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Hitchcock (1927) introduced the tensor rank decomposition
or CPD for tensors 4 € R > *"d;

-
ﬂ:Za}®a?-~®a§l
i=1

A

The rank of a tensor is the minimum number of rank-1 tensors
of which it is a linear combination.

Notation

S := {4 | rank(4) = 1} are the rank-one tensors.
o, := {4 | rank(A2) < r} are the tensors of rank at most r.
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A direct algorithm for order-3 tensors N

State-of-the art algorithms compute the CPD by applying
optimization algorithms on the goal function %(|2 — >7_; 4%

However, in some cases, the CPD of third-order tensors can be
computed directly via a generalized eigendecomposition.

For simplicity, assume that 2 € R"*"*" is of rank n. Say
n
ﬂ:Zai@)bi@ci.
i=1

The steps are as follows.
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1. Choose a matrix @ € R™*2 with orthonormal columns q1, q».
2. Compute the multilinear multiplication

X = (IJ,QT)‘ﬂZZiai@@bi@(QTCi)-
=1

nXnxXn nxnx2
eR . eR

Aa X

3. The two 3-slices X; and X5 of x are

=1

where A = [a;] € R"*" and likewise for B and C.
Hence, X1X2‘1 has the following eigenvalue decomposition:

X1X; ! = Adiag(q{ C) diag(aq3 €)' A~

from which A can be found as the matrix of eigenvectors.
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4. By a 1-flattening

we find

Ay = Zaz(bz &® Ci)T =A(B® C)T,
i=1

where B® C := [b; ® ¢;]; € R"**™. Computing
A® (A’lﬂl(l))T =AG0(BoC)=[a;®b;®ci,

solves the tensor decomposition problem.
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Let’s perform an experiment in Tensorlab v3.0 with this
decomposition algorithm.

Create a rank-25 random tensor of size 25 x 25 x 25:

% Ut{i} has as columns the i-th factors
>> Ut{1} = randn(25,25);

>> Ut{2} = randn(25,25);

>> Ut{3} = randn(25,25);

% generate the full tensor

>> A = cpdgen(Ut);
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Compute 4's decomposition and its distance to the input
decomposition, relative to the machine precision e ~ 2 - 10~16:

>> Ur = cpd_gevd(A, 25);
>> E = kr(Ut) - kr(Ur);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04

What happened?
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Let us look more closely at the computational problem:

e The input is a tensor 4 € g5 C R?°%25%25 of rank 25.
e The output is the tuple (a; ® b; ® ¢;)?3, € S*%.

Let f : 095 — S*?° be the function that maps a tensor to its
decomposition. Then, what we observed was

1/ () = f(A)]]
|4 -2
with |2 — 4| =~ 210716,

~8-10%
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The condition number quantifies the worst-case sensitivity
of f to perturbations of the input.

f()

i 1 () —f @)
rlf)(x) == lim s e

When f is differentiable: x[f](x) = ||d. f]|.

Problem: There is no function f : 095 — S*? that maps a
tensors to its decomposition.
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A short detour through algebraic geometry Ty~

If the set of rank-1 tensors {4, ..., 4.} is uniquely determined

given the rank-r tensor 4 = 4; + - - - + 4,, then we call 4 an
r-identifiable tensor.

Note that matrices are never r-identifiable, because

M=} a;®b; = AB" = (AX ")(BX")"
=1

for every invertible X. In general, these factorizations are
different.
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Kruskal (1977) gave a famous sufficient condition for proving
the r-identifiability of third-order tensors.

More recently r-identifiability was studied in algebraic
geometry. This is a natural framework because the set of
rank-1 tensors

St={al®a’® ---@a’|a" cC™\ {0}}
is the smooth projective Segre variety.
The set of tensors of rank bounded by r,
Uidc ={a+-+4|4¢cS},

is the Zariski-open constructible part of the projective
r-secant variety of the Segre variety.
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In the words of algebraic geometry:

oC is generically r-identifiable, if the addition map:

P, :SE % xSt 5T

(A,.... 34 )— A+ -+ 4
is of degree r!.

Letn; > --- > ngand

d
nl “ e nd
Ter = , rub:ng---nd—Z(nk—l).
1+ (n; — 1) =
Conjectured general rule:
r>reord=2 — not gen. r-identifiable
ny > ryp and r > ryp — not gen. r-identifiable

none of foregoingand r < r¢r —  gen. r-identifiable;

see Chiantini, Ottaviani, Vannieuwenhoven (2014) for a proof
in the case n; ---ng < 15000.
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The real case is more involved because now
O .—O' —{/’2’.1‘1‘ +ﬂr|ﬂi€SR}7
is a semi-algebraic set.
Qi, Comon, and Lim (2016) showed that if o is generically
r-identifiable, then it follows that the set of real rank-r tensors

with multiple complex CPDs is contained in a proper
Zariski-closed subset of o.

In this sense, oX is also generically r-identifiable.

In the foIIowing we abbreviate S := S¥, 5, := o and we will
assume that ¢ is generically r-identifiable.
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Defining the tensor decomposition map N

To define the tensor decomposition map, we analyze the real
addition map:
D, :Sx- xS RMXXN
(A1, %)= A+ + 4

Note that the domain and codomain are smooth manifolds.

The idea is to define ®,. on the quotient of S*” by the
symmetric group and restricting the domain of @, to a
Zariski-open smooth submanifold. Then, ®, restricts to a
diffeomorphism onto its image.
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Letn = (n1,...,n4q).

Let M,., C S*" be the set of tuples of n; x --- x ng4 rank-1
tensors a = (4y,. .., 4,) that satisfy:

© o,(a) is a smooth point of the semi-algebraic set o,;
@ @, (a) is complex r-identifiable;
© the derivative d,®, is injective

Definition
The set of r-nice tensors is

-A/;“;n = (I)r (Mr;n)~
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One can prove the following results:

Proposition
Let o€ be generically r-identifiable. Then, the following holds.
© N, . is an open dense submanifold of o,.

O M, := M,.,/S, is a manifold and the projection is a
local diffeomorphism.

© The addition map
(I)'r:M\r;n_)-/\/’r;na{/qla"-aﬂr}_>/q1+"'+/qfr

is a diffeomorphism.
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The condition number of the CPD N

The inverse of @, : M., — Ny is

Trn :Nen = My, 21+ + 24— {4,.... 4.}

We call it the tensor rank decomposition map.

Definition
The condition number of the tensor rank decomposition for a
tensor 4 € N,y is

K[Trin] () = || daTrnll2 = [[(da®y) 7" |2.
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Interpretation Ve

If

< Q.

T
;4:;41+...+;4T:Zai1®...®a

.
$:$1+...+$r22b%®...®bg

are tensors in R™**"4_then for || 4 — B||r ~ 0 we have the
asymptotically sharp bound

7T€7‘

min JZ |2 — ] K[Trn](A) - 12— B|F

condition number backward error

forward error
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Back to our example N

>> Ut{1} = randn(25,25);
>> Ut{2} = randn(25,25);
>> Ut{3} = randn(25,25);

>> A = cpdgen(Ut);
>> Ur = cpd_gevd(A, 25);
>> E = kr(Ut) - kr(Ur);
>> norm( E(:), 2 ) / eps
ans =

8.6249e+04

We understand now that this can happen, because of a high
condition number. However,

>> kappa = condition_number( Ut )
ans =
2.134
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The only explanation is that there is something wrong with
the algorithm.

We show that algorithms based on a reduction to tensors in
R™1x"2X2 gre numerically unstable.

The forward error produced by the algorithm divided by the

backward error is “much” larger than the condition number,
for some inputs.
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Pencil-based algorithms N

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

r
A= Zai ®@b;®c; € Nr;nl,nQ,n3 C R xn2Xnd
=1

in the following way:

S1. Choose a fixed Q € R™*? with orthonormal columns.

S2. B+ (I,1,Q") - a;

S3. {ai,...,a.} < 0(B);

S4.a Choose an order A := (ay,...,a,);

S4.b (by®cy,...,b, ®c;) + (Alay)T;

S5. output + 7(®((ai,...,a,), (b1 ®ci,...,b, ®c;))).
where 7 : §*" — (8*"/&,) and ® is the Khatri-Rao product:
®(A, B) := (a; ® b;);.
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Pencil-based algorithms N

A pencil-based algorithm (PBA) is an algorithm that
computes the CPD of

r
A= Zai ®@b;®c; € Nr;nl,nQ,n3 C R xn2Xnd
=1

in the following way:

OK Choose a fixed Q € R™*2 with orthonormal columns.
0K B+« (I,1,Q") - 4,

BAD {ai,...,a,} < 0(B);
OK Choose an order A := (ay,...,a,);
OK (b1®ci,...,by®c,) + (Alay))T;
OK output < 7(®((ai,...,a,), (b1 ®c1,...,b, ®¢;))).
where 7 : §*" — (8*"/&,) and ® is the Khatri-Rao product:
(A, B) := (a; ® by);.
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The magic map @ needs to recover the vectors from the first
factor matrix when restricted to NV,..,,, », :

~

0|M‘;nl,n2,2 : M§n17n272 — (Snlil)xr/gr

.
iB:Zai®bi®zi'—>{a1,...,ar}
=1

Since the input to 6 will be the result of a previous numerical
computation, the domain of definition of 6 should also
encompass a sufficiently large neighborhood of N,..;,, », 2!

For proving instability, it does not matter what §computes
outside of Ny, ny.2-
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For a valid input 4 € Ny, noms, 1€t {41,..., 4.} be the CPD (in
floating-point representation) returned by the PBA.

Our proof strategy consists of showing that for every ¢ > 0
there exists an open neighborhood O, C N, ny.ns Of r-nice
tensors such that the excess factor

(2) observed forward error due to algorithm
w ==
maximum forward error due to problem
_ Mingeg, \/erzl 143 — 4]
KlTriny nama] () - 12 — () || P

behaves like a constant times ¢~ L.
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Formally, we showed the following result:

Theorem (Beltran, Breiding, Vannieuwenhoven (2018))

There exist a constant k > 0 and a tensor O € Ny, nyns With
the following properties: For all sufficiently small e > 0, there
exists an open neighborhood O, of 0, such that for all tensors
4 e O, we have

O A € Ny nyng is a valid input for a PBA, and

O w(a) > ke L.

In other words, the forward error produced by a PBA can be
larger than the maximum forward error expected from the
tensor decomposition problem by an arbitrarily large factor.
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Distribution of the condition number Ve

We conceived the existence of this problem after seeing the
distribution of the condition number of random rank-1 tensors

j% = ad @Ql)iQ§ Ci (S EENlX?lQXng

where
e a, € R™ and b; € R are arbitrary, and
e the c; € R™ are i.i.d. random Gaussian vectors.

We showed, based on Cai, Fan, and Jiang (2013), that
1 _J(r2a17n3
P[nZa]zP[ max 7204} —1—ce
1<i#£j<r 1 4’<Ci,cj>

I

as r — oo; herein, K is a constant depending only on ns.
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Empirical distribution of «(2)

15x 15 xn

n=2 ?
n=3 |5
n=>5 |3
oy n=10|7
“\\\\ n:15é
.-’-.\. "
108 1010 1012
xr
10° random rank-15 tensors Y12, a, ® b, ® ¢; € R1>*15x7,
where

A = [al,,a15] and B == [b1’7b15] and C = [C17. ..7015]

are Gaussian matrices.

dashed lines = empirical distribution.
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Empirical distribution of () N

15 x 15 xn

108 108 1010 1012
T

10° random rank-15 tensors 3°1%, a; ® b; ® ¢; € RIPX19xn
where

are random orthogonal matrices and C' = [c;,...,c 5] is a
Gaussian matrix.

dashed lines = empirical distribution.
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Empirical distribution of the excess factor Ty~

0 23x17%x5
10
107"
= 1072
A
3
~ 108
1074 cpd_pba
cpd_pba2
cpd_gevd
10 : :
10° 10° 1010

x

10° random rank-17 tensors 317, a; ® b, ® ¢; € R23*17x5;
A: [al,’al'?] and B — [b1’7b17] and C: [017"'7C17]

are Gaussian matrices.
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Empirical distribution of the excess factor Ty~

o 23 x 17 x 15
107 F—
107"
= 1072
A
3
~ 108
1074 cpd_pba
cpd_pba2
cpd_gevd
107 - .
10° 10° 1010

x

10° random rank-17 tensors Y17, a;, ® b, ® ¢; € RZ3*17x15.
A: [al,’al'?] and B — [b1’7b17] and C: [017"'7C17]

are Gaussian matrices.
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Empirical distribution of the excess factor Ty~

0 23 x 23 x 23
107" F——
101k
2
= 10
A
3
~ o3
104+ cpd_pba
cpd_pba2
cpd_gevd
107 : :
10° 10° 1010

T

10° random rank-23 tensors Y22, a, ® b, @ ¢; € R?3*23x23;
A: [al,’a23] and B — [b1’7b23] and C: [017"'7C23]

are Gaussian matrices.
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Conclusions N

Take-away story:

© Tensors are conjectured to be generically r-identifiable for
almost all low ranks r.

® The condition number of the CPD measures the stability of
the unique rank-1 tensors.

© Reduction to a matrix pencil yields numerically unstable
algorithms for computing CPDs.
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e Beltran, Breiding, and Vannieuwenhoven, Pencil-based
algorithms for tensor rank decomposition are not stable,
SIAM J. Matrix Anal. and Appl.

e Beltran, Breiding, and Vannieuwenhoven, The average condition
number of most tensor rank decomposition problems is infinite,
arXiv1903.05527.

e Breiding and Vannieuwenhoven, The condition number of join
decompositions, SIAM J. Matrix Anal. and Appl., 2018.

e Breiding and Vannieuwenhoven, On the average condition
number of tensor rank decompositions, arXiv:1801.01673.

e Breiding and Vannieuwenhoven, A Riemannian trust region
method for the canonical tensor rank approximation problem,
SIAM J. Optim, 2018.
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