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Low-rank approximation from rows and columns of A

Idea [Goreinov/Tyrtyshnikov/Zamarashkin'1997, Bebendorf'2000, many others...]:
Use selected rows and columns of A to build “cross approximation”
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% .. . -

Boundary element method [Bebendorf'2000]
General tool for assembling H-matrices, H2-matrices, ... [Hackbusch'2015]
Uncertainty quantification [Harbrecht/Peters/ Schneider'2012]

Kernel-based learning [Bach/Jordan'2005] and spectral clustering
[Fowlkes/Belongie/Chung/Malik’2004] (Nystrém method)

o Extension to low-rank tensor approximation [Oseledets/Tyrtyshnikov'2010,
Ballani/Grasedyck/Kluge'2013, Savostyanov'2014, .. ]
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N
Overview

@ Maxvol submatrices

o Connection to low-rank approximation problem
e NP hardness

@ Maxvol submatrices for structured matrices

e symmetric positive semidefinite matrices;
o diagonally dominant matrices.

© Error bounds for cross approximation

o general matrices;
e symmetric positive semidefinite matrices;
o (doubly) diagonally dominant matrices.

© Cross approximation for functions
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Maxvol submatrices
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Quasi-optimal choice of rows and columns

How close is error of cross approximation

—1

to best rank-m approximation error  min  ||A — BOT ||y = 0, 11(A)?
B,CeRnxm

Theorem ([Goreinov/Tyrtyshnikov'2001])

If is m x m submatrix of maximum volume (maximum absolute value of
the determinant), then

lerror|lmax < (m + 1)om1(A),

where ||B||max = maxi’jzlw,n |b”|
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Proof idea by [Goreinov/Tyrtyshnikov'2001]. Assume w.l.o.g. n =m + 1. Then

1

Ay = ———.
147 = o —

On the other hand,

1
ATt = adj(A
det A i(4)
implies that maximum element of A~ is at entry (m + 1,m + 1). In turn,
[[error|max = |(A_1)m+1,m+1| = A7 lnax-

Hence,

Tm+1(A) T = AT 2 < (m A+ DA max = (m+ DIA™ms1ma .
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Remark.

@ Maxvol approximation is actually optimal in some weird sense. Consider
mixed norm

[Blloos1 := sup [ Bz[l1/[|2llcc, 1 Bllisoo := sup [|Balloo/llz[l1= [ Bllmax-
and approximation numbers
Br+1(A) := min{|| Fljco—1 : rank(A + E) < k}, k=0,...,n—1

Then ,(A) = ||[A~
shows

see [Higham'2002]. An extension of the proof

1)1—1
Hmax

”erroerax = ﬂm+l (A)

By norm equivalence,

llerror||max < (m + 1)? min{||E||lmax : rank(A 4+ E) < m}.

and the constant is tight. Recovers result by [Goreinov/Tyrtyshnikov'2011].
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-
(Approximate) maxvol is NP hard

o Papadimitriou’1984 reduced NP-complete SAT via a subgraph selection
problem to maxvol for 0/1 matrices ~» maxvol is NP hard.

@ Di Summa et al'2014 showed that it is NP-hard to approximate maxvol
within factor that does not grow at least exponentially with m.

Remark. Due to nature of determinants, second result has little implication for
low-rank approximation. Consider

In 0 IS |
A= {0 Bm:|7 Bm—trldlag[§,1,—§]

Note that

jaet(t) =1, fden()|~ (£ ﬂ) .

2

Nevertheless, the first m rows/columns constitute an excellent choice for cross
approximation:

[error|[max = || Bmllmax =1 = omt1(B).
Is it NP hard to find cross approximation with polynomial constant?
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Maxvol submatrices
for structured matrices




]
Maxvol submatrix for SPSD

Let A be symmetric positive semidefinite (SPSD).
Obvious: Element of maximum absolute value of A on the diagonal.
Less obvious: Submatrix of maximum volume of A can always be chosen to be

principal.

Principal submatrix Not principal
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Maxvol submatrix for SPSD

Theorem ([Cortinovis/K./Massei'2019])

If A is symmetric positive semidefinite then the maximum volume m X m
submatrix is attained by a principal submatrix.

Volume of a (rectangular) matrix = product of its singular values.

@ Cholesky decomposition A = CT - C: . = H

@ Inequality for product of singular values of a product [Horn/Johnson'1991]:

Volume of . < Volume of - - Volume of D

© Relate volume of - and to volume of principal submatrices and

conclude. ]
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Consequences

@ One-to-one correspondence with column selection problem:
Given n X k matrix B, find n x m submatrix of maximum volume.

Also arises in low-rank approximation problems [Deshpande/Rademacher/
Vempala/Wang'2006] and rank-revealing LU factorizations [Pan'2000].

HHQ.H

@ Column selection problem is NP-hard [Civril/Magdon-Ismail'’2009] ~~
maximum volume submatrix problem is NP-hard even when restricted to
symmetric positive semidefinite matrices.
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-
Maxvol submatrix for diagonally dominant

Definition

A € R"™" is (row) diagonally dominant if 3°,_, . [ai| < lail for all
1=1,...,n.

Theorem ([Cortinovis/K./Massei'2019])

If A is diagonally dominant then the maxvol m X m submatrix is attained by a
principal submatrix.
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Proof idea.
@ Reduction to upper triangular case via LU factorization.

AT, J) = = O I
0

AL T) = =

0

@ Factor U inherits diagonal dominance from A! For unit upper triangular
diagonally dominant matrix: Each submatrix has |det| < 1. O

Known special case: for m = n — 1, the result of the theorem is covered in the
proof of Theorem 2.5.12 in [Horn/Johnson'1991].
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Cross approximation
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-
Cross approximation algorithm with full pivoting

Aim: Finding quasi-optimal row/column indices.

I _1
~ | - | -
~Y

O
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-
Cross approximation algorithm with full pivoting

ACA = Adaptive Cross Approximation [Bebendorf'2000, Carvajal/Chapman/
Geddes'2005, .. ]

Greedy algorithm for volume maximization.

First step: Select element of maximum absolute value, p; (first pivot).

TR T

Q
]

Denote

Ry = — || ' =

=l=l=l=l=l=l=]
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-
Cross approximation algorithm with full pivoting

Situation after k — 1 steps:

[en] (e (an)] [an] (an] (e (an]

olo|olololola
I
oy
Ead
L
Il
I
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Cross approximation algorithm with full pivoting

Situation after k — 1 steps:

Gl

olo|olo
I
oy
Ead
L
Il
I

(oo} (an] (an) [an]

At k-th step: Choose element of maximum absolute value in remainder Rj_1
(k-th pivot py).
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Cross approximation algorithm with full pivoting

Situation after k — 1 steps:

Gl

(oo} (an] (an) [an]

olo|olo
I
oy
Ead
L
Il
I

At k-th step: Choose element of maximum absolute value in remainder Ry
(k-th pivot py).

0 0] |0
0/0/0]0]0[0]0 _q
0/0/0]0]|0]0]0
0 0] [0] =Rk= - : .
0 0] |0
0/0/0]0]0]0]0
0 0 10
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-
Equivalence to Gaussian elimination and LDU factorization

@ Cross approximation = greedy algorithm for volume maximization.

o Equivalent to Gaussian elimination with complete pivoting [Bebendorf'2000].
In particular, no need to compute inverses at each step!

o (Up to permutations) we obtain an incomplete LDU factorization

0
A - Rm B LmDmUm - . . m
where

e D,, =diag(pi,...,pm) contains pivot elements;

e L,, and U,, have ones on the diagonal.
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-
Error of cross approximation
Analysis of error || R, |lmax obtained after m steps of cross approximation: By
performing one additional step
| Rl max = ||Schur complement of A11 in A|lmax = |Pmt1]-
Ideally |pyn+1]| is close to o,,41(A).

Wiog, restrict to (m+ 1) x (m+ 1) matrices and consider factorization A = LDU:

1
O'm+1(A)

What can go wrong?

= [[A7 |2 < U 2D I 272

@ Intermediate pivots can be < |pp41] ~ |[D7 |2 £ ‘pmlﬂ‘.
@ ||L7 Y2 and ||[U7Y||2 can be large.

Closely related to but not covered by numerical linear algebra literature on error
analysis of (rank-revealing) LU decompositions.
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|
Error bounds for the general case

@ Consider growth factor = py, := sup {””RA’“”M | rank(4) > kz} playing

prominent role in error analysis of LU factorization.
[Wilkinson'1961] proved for complete pivoting

pr < 2VE + 1(k + 1)E+D/4,
Note that bound is not tight; usually py = O(1). Obtain

Pm

D72 < :
[Pmt1]

@ L and U have ones on the diagonal and all other entries have absolute value
< 1 because of full pivoting ~ [|[L71[|2 < 2™ and ||[U Y| < 2™; see
[Higham'1987].

Theorem ([Cortinovis/K./Massei'2019])

After m steps, error of cross approximation satisfies

||Rm||rnax S 4um . Jm+1(A)-
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-
Symmetric positive semidefinite case

Benefits for SPSD matrices:

(7] Uge: Diagonal pivoting is sufficient (SPSD preserved by Schur compl)
@ Minor: Pivots do not grow ~» p,, replaced by 1 in the theorem.

Corollary

If A is symmetric positive semidefinite then

||Rm||max S 4m . Um+1(A).

This matches a result of [Harbrecht/Peters/Schneider'2012].
Bound is tight for SPSD. Kahan'1966:

1 -1 .. -1

o 1
U = LT = e R(m+1)><(m+1)
- |
o .- 0 1
A o = |UTHZ ~ 4™ A) ~amm
= 2 m
A= o = U]z ~ v Ot (A) ~
On the other hand, |py,+1| = 1.
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-
Diagonally dominant case

Benefits for diagonally dominant matrices:
@ Diagonal pivoting is sufficient (diagonal dominance preserved by Schur compl)
@ Small growth factor: ||Ri||max < 2||Al|max for every k. [Wilkinson'1961]

@ In the LDU factorization, U is diagonally dominant. Hence, ||[U~1||2 < m.

[Pefia'2004]

Corollary

If A'is diagonally dominant then || Ry, [lmax < (m 4 1) - 2™% - 0y, 41 (A).

Q If Ais doubly diagonally dominant (that is, A and A7 are diag. dom.) then
also LT is diagonally dominant.

Corollary

If A is doubly diagonally dominant then || Ry ||max < 2(m + 1)% - i1 (A).

Result relevant in spectral clustering based on cross approximation.
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-
Diagonally dominant case: Tightness of bounds

@ Diagonally dominant case: example with

[ B[ max
Um+1(A)

Related to studies on stability of LDU factorizations [e.g. Demmel/
Koev'2004, Dopico/Koev'2011, Barreras/Pefia’2012/13].

@ Doubly diagonally dominant case: example with

[ B [ max
Um+1(A)

= 0(m?).

= O(m).
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N
Extension to functions

Consider bivariate function f : [-1,1] x [-1,1] — R and choose point (x1, 1) of
maximum absolute value.

“Rank-1 approximation” of f is separable function

f1(37,y)=f($,y1)~ 'f(xlvy)'

1
f(z1,y1)
Next steps ~» analogous to matrix algorithm.
[Bebendorf'2000, Carvajal/Chapman/Geddes'2005, Townsend/Trefethen'2015]
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Error bounds for functional approximation

Definition

Bernstein ellipse &, = ellipse with foci &1 and sum of semiaxes r.

Theorem ([Cortinovis/K./Massei'2019])

Assume that f(-,y) admits an analytic extension f to the Bernstein ellipse &, for
each y € [-1,1]. Choose 1 < r < ry. Denote

M= sup |f(n, ).
nedE,, E€(—1,1]

Then the error after m steps satisfies

2M pp, . (r)—m.

1-1/r \4

lerror, || max <

Idea of proof: error bound for cross approximation for general matrices applied to
matrix interpolating the function in suitable points + standard polynomial
approximation arguments.
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|
Comparison to existing convergence results

pm has subexponential growth ~» Algorithm converges linearly with rate % for
r >4

Previous convergence results for complete pivoting [Townsend/Trefethen'2015]:
they need the functions f(-,y) to have an analytic extension in

K, := {points at distance < r from the segment [—1, 1]}

for linear convergence with rate 2.

Daniel Kressner On maximum volume submatrices and cross approximation

27 / 28



N
Conclusions

New results:

©@ Maxvol submatrix of symmetric positive semidefinite or diagonally dominant
matrices attained by principal submatrix.

@ Error analysis of cross approximation (both for matrix and function case).
Major open problem:

© Cross approximation with complete pivoting always works well in practice.
Find appropriate framework that captures this!

Next step:
@ Tensors!
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