(\frac{1+\sqrt{2}}{2}\right)^{m} .
$$

Nevertheless, the first m rows/columns constitute an excellent choice for cross approximation:

$$
\| \text { error }\left\|_{\max }=\right\| B_{m} \|_{\max }=1=\sigma_{m+1}(B) .
$$

Is it NP hard to find cross approximation with polynomial constant?

Maxvol submatrices for structured matrices

Maxvol submatrix for SPSD

Let A be symmetric positive semidefinite (SPSD).
Obvious: Element of maximum absolute value of A on the diagonal.
Less obvious: Submatrix of maximum volume of A can always be chosen to be principal.

Maxvol submatrix for SPSD

Theorem ([Cortinovis/K./Massei'2019])

If A is symmetric positive semidefinite then the maximum volume $m \times m$ submatrix is attained by a principal submatrix.

Volume of a (rectangular) matrix $=$ product of its singular values.
(1) Cholesky decomposition $A=C^{T} \cdot C$:

(2) Inequality for product of singular values of a product [Horn/Johnson'1991]:
 conclude.

Consequences

(1) One-to-one correspondence with column selection problem: Given $n \times k$ matrix B, find $n \times m$ submatrix of maximum volume.

Also arises in low-rank approximation problems [Deshpande/Rademacher/ Vempala/Wang'2006] and rank-revealing LU factorizations [Pan'2000].

(2) Column selection problem is NP-hard [C̦ivril/Magdon-Ismail'2009] \rightsquigarrow maximum volume submatrix problem is NP-hard even when restricted to symmetric positive semidefinite matrices.

Maxvol submatrix for diagonally dominant

Definition

$A \in \mathbb{R}^{n \times n}$ is (row) diagonally dominant if $\sum_{j=1, \ldots, n ; j \neq i}\left|a_{i j}\right| \leq\left|a_{i i}\right|$ for all $i=1, \ldots, n$.

Theorem ([Cortinovis/K./Massei'2019])
If A is diagonally dominant then the maxvol $m \times m$ submatrix is attained by a principal submatrix.

Proof idea.

(1) Reduction to upper triangular case via LU factorization.

(2) Factor U inherits diagonal dominance from A ! For unit upper triangular diagonally dominant matrix: Each submatrix has $|\operatorname{det}| \leq 1$.

Known special case: for $m=n-1$, the result of the theorem is covered in the proof of Theorem 2.5.12 in [Horn/Johnson'1991].

Cross approximation

Cross approximation algorithm with full pivoting

Aim: Finding quasi-optimal row/column indices.

Cross approximation algorithm with full pivoting

ACA = Adaptive Cross Approximation [Bebendorf'2000, Carvajal/Chapman/ Geddes'2005, ...]
Greedy algorithm for volume maximization.
First step: Select element of maximum absolute value, p_{1} (first pivot).

Denote

Cross approximation algorithm with full pivoting

Situation after $k-1$ steps:

Cross approximation algorithm with full pivoting

Situation after $k-1$ steps:

At k-th step: Choose element of maximum absolute value in remainder R_{k-1} (k-th pivot p_{k}).

Cross approximation algorithm with full pivoting

Situation after $k-1$ steps:

At k-th step: Choose element of maximum absolute value in remainder R_{k-1} (k-th pivot p_{k}).

Equivalence to Gaussian elimination and LDU factorization

- Cross approximation $=$ greedy algorithm for volume maximization.
- Equivalent to Gaussian elimination with complete pivoting [Bebendorf'2000]. In particular, no need to compute inverses at each step!
- (Up to permutations) we obtain an incomplete LDU factorization

$$
A-R_{m}=L_{m} D_{m} U_{m}=0_{0}^{0} \cdot \square
$$

where

- $D_{m}=\operatorname{diag}\left(p_{1}, \ldots, p_{m}\right)$ contains pivot elements;
- L_{m} and U_{m} have ones on the diagonal.

Error of cross approximation

Analysis of error $\left\|R_{m}\right\|_{\text {max }}$ obtained after m steps of cross approximation: By performing one additional step

$$
\left\|R_{m}\right\|_{\max }=\| \text { Schur complement of } A_{11} \text { in } A \|_{\max }=\left|p_{m+1}\right| .
$$

Ideally $\left|p_{m+1}\right|$ is close to $\sigma_{m+1}(A)$.
Wlog, restrict to $(m+1) \times(m+1)$ matrices and consider factorization $A=L D U$:

$$
\frac{1}{\sigma_{m+1}(A)}=\left\|A^{-1}\right\|_{2} \leq\left\|U^{-1}\right\|_{2}\left\|D^{-1}\right\|_{2}\left\|L^{-1}\right\|_{2}
$$

What can go wrong?
(1) Intermediate pivots can be $\ll\left|p_{m+1}\right| \rightsquigarrow\left\|D^{-1}\right\|_{2} \mathbb{Z} \frac{1}{\left|p_{m+1}\right|}$.
(2) $\left\|L^{-1}\right\|_{2}$ and $\left\|U^{-1}\right\|_{2}$ can be large.

Closely related to but not covered by numerical linear algebra literature on error analysis of (rank-revealing) LU decompositions.

Error bounds for the general case

(consider growth factor $=\rho_{k}:=\sup \left\{\left\|R_{k}\right\|_{\max } \| \operatorname{lank}(A) \geq k\right\}$, playing prominent role in error analysis of LU factorization.
[Wilkinson'1961] proved for complete pivoting

$$
\rho_{k} \leq 2 \sqrt{k+1}(k+1)^{\ln (k+1) / 4} .
$$

Note that bound is not tight; usually $\rho_{k}=O(1)$. Obtain

$$
\left\|D^{-1}\right\|_{2} \leq \frac{\rho_{m}}{\left|p_{m+1}\right|} .
$$

(2) L and U have ones on the diagonal and all other entries have absolute value ≤ 1 because of full pivoting $\rightsquigarrow\left\|L^{-1}\right\|_{2} \leq 2^{m}$ and $\left\|U^{-1}\right\|_{2} \leq 2^{m}$; see [Higham'1987].

Theorem ([Cortinovis/K./Massei'2019])

After m steps, error of cross approximation satisfies

$$
\left\|R_{m}\right\|_{\max } \leq 4^{m} \rho_{m} \cdot \sigma_{m+1}(A) .
$$

Symmetric positive semidefinite case

Benefits for SPSD matrices:
(1) Huge: Diagonal pivoting is sufficient (SPSD preserved by Schur compl)
(2) Minor: Pivots do not grow $\rightsquigarrow \rho_{m}$ replaced by 1 in the theorem.

Corollary

If A is symmetric positive semidefinite then

$$
\left\|R_{m}\right\|_{\max } \leq 4^{m} \cdot \sigma_{m+1}(A)
$$

This matches a result of [Harbrecht/Peters/Schneider'2012]. Bound is tight for SPSD. Kahan'1966:

$$
\begin{gathered}
U=L^{T}=\left[\begin{array}{cccc}
1 & -1 & \cdots & -1 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
0 & \cdots & 0 & 1
\end{array}\right] \in \mathbb{R}^{(m+1) \times(m+1)} \\
\left\|A^{-1}\right\|_{2}=\left\|U^{-1}\right\|_{2}^{2} \sim 4^{m} \quad \rightsquigarrow \quad \sigma_{m+1}(A) \sim 4^{-m}
\end{gathered}
$$

On the other hand, $\left|p_{m+1}\right|=1$.

Diagonally dominant case

Benefits for diagonally dominant matrices:
(1) Diagonal pivoting is sufficient (diagonal dominance preserved by Schur compl)
(2) Small growth factor: $\left\|R_{k}\right\|_{\max } \leq 2\|A\|_{\text {max }}$ for every k. [Wilkinson'1961]
(3) In the LDU factorization, U is diagonally dominant. Hence, $\left\|U^{-1}\right\|_{2} \leq m$. [Peña'2004]

Corollary

If A is diagonally dominant then $\left\|R_{m}\right\|_{\max } \leq(m+1) \cdot 2^{m+1} \cdot \sigma_{m+1}(A)$.
(0) If A is doubly diagonally dominant (that is, A and A^{T} are diag. dom.) then also L^{T} is diagonally dominant.

Corollary
 If A is doubly diagonally dominant then $\left\|R_{m}\right\|_{\max } \leq 2(m+1)^{2} \cdot \sigma_{m+1}(A)$.

Result relevant in spectral clustering based on cross approximation.

Diagonally dominant case: Tightness of bounds

- Diagonally dominant case: example with

$$
\frac{\left\|R_{m}\right\|_{\max }}{\sigma_{m+1}(A)}=\Theta\left(m^{2}\right)
$$

Related to studies on stability of LDU factorizations [e.g. Demmel/ Koev'2004, Dopico/Koev'2011, Barreras/Peña'2012/13].

- Doubly diagonally dominant case: example with

$$
\frac{\left\|R_{m}\right\|_{\max }}{\sigma_{m+1}(A)}=\Theta(m) .
$$

Extension to functions

Consider bivariate function $f:[-1,1] \times[-1,1] \rightarrow \mathbb{R}$ and choose point $\left(x_{1}, y_{1}\right)$ of maximum absolute value.

"Rank-1 approximation" of f is separable function

$$
f_{1}(x, y)=f\left(x, y_{1}\right) \cdot \frac{1}{f\left(x_{1}, y_{1}\right)} \cdot f\left(x_{1}, y\right)
$$

Next steps \rightsquigarrow analogous to matrix algorithm. [Bebendorf'2000, Carvajal/Chapman/Geddes'2005, Townsend/Trefethen'2015]

Error bounds for functional approximation

Definition

Bernstein ellipse $\mathcal{E}_{r}=$ ellipse with foci ± 1 and sum of semiaxes r.

Theorem ([Cortinovis/K./Massei'2019])
Assume that $f(\cdot, y)$ admits an analytic extension \tilde{f} to the Bernstein ellipse $\mathcal{E}_{r_{0}}$ for each $y \in[-1,1]$. Choose $1<r<r_{0}$. Denote

$$
M:=\sup _{\eta \in \partial \mathcal{E}_{r}, \xi \in[-1,1]}|\tilde{f}(\eta, \xi)| .
$$

Then the error after m steps satisfies

$$
\left\|\operatorname{error}_{m}\right\|_{\max } \leq \frac{2 M \rho_{m}}{1-1 / r} \cdot\left(\frac{r}{4}\right)^{-m}
$$

Idea of proof: error bound for cross approximation for general matrices applied to matrix interpolating the function in suitable points + standard polynomial approximation arguments.

Comparison to existing convergence results

ρ_{m} has subexponential growth \rightsquigarrow Algorithm converges linearly with rate $\frac{4}{r}$ for $r>4$.

Previous convergence results for complete pivoting [Townsend/Trefethen'2015]: they need the functions $f(\cdot, y)$ to have an analytic extension in

$$
K_{r}:=\{\text { points at distance } \leq r \text { from the segment }[-1,1]\}
$$

for linear convergence with rate $\frac{4}{r}$.

Conclusions

New results:
(1) Maxvol submatrix of symmetric positive semidefinite or diagonally dominant matrices attained by principal submatrix.
(2) Error analysis of cross approximation (both for matrix and function case). Major open problem:
(Cross approximation with complete pivoting always works well in practice. Find appropriate framework that captures this!
Next step:
© Tensors!
Techreport available from anchp.epfl.ch:

- A. Cortinovis, DK, and S. Massei. On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices. February 2019.

