On maximum volume submatrices and cross approximation

Alice Cortinovis Daniel Kressner Stefano Massei

ANCHP Institute of Mathematics École Polytechnique Fédérale de Lausanne

Low-Rank Optimization and Applications Leipzig, 04 April 2019

Low-rank approximation from rows and columns of A

Idea [Goreinov/Tyrtyshnikov/Zamarashkin'1997, Bebendorf'2000, many others...]: Use selected rows and columns of A to build "cross approximation"

- Boundary element method [Bebendorf'2000]
- General tool for assembling \mathcal{H} -matrices, \mathcal{H}^2 -matrices, ... [Hackbusch'2015]
- Uncertainty quantification [Harbrecht/Peters/ Schneider'2012]
- Kernel-based learning [Bach/Jordan'2005] and spectral clustering [Fowlkes/Belongie/Chung/Malik'2004] (Nyström method)
- Extension to low-rank tensor approximation [Oseledets/Tyrtyshnikov'2010, Ballani/Grasedyck/Kluge'2013, Savostyanov'2014, . . .]

Overview

- Maxvol submatrices
 - Connection to low-rank approximation problem
 - NP hardness
- Maxvol submatrices for structured matrices
 - symmetric positive semidefinite matrices;
 - diagonally dominant matrices.
- Error bounds for cross approximation
 - general matrices;
 - symmetric positive semidefinite matrices;
 - (doubly) diagonally dominant matrices.
- Oross approximation for functions

Maxvol submatrices

Quasi-optimal choice of rows and columns

How close is error of cross approximation

to best rank-m approximation error $\min_{B,C\in\mathbb{R}^{n\times m}}\|A-BC^T\|_2=\sigma_{m+1}(A)$?

Theorem ([Goreinov/Tyrtyshnikov'2001])

If $m \times m$ submatrix of maximum volume (maximum absolute value of the determinant), then

$$\|\operatorname{error}\|_{\max} \le (m+1)\sigma_{m+1}(A),$$

where $||B||_{\max} = \max_{i,j=1,...,n} |b_{ij}|$.

Proof idea by [Goreinov/Tyrtyshnikov'2001]. Assume w.l.o.g. n=m+1. Then

$$||A^{-1}||_2 = \frac{1}{\sigma_{m+1}(A)}.$$

On the other hand,

$$A^{-1} = \frac{1}{\det A} \mathrm{adj}(A)$$

implies that maximum element of A^{-1} is at entry (m+1, m+1). In turn,

$$\|\text{error}\|_{\text{max}} = |(A^{-1})_{m+1,m+1}| = \|A^{-1}\|_{\text{max}}.$$

Hence,

$$\sigma_{m+1}(A)^{-1} = ||A^{-1}||_2 \le (m+1)||A^{-1}||_{\max} = (m+1)|(A^{-1})_{m+1,m+1}|.$$

Remark.

 Maxvol approximation is actually optimal in some weird sense. Consider mixed norm

$$||B||_{\infty \to 1} := \sup ||Bx||_1 / ||x||_{\infty}, \quad ||B||_{1 \to \infty} := \sup ||Bx||_{\infty} / ||x||_1 = ||B||_{\max}.$$

and approximation numbers

$$\beta_{k+1}(A) := \min\{\|E\|_{\infty \to 1} : \, {\rm rank}(A+E) \le k\}, \qquad k = 0, \dots, n-1.$$

Then $\beta_n(A) = \|A^{-1}\|_{\max}^{-1}$ see [Higham'2002]. An extension of the proof shows

$$\|\text{error}\|_{\text{max}} = \beta_{m+1}(A).$$

By norm equivalence,

$$\|\text{error}\|_{\text{max}} \le (m+1)^2 \min\{\|E\|_{\text{max}} : \text{rank}(A+E) \le m\}.$$

and the constant is tight. Recovers result by [Goreinov/Tyrtyshnikov'2011].

(Approximate) maxvol is NP hard

- Papadimitriou'1984 reduced NP-complete SAT via a subgraph selection problem to maxvol for 0/1 matrices → maxvol is NP hard.
- ullet Di Summa et al.'2014 showed that it is NP-hard to approximate maxvol within factor that does not grow at least exponentially with m.

Remark. Due to nature of determinants, second result has little implication for low-rank approximation. Consider

$$A = \begin{bmatrix} I_m & 0 \\ 0 & B_m \end{bmatrix}, \quad B_m = \mathrm{tridiag}[\frac{1}{2}, 1, -\frac{1}{2}]$$

Note that

$$|\det(I_m)| = 1, \qquad |\det(B_m)| \sim \left(\frac{1+\sqrt{2}}{2}\right)^m.$$

Nevertheless, the first m rows/columns constitute an excellent choice for cross approximation:

$$\|\text{error}\|_{\text{max}} = \|B_m\|_{\text{max}} = 1 = \sigma_{m+1}(B).$$

Is it NP hard to find cross approximation with polynomial constant?

Maxvol submatrices for structured matrices

Maxvol submatrix for SPSD

Let A be symmetric positive semidefinite (SPSD).

Obvious: Element of maximum absolute value of A on the diagonal.

Less obvious: Submatrix of maximum volume of \boldsymbol{A} can always be chosen to be principal.

Maxvol submatrix for SPSD

Theorem ([Cortinovis/K./Massei'2019])

If A is symmetric positive semidefinite then the maximum volume $m \times m$ submatrix is attained by a principal submatrix.

Volume of a (rectangular) matrix = product of its singular values.

- Inequality for product of singular values of a product [Horn/Johnson'1991]:
- Relate volume of _____ and ____ to volume of principal submatrices and conclude.

Consequences

One-to-one correspondence with column selection problem:

Given $n \times k$ matrix B, find $n \times m$ submatrix of maximum volume.

Also arises in low-rank approximation problems [Deshpande/Rademacher/Vempala/Wang'2006] and rank-revealing LU factorizations [Pan'2000].

② Column selection problem is NP-hard [Çivril/Magdon-Ismail'2009] → maximum volume submatrix problem is NP-hard even when restricted to symmetric positive semidefinite matrices.

Maxvol submatrix for diagonally dominant

Definition

 $A \in \mathbb{R}^{n \times n}$ is (row) diagonally dominant if $\sum_{j=1,...,n;\ j \neq i} |a_{ij}| \leq |a_{ii}|$ for all $i=1,\ldots,n$.

Theorem ([Cortinovis/K./Massei'2019])

If A is diagonally dominant then the maxvol $m \times m$ submatrix is attained by a principal submatrix.

Proof idea.

Reduction to upper triangular case via LU factorization.

 $\textbf{9} \ \ \mathsf{Factor} \ U \ \ \mathsf{inherits} \ \ \mathsf{diagonal} \ \ \mathsf{dominance} \ \ \mathsf{from} \ \ A! \ \ \mathsf{For} \ \ \mathsf{unit} \ \ \mathsf{upper} \ \ \mathsf{triangular}$ diagonally dominant matrix: Each submatrix has $|\det| \leq 1.$

Known special case: for m=n-1, the result of the theorem is covered in the proof of Theorem 2.5.12 in [Horn/Johnson'1991].

Cross approximation

Aim: Finding quasi-optimal row/column indices.

 $\label{eq:ACA} ACA = Adaptive\ Cross\ Approximation\ [Bebendorf'2000,\ Carvajal/Chapman/Geddes'2005,\ \ldots]$

Greedy algorithm for volume maximization.

First step: Select element of maximum absolute value, p_1 (first pivot).

Denote

Situation after k-1 steps:

Situation after k-1 steps:

At k-th step: Choose element of maximum absolute value in remainder R_{k-1} (k-th pivot p_k).

Situation after k-1 steps:

At k-th step: Choose element of maximum absolute value in remainder R_{k-1} (k-th pivot p_k).

$$=R_k=$$

Equivalence to Gaussian elimination and LDU factorization

- Cross approximation = greedy algorithm for volume maximization.
- Equivalent to Gaussian elimination with complete pivoting [Bebendorf'2000]. In particular, no need to compute inverses at each step!
- (Up to permutations) we obtain an incomplete LDU factorization

$$A - R_m = L_m D_m U_m = 0$$

where

- $D_m = \text{diag}(p_1, \dots, p_m)$ contains pivot elements;
- ullet L_m and U_m have ones on the diagonal.

Error of cross approximation

Analysis of error $\|R_m\|_{\max}$ obtained after m steps of cross approximation: By performing one additional step

$$||R_m||_{\max} = ||S$$
chur complement of A_{11} in $A||_{\max} = |p_{m+1}|$.

Ideally $|p_{m+1}|$ is close to $\sigma_{m+1}(A)$.

Wlog, restrict to $(m+1) \times (m+1)$ matrices and consider factorization A = LDU:

$$\frac{1}{\sigma_{m+1}(A)} = ||A^{-1}||_2 \le ||U^{-1}||_2 ||D^{-1}||_2 ||L^{-1}||_2.$$

What can go wrong?

- Intermediate pivots can be $\ll |p_{m+1}| \leadsto ||D^{-1}||_2 \lesssim \frac{1}{|p_{m+1}|}$.
- ② $||L^{-1}||_2$ and $||U^{-1}||_2$ can be large.

Closely related to but **not** covered by numerical linear algebra literature on error analysis of (rank-revealing) LU decompositions.

Error bounds for the general case

$$\rho_k \le 2\sqrt{k+1}(k+1)^{\ln(k+1)/4}.$$

Note that bound is not tight; usually $\rho_k = O(1)$. Obtain

$$||D^{-1}||_2 \le \frac{\rho_m}{|p_{m+1}|}.$$

② L and U have ones on the diagonal and all other entries have absolute value ≤ 1 because of full pivoting $\leadsto \|L^{-1}\|_2 \leq 2^m$ and $\|U^{-1}\|_2 \leq 2^m$; see [Higham'1987].

Theorem ([Cortinovis/K./Massei'2019])

After m steps, error of cross approximation satisfies

$$||R_m||_{\max} \leq 4^m \rho_m \cdot \sigma_{m+1}(A).$$

Symmetric positive semidefinite case

Benefits for SPSD matrices:

- Huge: Diagonal pivoting is sufficient (SPSD preserved by Schur compl)
- **②** Minor: Pivots do not grow $\leadsto \rho_m$ replaced by 1 in the theorem.

Corollary

If A is symmetric positive semidefinite then

$$||R_m||_{\max} \le 4^m \cdot \sigma_{m+1}(A).$$

This matches a result of [Harbrecht/Peters/Schneider'2012].

Bound is tight for SPSD. Kahan'1966:

$$U = L^{T} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \in \mathbb{R}^{(m+1)\times(m+1)}$$

$$||A^{-1}||_2 = ||U^{-1}||_2^2 \sim 4^m \quad \leadsto \quad \sigma_{m+1}(A) \sim 4^{-m}$$

On the other hand, $|p_{m+1}| = 1$.

Diagonally dominant case

Benefits for diagonally dominant matrices:

- Diagonal pivoting is sufficient (diagonal dominance preserved by Schur compl)
- **3** Small growth factor: $\|R_k\|_{\max} \le 2\|A\|_{\max}$ for every k. [Wilkinson'1961]
- In the LDU factorization, U is diagonally dominant. Hence, $\|U^{-1}\|_2 \leq m.$ [Peña'2004]

Corollary

If A is diagonally dominant then $||R_m||_{\max} \leq (m+1) \cdot 2^{m+1} \cdot \sigma_{m+1}(A)$.

 \bullet If A is doubly diagonally dominant (that is, A and A^T are diag. dom.) then also L^T is diagonally dominant.

Corollary

If A is doubly diagonally dominant then $||R_m||_{\max} \leq 2(m+1)^2 \cdot \sigma_{m+1}(A)$.

Result relevant in spectral clustering based on cross approximation.

Diagonally dominant case: Tightness of bounds

Diagonally dominant case: example with

$$\frac{\|R_m\|_{\max}}{\sigma_{m+1}(A)} = \Theta(m^2).$$

Related to studies on stability of LDU factorizations [e.g. Demmel/Koev'2004, Dopico/Koev'2011, Barreras/Peña'2012/13].

• Doubly diagonally dominant case: example with

$$\frac{\|R_m\|_{\max}}{\sigma_{m+1}(A)} = \Theta(m).$$

Extension to functions

Consider bivariate function $f:[-1,1]\times[-1,1]\to\mathbb{R}$ and choose point (x_1,y_1) of maximum absolute value.

"Rank-1 approximation" of f is separable function

$$f_1(x,y) = f(x,y_1) \cdot \frac{1}{f(x_1,y_1)} \cdot f(x_1,y).$$

Next steps \leadsto analogous to matrix algorithm.

[Bebendorf'2000, Carvajal/Chapman/Geddes'2005, Townsend/Trefethen'2015]

Error bounds for functional approximation

Definition

Bernstein ellipse $\mathcal{E}_r = \text{ellipse}$ with foci ± 1 and sum of semiaxes r.

Theorem ([Cortinovis/K./Massei'2019])

Assume that $f(\cdot,y)$ admits an analytic extension \tilde{f} to the Bernstein ellipse \mathcal{E}_{r_0} for each $y \in [-1,1]$. Choose $1 < r < r_0$. Denote

$$M := \sup_{\eta \in \partial \mathcal{E}_r, \, \xi \in [-1, 1]} |\tilde{f}(\eta, \xi)|.$$

Then the error after m steps satisfies

$$\|\operatorname{error}_m\|_{\max} \le \frac{2M\rho_m}{1-1/r} \cdot \left(\frac{r}{4}\right)^{-m}.$$

Idea of proof: error bound for cross approximation for general matrices applied to matrix interpolating the function in suitable points + standard polynomial approximation arguments.

Comparison to existing convergence results

 ρ_m has subexponential growth \leadsto Algorithm converges linearly with rate $\frac{4}{r}$ for r>4.

Previous convergence results for complete pivoting [Townsend/Trefethen'2015]: they need the functions $f(\cdot,y)$ to have an analytic extension in

$$K_r := \{ \text{points at distance} \le r \text{ from the segment } [-1, 1] \}$$

for linear convergence with rate $\frac{4}{r}.$

Conclusions

New results:

- Maxvol submatrix of symmetric positive semidefinite or diagonally dominant matrices attained by principal submatrix.
- Error analysis of cross approximation (both for matrix and function case).

Major open problem:

Oross approximation with complete pivoting always works well in practice. Find appropriate framework that captures this!

Next step:

Tensors!

Techreport available from anchp.epfl.ch:

 A. Cortinovis, DK, and S. Massei. On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices. February 2019.