
Pencil-based algorithms for the tensor
rank decomposition are not stable

Paul Breiding (TU Berlin, MPI MiS)
Carlos Beltrán (Universidad de Cantabria)
Nick Vannieuwenhoven (KU Lueven)

personal-homepages.mis.mpg.de/breiding/
juliahomotopycontinuation.org

1 / 34



Hitchcock (1927) introduced the tensor rank decomposition
or CPD for tensors A ∈ Rn1×···×nd :

A =
r∑
i=1

a1
i ⊗ a2

i · · · ⊗ adi

A
= + + · · ·+

The rank of a tensor is the minimum number of rank-1 tensors
of which it is a linear combination.

Notation
S := {A | rank(A) = 1} are the rank-one tensors.
σr := {A | rank(A) ≤ r} are the tensors of rank at most r.
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A direct algorithm for order-3 tensors

State-of-the art algorithms compute the CPD by applying
optimization algorithms on the goal function 1

2‖A −
∑r
i=1 Ai‖2.

However, in some cases, the CPD of third-order tensors can be
computed directly via a generalized eigendecomposition.

For simplicity, assume that A ∈ Rn×n×n is of rank n. Say

A =
n∑
i=1

ai ⊗ bi ⊗ ci.

The steps are as follows.
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1. Choose a matrix Q ∈ Rn×2 with orthonormal columns q1,q2.
2. Compute the multilinear multiplication

X = (I, I,QT ) · A :=
n∑
i=1

ai ⊗ bi ⊗ (QT ci).

A
∈ Rn×n×n 7→

X
∈ Rn×n×2

3. The two 3-slices X1 and X2 of X are

Xj =
n∑
i=1
〈qj , ci〉ai ⊗ bi = A diag(qTj C)BT

where A = [ai] ∈ Rn×n and likewise for B and C.
Hence, X1X

−1
2 has the following eigenvalue decomposition:

X1X
−1
2 = A diag(qT1 C) diag(qT2 C)−1A−1

from which A can be found as the matrix of eigenvectors.
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4. By a 1-flattening

A = A(1) =

we find
A(1) :=

n∑
i=1

ai(bi ⊗ ci)T = A(B � C)T ,

where B � C := [bi ⊗ ci]i ∈ Rn2×n. Computing

A� (A−1A(1))T = A� (B � C) = [ai ⊗ bi ⊗ ci]i,

solves the tensor decomposition problem.
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Let’s perform an experiment in Tensorlab v3.0 with this
decomposition algorithm.

Create a rank-25 random tensor of size 25× 25× 25:

% Ut{i} has as columns the i-th factors
>> Ut{1} = randn(25,25);
>> Ut{2} = randn(25,25);
>> Ut{3} = randn(25,25);
% generate the full tensor
>> A = cpdgen(Ut);
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Compute A’s decomposition and its distance to the input
decomposition, relative to the machine precision ε ≈ 2 · 10−16:

>> Ur = cpd_gevd(A, 25);
>> E = kr(Ut) - kr(Ur);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04

What happened?
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Let us look more closely at the computational problem:

• The input is a tensor A ∈ σ25 ⊂ R25×25×25 of rank 25.
• The output is the tuple (ai ⊗ bi ⊗ ci)25

i=1 ∈ S×25.

Let f : σ25 → S×25 be the function that maps a tensor to its
decomposition. Then, what we observed was

‖f(A)− f(A ′)‖
‖A − A ′‖

≈ 8 · 104

with ‖A − A ′‖ ≈ 2 · 10−16.
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The condition number quantifies the worst-case sensitivity
of f to perturbations of the input.

•
x

• y •
f(x)

•
f(y)

ε

κε

κ[f ](x) := lim
ε→0

sup
y∈Bε(x)

‖f(y)−f(x)‖
‖y−x‖ .

When f is di�erentiable: κ[f ](x) = ‖dxf‖.

Problem: There is no function f : σ25 → S×25 that maps a
tensors to its decomposition.
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A short detour through algebraic geometry

If the set of rank-1 tensors {A1, . . . ,Ar} is uniquely determined
given the rank-r tensor A = A1 + · · ·+ Ar, then we call A an
r-identifiable tensor.

Note that matrices are never r-identifiable, because

M =
r∑
i=1

ai ⊗ bi = ABT = (AX−1)(BXT )T

for every invertible X. In general, these factorizations are
di�erent.
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Kruskal (1977) gave a famous su�cient condition for proving
the r-identifiability of third-order tensors.

More recently r-identifiability was studied in algebraic
geometry. This is a natural framework because the set of
rank-1 tensors

SC :=
{
a1 ⊗ a2 ⊗ · · · ⊗ ad | ak ∈ Cnk \ {0}

}
is the smooth projective Segre variety.

The set of tensors of rank bounded by r,

σCr :=
{

A1 + · · ·+ Ar | Ai ∈ S
}
,

is the Zariski-open constructible part of the projective
r-secant variety of the Segre variety.
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In the words of algebraic geometry:

σCr is generically r-identifiable, if the addition map:

Φr : SC × · · · × SC → σCr

(A1, . . . ,Ar) 7→ A1 + · · ·+ Ar

is of degree r!.

Let n1 ≥ · · · ≥ nd and

rcr = n1 · · ·nd
1 +

∑d
i=1(ni − 1)

, rub = n2 · · ·nd −
d∑

k=2
(nk − 1).

Conjectured general rule:

r ≥ rcr or d = 2 → not gen. r-identifiable
n1 > rub and r ≥ rub → not gen. r-identifiable
none of foregoing and r < rcr → gen. r-identifiable;

see Chiantini, Ottaviani, Vannieuwenhoven (2014) for a proof
in the case n1 · · ·nd ≤ 15000.
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The real case is more involved because now

σr := σRr :=
{

A1 + · · ·+ Ar | Ai ∈ SR
}
,

is a semi-algebraic set.

Qi, Comon, and Lim (2016) showed that if σCr is generically
r-identifiable, then it follows that the set of real rank-r tensors
with multiple complex CPDs is contained in a proper
Zariski-closed subset of σRr .

In this sense, σRr is also generically r-identifiable.

In the following we abbreviate S := SR, σr := σRr and we will
assume that σCr is generically r-identifiable.
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Defining the tensor decomposition map

To define the tensor decomposition map, we analyze the real
addition map:

Φr : S × · · · × S → Rn1×···×nd

(A1, . . . ,Ar) 7→ A1 + · · ·+ Ar

Note that the domain and codomain are smooth manifolds.

The idea is to define Φr on the quotient of S×r by the
symmetric group and restricting the domain of Φr to a
Zariski-open smooth submanifold. Then, Φr restricts to a
di�eomorphism onto its image.
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Let n = (n1, . . . , nd).

LetMr;n ⊂ S×r be the set of tuples of n1 × · · · × nd rank-1
tensors a = (A1, . . . ,Ar) that satisfy:

1 Φr(a) is a smooth point of the semi-algebraic set σr;
2 Φr(a) is complex r-identifiable;
3 the derivative daΦr is injective

Definition
The set of r-nice tensors is

Nr;n := Φr(Mr;n).
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One can prove the following results:

Proposition
Let σCr be generically r-identifiable. Then, the following holds.

1 Nr,n is an open dense submanifold of σr.
2 M̂r;n :=Mr;n/Sr is a manifold and the projection is a

local di�eomorphism.
3 The addition map

Φr : M̂r;n → Nr;n, {A1, . . . ,Ar} → A1 + · · ·+ Ar

is a di�eomorphism.
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The condition number of the CPD

The inverse of Φr : M̂r;n → Nr;n is

τr;n : Nr;n → M̂r;n, A1 + · · ·+ Ar → {A1, . . . ,Ar}.

We call it the tensor rank decomposition map.

Definition
The condition number of the tensor rank decomposition for a
tensor A ∈ Nr;n is

κ[τr;n](A) = ‖dAτr;n‖2 = ‖(daΦr)−1‖2.
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Interpretation

If

A = A1 + · · ·+ Ar =
r∑
i=1

a1
i ⊗ · · · ⊗ adi

B = B1 + · · ·+ Br =
r∑
i=1

b1
i ⊗ · · · ⊗ bdi

are tensors in Rn1×···×nd , then for ‖A − B‖F ≈ 0 we have the
asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1
‖Ai − Bπi‖2F︸ ︷︷ ︸

forward error

. κ[τr;n](A)︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error
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Back to our example

>> Ut{1} = randn(25,25);
>> Ut{2} = randn(25,25);
>> Ut{3} = randn(25,25);
>> A = cpdgen(Ut);
>> Ur = cpd_gevd(A, 25);
>> E = kr(Ut) - kr(Ur);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04

We understand now that this can happen, because of a high
condition number. However,

>> kappa = condition_number( Ut )
ans =

2.134
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The only explanation is that there is something wrong with
the algorithm.

We show that algorithms based on a reduction to tensors in
Rn1×n2×2 are numerically unstable.

The forward error produced by the algorithm divided by the
backward error is “much” larger than the condition number,
for some inputs.
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Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

A =
r∑
i=1

ai ⊗ bi ⊗ ci ∈ Nr;n1,n2,n3 ⊂ Rn1×n2×nd

in the following way:

S1. Choose a fixed Q ∈ Rn3×2 with orthonormal columns.
S2. B ← (I, I,QT ) · A;
S3. {a1, . . . ,ar} ← θ̂(B);
S4.a Choose an order A := (a1, . . . ,ar);
S4.b (b1 ⊗ c1, . . . ,br ⊗ cr)← (A†A(1))T ;
S5. output← π

(
�
(
(a1, . . . ,ar), (b1 ⊗ c1, . . . ,br ⊗ cr)

))
.

where π : S×r → (S×r/Sr) and � is the Khatri–Rao product:
�(A,B) := (ai ⊗ bi)i.
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Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

A =
r∑
i=1

ai ⊗ bi ⊗ ci ∈ Nr;n1,n2,n3 ⊂ Rn1×n2×nd

in the following way:

OK Choose a fixed Q ∈ Rn3×2 with orthonormal columns.
OK B ← (I, I,QT ) · A;

BAD {a1, . . . ,ar} ← θ̂(B);
OK Choose an order A := (a1, . . . ,ar);
OK (b1 ⊗ c1, . . . ,br ⊗ cr)← (A†A(1))T ;
OK output← π

(
�
(
(a1, . . . ,ar), (b1 ⊗ c1, . . . ,br ⊗ cr)

))
.

where π : S×r → (S×r/Sr) and � is the Khatri–Rao product:
�(A,B) := (ai ⊗ bi)i.
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The magic map θ̂ needs to recover the vectors from the first
factor matrix when restricted to Nr;n1,n2,2:

θ̂|Nr;n1,n2,2
: Nr;n1,n2,2 −→ (Sn1−1)×r/Sr

B =
r∑
i=1

ai ⊗ bi ⊗ zi 7−→ {a1, . . . ,ar}

Since the input to θ̂ will be the result of a previous numerical
computation, the domain of definition of θ̂ should also
encompass a su�ciently large neighborhood of Nr;n1,n2,2!

For proving instability, it does not matter what θ̂ computes
outside of Nr;n1,n2,2.
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For a valid input A ∈ Nr;n1,n2,n3 , let {Ã1, . . . , Ãr} be the CPD (in
floating-point representation) returned by the PBA.

Our proof strategy consists of showing that for every ε > 0
there exists an open neighborhood Oε ⊂ Nr;n1,n2,n3 of r-nice
tensors such that the excess factor

ω(A) = observed forward error due to algorithm
maximum forward error due to problem

:=
minπ∈Sr

√∑r
i=1 ‖Ai − Ãi‖2

κ[τr;n1,n2,n3 ](A) · ‖A − fl(A)‖F

behaves like a constant times ε−1.
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Formally, we showed the following result:

Theorem (Beltrán, Breiding, Vannieuwenhoven (2018))
There exist a constant k > 0 and a tensor O ∈ Nr;n1,n2,n3 with
the following properties: For all su�ciently small ε > 0, there
exists an open neighborhood Oε of O, such that for all tensors
A ∈ Oε we have

1 A ∈ Nr;n1,n2,n3 is a valid input for a PBA, and
2 ω(A) ≥ kε−1.

In other words, the forward error produced by a PBA can be
larger than the maximum forward error expected from the
tensor decomposition problem by an arbitrarily large factor.
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Distribution of the condition number

We conceived the existence of this problem after seeing the
distribution of the condition number of random rank-1 tensors

Ai = ai ⊗ bi ⊗ ci ∈ Rn1×n2×n3

where
• ai ∈ Rn1 and bi ∈ Rn2 are arbitrary, and
• the ci ∈ Rn3 are i.i.d. random Gaussian vectors.

We showed, based on Cai, Fan, and Jiang (2013), that

P[κ ≥ α] ≥ P
[

max
1≤i 6=j≤r

1√
1− 〈ci, cj〉

≥ α
]
→ 1− e−Kr2α1−n3

,

as r →∞; herein, K is a constant depending only on n3.
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Empirical distribution of κ(A)
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dashed lines = empirical distribution.
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Empirical distribution of κ(A)
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i=1 ai ⊗ bi ⊗ ci ∈ R15×15×n ,

where
A = [a1, . . . ,a15] and B = [b1, . . . ,b15]

are random orthogonal matrices and C = [c1, . . . , c15] is a
Gaussian matrix.

dashed lines = empirical distribution.
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Empirical distribution of the excess factor
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Empirical distribution of the excess factor
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Empirical distribution of the excess factor
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Conclusions

Take-away story:
1 Tensors are conjectured to be generically r-identifiable for

almost all low ranks r.
2 The condition number of the CPD measures the stability of

the unique rank-1 tensors.
3 Reduction to a matrix pencil yields numerically unstable

algorithms for computing CPDs.
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Further reading

• Beltrán, Breiding, and Vannieuwenhoven, Pencil-based
algorithms for tensor rank decomposition are not stable,
SIAM J. Matrix Anal. and Appl.

• Beltrán, Breiding, and Vannieuwenhoven, The average condition
number of most tensor rank decomposition problems is infinite,
arXiv1903.05527.

• Breiding and Vannieuwenhoven, The condition number of join
decompositions, SIAM J. Matrix Anal. and Appl., 2018.

• Breiding and Vannieuwenhoven, On the average condition
number of tensor rank decompositions, arXiv:1801.01673.

• Breiding and Vannieuwenhoven, A Riemannian trust region
method for the canonical tensor rank approximation problem,
SIAM J. Optim, 2018.
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