# Parallel Algorithms for CP and Tucker Decompositions 

Grey Ballard

Low-rank Optimization and Applications Workshop<br>MPI Leipzig<br>April 4, 2019

WAKE FOREST
U N I V E R S I T Y

## Motivation: multidimensional data analysis requires scalable algorithms

Dynamic functional connectivity fMRI data


- measures correlation between regions of the brain over time
- experiments can include cognitive task
- study multiple subjects across groups



## 200 regions $\times 200$ regions $\times 225$ time steps $\times 59$ subjects 4 GB of data

## CP decomposition discovers patterns of synchronization across brain networks



## Motivation: Numerical simulations producing more data than we can handle



$$
512 \times 512 \times 5123 D \text { grid, }
$$

128 time steps, 64 variables: 8 terabytes of data (double precision)

## Tucker decomposition yields huge compression for combustion simulation data



Natural five-way multiway structure of scientific data


Compression rates as fidelity varies for 550GB simulation dataset

# Parallel Computation of CP Decompositions with Nonnegativity Constraints 

joint work with Srinivas Eswar ${ }^{1}$, Koby Hayashi ${ }^{1}$, Ramakrishnan Kannan², and Haesun Park ${ }^{1}$

${ }^{1}$ Georgia Tech<br>${ }^{2}$ Oak Ridge National Lab

## CP Notation



$$
\left.\begin{array}{lr}
\mathcal{X} \approx \mathbf{u}_{1} \circ \mathbf{v}_{1} \circ \mathbf{w}_{1}+\cdots+\mathbf{u}_{R} \circ \mathbf{v}_{R} \circ \mathbf{w}_{R}, & \mathcal{X} \in \mathbb{R}^{I \times J \times K} \\
\mathcal{X} \approx \llbracket \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket, & \mathbf{U} \in \mathbb{R}^{I \times R}, \mathbf{v} \in \mathbb{R}^{J \times R}, \mathbf{W} \in \mathbb{R}^{K \times R} \\
\text { are factor matrices }
\end{array}\right\}
$$

Notation convention: scalar dimension $N$, index $n$ with $1 \leq n \leq N$

## NNCP Optimization Problem

$$
\approx+
$$

For fixed rank $R$, we want to solve

$$
\underset{\mathbf{u}, \mathbf{v}, \mathbf{w} \geq 0}{\arg \min }\left\|\mathcal{X}-\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r}\right\|
$$

## Alternating Optimization (AO)

Fixing all but one factor matrix, we have a linear nonnegative least squares (NNLS) problem:

$$
\underset{\mathbf{v} \geq 0}{\arg \min }\left\|\mathcal{X}-\sum_{r=1}^{R} \hat{\mathbf{u}}_{r} \circ \mathbf{v}_{r} \circ \hat{\mathbf{w}}_{r}\right\|
$$

or equivalently

$$
\underset{\mathbf{V} \geq 0}{\arg \min }\left\|\mathbf{X}_{(2)}-\mathbf{V}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{\top}\right\|_{F}
$$

$\odot$ is the Khatri-Rao product, a column-wise Kronecker product
AO works by alternating over factor matrices, updating one at a time by solving the corresponding linear NNLS problem

## Nonnegative (Linear) Least Squares

Generic problem:

$$
\underset{\mathbf{Y} \geq 0}{\arg \min }\|\mathbf{A} \mathbf{Y}-\mathbf{B}\|_{F}
$$

Many possible algorithms:

- Multiplicative Updates [LS99]
- Hierarchical Alternating Least Squares [CZPA09]
- Block Principal Pivoting [KP11]
- Alternating Direction Method of Multipliers [LS15]
- Nesterov-type Algorithm [LKL+17]


## Nonnegative (Linear) Least Squares

Generic problem:

$$
\underset{\mathbf{Y} \geq 0}{\arg \min }\|\mathbf{A} \mathbf{Y}-\mathbf{B}\|_{F}
$$

Our problem:

$$
\underset{\mathbf{V} \geq 0}{\arg \min }\left\|\mathbf{X}_{(2)}-\mathbf{V}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{\top}\right\|_{F}
$$

All algorithms compute $\mathbf{A}^{T} \mathbf{B}$ and $\mathbf{A}^{T} \mathbf{A}$, which for us are

$$
\mathbf{A}^{T} \mathbf{B} \rightarrow \mathbf{X}_{(2)}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}}) \quad \text { and } \quad \mathbf{A}^{T} \mathbf{A} \rightarrow(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{T}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})
$$

## Nonnegative (Linear) Least Squares

Generic problem:

$$
\underset{\mathbf{Y} \geq 0}{\arg \min }\|\mathbf{A} \mathbf{Y}-\mathbf{B}\|_{F}
$$

Our problem:

$$
\underset{\mathbf{V} \geq 0}{\arg \min }\left\|\mathbf{X}_{(2)}-\mathbf{V}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{\top}\right\|_{F}
$$

All algorithms compute $\mathbf{A}^{\top} \mathbf{B}$ and $\mathbf{A}^{\top} \mathbf{A}$, which for us are

$$
\mathbf{A}^{T} \mathbf{B} \rightarrow \mathbf{X}_{(2)}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}}) \quad \text { and } \quad \mathbf{A}^{T} \mathbf{A} \rightarrow(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{T}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})
$$

- $\mathbf{X}_{(2)}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})$ is called Matricized-Tensor Times Khatri-Rao Product (MTTKRP) and is expensive to compute
- $(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{T}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})$ can be computed relatively cheaply as $\hat{\mathbf{W}}^{T} \hat{\mathbf{W}} * \hat{\mathbf{U}}^{T} \hat{\mathbf{U}}$, where $*$ is elementwise product


## Parallelizing MTTKRP

Our goal is to perform MTTKRP in parallel as fast as possible

- How do we distribute the tensor across processors?
- How do we distribute the matrices across processors?
- How do we divide up the computation?
- How much interprocessor communication will that require?


## Parallel Communication Lower Bound

## Theorem ([BKR18])

Any parallel MTTKRP algorithm involving a tensor with
$I_{k}=I^{1 / N}$ for all $k$ and that evenly distributes one copy of the input and output performs at least

$$
\Omega\left(\left(\frac{N I R}{P}\right)^{\frac{N}{2 N-1}}+N R\left(\frac{I}{P}\right)^{1 / N}\right)
$$

sends and receives. (Second term will typically dominate.)

- $N$ is the number of modes
- I is the number of tensor entries
- $I_{k}$ is the dimension of the $k$ th mode
- $R$ is the rank of the CP model
- $P$ is the number of processors


## Parallelization Approach

(1) Logically organize processors into N-D grid (match tensor)

$$
P_{1} \times P_{2} \times \cdots \times P_{N}
$$

(2) Each processor is assigned a (cubical) subtensor of size

$$
\frac{I_{1}}{P_{1}} \times \frac{I_{2}}{P_{2}} \times \cdots \times \frac{I_{N}}{P_{N}}
$$

(3) Each processor is assigned a subset of rows of each factor matrix, with dimensions

$$
\frac{I_{1}}{P} \times R, \quad \frac{I_{2}}{P} \times R, \quad \cdots, \quad \frac{I_{N}}{P} \times R
$$

(4) Distribute computation based on where tensor data lives, communicating only the factor matrices as needed

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$
(3) All-Gathers all the rows needed from W

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$
(3) All-Gathers all the rows needed from W
(4) Computes its contribution to rows of $\mathbf{M}$ (local MTTKRP)

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$
(3) All-Gathers all the rows needed from W
(4) Computes its contribution to rows of $\mathbf{M}$ (local MTTKRP)

## Communication-Optimal Parallel Algorithm (3D)



Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$
(3) All-Gathers all the rows needed from W
(4) Computes its contribution to rows of $\mathbf{M}$ (local MTTKRP)
(5) Reduce-Scatters to compute and distribute $\mathbf{M}$ evenly

## Communication-Optimal Parallel Algorithm (3D)



## M

## Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}$
(3) All-Gathers all the rows needed from W
(4) Computes its contribution to rows of $\mathbf{M}$ (local MTTKRP)
(5) Reduce-Scatters to compute and distribute $\mathbf{M}$ evenly
(6) Use M to solve NNLS problem for $\mathbf{V}$

## Rest of the Algorithm

- With correct processor grid, MTTKRP algorithm achieves communication lower bound
- Also need to compute $\mathbf{G}=\mathbf{U}^{T} \mathbf{U} * \mathbf{W}^{T} \mathbf{W}$
- involves communication
- generally lower order cost
- Lots of overlap across MTTKRP computations
- save communication: keep temporary copies around
- save computation: use dimension tree optimization
- $O(N)$ savings, where $N$ is the number of modes
- Can choose algorithm to compute $\mathbf{V}$ from $\mathbf{M}$ and $\mathbf{G}$
- for some algorithms, this is all local computation
- some algorithms require extra computation of global information, can add significant cost


## Weak Scaling Results for 4D Synthetic Data



- local tensor is fixed at $128 \times 128 \times 128 \times 128$


## Mouse Brain Data



- tensor is pixels $\times$ time $\times$ trial: $1.4 M \times 69 \times 25$
- about 20 GB when stored in double precision


## Strong Scaling Results for Mouse Brain Data



## Convergence Results for Mouse Brain Data



## Software: PLANC

Parallel Low-rank Approximations with Non-negativity Constraints


```
https://github.com/ramkikannan/planc
```

- Open source code for computing NMF and NNCP
- MPI/BLAS/LAPACK/C++11
- Designed for dense tensors and dense/sparse matrices
- Can offload computation to GPUs if available


## Efficient Parallel Algorithm for Tucker Decompositions of Dense Tensors

joint work with Woody Austin ${ }^{4}$, Alicia Klinvex ${ }^{5}$, Tammy
Kolda ${ }^{6}$, and Hemanth Kolla ${ }^{6}$
${ }^{4}$ UT Austin
${ }^{5}$ Bettis Atomic Power Laboratory
${ }^{6}$ Sandia National Labs

## Tucker Notation


$\boldsymbol{X} \approx \mathcal{G} \times{ }_{1} \mathbf{U} \times{ }_{2} \mathbf{V} \times_{3} \mathbf{W}$
$\mathcal{X} \approx \llbracket \mathcal{G} ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket$,
$x_{j k} \approx \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r} u_{i p} v_{j q} w_{k r}, \quad 1 \leq i \leq I, 1 \leq j \leq J, 1 \leq k \leq K$

## Algorithm: ST-HOSVD [VVM12]

## ST-HOSVD $(\mathcal{X}, \varepsilon)$

(1) Compute $\mathbf{U}$ with dimension $I \times P$
(a) Compute Gram matrix $\mathbf{X}_{(1)} \mathbf{X}_{(1)}^{\top}$
(b) Use eigendecomposition to determine $P$ and $\mathbf{U}$
(c) TTM to shrink to size $P \times J \times K: \boldsymbol{y}=\boldsymbol{X} \times{ }_{1} \mathbf{U}^{T}$
(2) Compute $\mathbf{V}$ with dimension $J \times Q$
(a) Compute Gram matrix $\mathbf{Y}_{(2)} \mathbf{Y}_{(2)}^{\top}$
(b) Use eigendecomposition to determine $Q$ and $\mathbf{V}$
(c) TTM to shrink to size $P \times Q \times K: \mathcal{Z}=\boldsymbol{y} \times{ }_{2} \mathbf{V}^{\top}$
(3) Compute $\mathbf{W}$ with dimension $K \times R$
(a) Compute Gram matrix $\mathbf{Z}_{(3)} \mathbf{Z}_{(3)}^{\top}$
(b) Use eigendecomposition to determine $R$ and $\mathbf{W}$
(c) TTM to shrink to size $P \times Q \times R: \mathcal{G}=\boldsymbol{Z} \times{ }_{3} \mathbf{W}^{T}$

## Key kernels

Key kernels of ST-HOSVD are

- Gram: short, fat matrix times its transpose $\left(\mathbf{X}_{(1)} \mathbf{X}_{(1)}^{T}\right)$
- Evecs: eigendecomposition of small symmetric matrix
- TTM: tensor times matrix to shrink problem $\left(\mathbf{U}^{T} \mathbf{X}_{(1)}\right)$

Our goal is to parallelize Gram and TTM efficiently

## Tensor data distribution across processors

For $N$-way tensor, we use $N$-way processor grid with Cartesian block distribution (same as for CP)


Example: $P_{1} \times P_{2} \times P_{3}=3 \times 5 \times 2$
Local tensor size: $\frac{I}{P_{1}} \times \frac{J}{P_{2}} \times \frac{K}{P_{3}}$

## Parallel matricization

Matricizing distributed tensor requires no data movement: matricized tensor already in standard matrix distribution


## Parallel Gram Computation



- each processor column redistributes its tensor data


## Parallel Gram Computation



- each processor column redistributes its tensor data
- each processor computes local outer product
- sum across all processors via All-Reduce


## Tensor Times Matrix



Tensor-times-matrix (TTM) is matrix multiplication with matricized tensor

## Parallel Tensor Times Matrix

$$
\text { Example: } P_{1} \times P_{2} \times P_{3}=3 \times 5 \times 2
$$



- Matrix V distributed conformally to 2 nd mode of tensor $\mathcal{X}$
- Matrix V distributed redundantly on processor columns
- Local computation is matrix multiplication
- Communication pattern is reduce-scatter (MPI collective)


## Time Breakdown of Parallel ST-HOSVD

Parallel running time example


- 5-way tensor of size 4.4 TB
- reduced to 10 GB (410X)
- 1100 processors (cores)
- 55 seconds total

Observations

- load-balanced execution
- cycle of Gram-Eig-TTM shrinks over time
- writing original tensor to disk is slower by 10 X


## Weak Scaling on Synthetic Data

## Problem Setup

- local tensor fixed at $200 \times 200 \times 200 \times 200$
- local core fixed at $20 \times 20 \times 20 \times 20$


## Result

- as problem size grows with number of processors, high efficiency maintained up to 31 K cores



## Combustion Simulation (S3D) Data

Stat-Planar dataset

- $500 \times 500 \times 500 \times 11 \times 400$
- 4.4 TB of total storage
- use 250 nodes to process

Two compression scenarios

- High: 1e-2 error, 20,000X comp.
- Low: 1e-4 error, 400X comp.

Three processor grids

- A: $1 \times 1 \times 40 \times 1 \times 100$
- B: $10 \times 8 \times 5 \times 1 \times 10$
- C: $40 \times 10 \times 1 \times 1 \times 10$


## Gram Algorithm Comparison



- Old algorithm from our previous work [ABK16]


## Processor Grid Comparison



## Flame Surface Reconstruction



Flame surface at single time step.
Using temperature variable (iso-value is $2 / 3$ of max).

## Software: TuckerMPI



```
https://gitlab.com/tensors/TuckerMPI
```

- Open source code for computing Tucker compression
- MPI/BLAS/LAPACK/C++11
- Designed for dense tensors


## Summary

- CP and Tucker decompositions are useful and popular tools for multidimensional data analysis, can be applied to large datasets
- Parallel CP bottlenecked by MTTKRP
- our algorithm's communication cost matches lower bound
- we avoid redundant computation and communication across modes
- Parallel Tucker bottlenecked by SVD and TTM
- need communication-efficient distributions and algorithms
- we can tune the processor grid for efficiency
- partial reconstruction for analysis can be done on laptop


## For more details:

## Parallel Nonnegative CP Decomposition of Dense Tensors <br> Grey Ballard, Koby Hayashi, and Ramakrishnan Kannan International Conference on High Performance Computing 2018 <br> https://ieeexplore.ieee.org/document/8638076 <br> [BHK18]

TuckerMPI: Efficient Parallel Software for Tucker Decompositions of Dense Tensors Grey Ballard, Alicia Klinvex, and Tamara G. Kolda arXiv 2019<br>https://arxiv.org/abs/1901.06043<br>[BKK19]

## Local tensor data layout in memory

Local matricizations (with no data movement) lead to matrices in funny layouts

Example: $2 \times 2 \times 2 \times 2$ tensor's matricization layouts



## More eyeball norm comparisons (JICF)



Original


$$
\begin{gathered}
\epsilon=10^{-4} \\
(110 \mathrm{X})
\end{gathered}
$$


$\epsilon=10^{-2}$
(40000X)


## More eyeball norm comparisons (HCCI)



## Compressibility depends on data (sing. value decay)



## Partial reconstruction

Reconstruction requires as much space as the original data!

$$
\hat{\boldsymbol{X}}=\mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \mathbf{U}^{(3)} \times_{4} \mathbf{U}^{(4)} \times_{5} \mathbf{U}^{(5)}
$$

$N_{1} \times N_{2} \times N_{3} \times N_{4} \times N_{5}$
But we can just reconstruct the portion that we need at the moment:


$$
\overline{\boldsymbol{X}}=\boldsymbol{\mathcal { G }} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \mathbf{C}^{(3)} \mathbf{U}^{(3)} \times_{4} \mathbf{C}^{(4)} \mathbf{U}^{(4)} \times_{5} \mathbf{C}^{(5)} \mathbf{U}^{(5)}
$$

$$
\begin{array}{r}
N_{1} \times N_{2} \times \frac{N_{3}}{2} \times 1 \times 1 \\
\left.\mathbf{C}^{(3)}=\left[\begin{array}{cccc}
1 / 2 & 0 & \cdots & 0 \\
1 / 2 & 0 & \cdots & 0 \\
0 & 1 / 2 & \cdots & 0 \\
0 & 1 / 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right], ~\right]
\end{array}
$$

Downsample


## Tucker compression

$$
\underbrace{X}_{I \times J \times K} \approx \underbrace{\mathcal{G}}_{P \times Q \times R} \times 1 \underbrace{\mathbf{U}}_{I \times P} \times 2 \underbrace{\mathbf{V}}_{J \times Q} \times 3 \underbrace{\mathbf{W}}_{K \times R}
$$

## Compression ratio

$$
C=\frac{I J K}{P Q R+I P+J Q+K R} \approx \frac{I J K}{P Q R}
$$

## Tucker approximation error



$$
x_{i j k} \approx \tilde{x}_{i j k}=\sum_{p, q, r} g_{p q r} u_{i p} v_{j q} w_{k r}
$$

Approximation error

$$
\frac{\|\mathcal{X}-\tilde{X}\|}{\|\mathcal{X}\|}=\frac{\left(\sum_{i, j, k}\left(x_{i j k}-\sum_{p, q, r} g_{p q r} u_{i p} v_{j q} w_{k r}\right)^{2}\right)^{1 / 2}}{\left(\sum_{i, j, k} x_{i j k}^{2}\right)^{1 / 2}}
$$

## Strong scaling benchmark

Problem Setup

- $200 \times 200 \times 200 \times 200$ data tensor ( 12 GB )
- $20 \times 20 \times 20 \times 20$ core tensor
- $24 \cdot 2^{k}$ processors (cores)

Result

- small problem, but running time decreases with up to 6144 cores

Compute Platform

- Edison (NERSC), Cray XC30
- 24-core nodes



## References I

三
Woody Austin, Grey Ballard, and Tamara G. Kolda.
Parallel tensor compression for large-scale scientific data.
In Proceedings of the 30th IEEE International Parallel and
Distributed Processing Symposium, pages 912-922, May 2016.
Re Grey Ballard, Koby Hayashi, and Ramakrishnan Kannan.
Parallel nonnegative CP decomposition of dense tensors.
In 25th IEEE International Conference on High Performance Computing (HiPC), pages 22-31, Dec 2018.

E Grey Ballard, Alicia Klinvex, and Tamara G. Kolda.
TuckerMPI: Efficient parallel software for Tucker decompositions of dense tensors.
Technical Report 1901.06043, arXiv, 2019.

## References II

围 Grey Ballard，Nicholas Knight，and Kathryn Rouse．
Communication lower bounds for matricized tensor times Khatri－Rao product．
In Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium，pages 557－567，May 2018.

國 Andrzej Cichocki，Rafal Zdunek，Anh－Huy Phan，and Shun－ichi Amari．
Nonnegative matrix and tensor factorizations：applications to exploratory multi－way data analysis and blind source separation． John Wiley \＆Sons， 2009.

國 Jingu Kim and Haesun Park．
Fast nonnegative matrix factorization：An active－set－like method and comparisons．
SIAM Journal on Scientific Computing，33（6）：3261－3281， 2011.

## References III

嗇 Tony Hyun Kim, Yanping Zhang, Jérôme Lecoq, Juergen C. Jung, Jane Li, Hongkui Zeng, Cristopher M. Niell, and Mark J. Schnitzer.
Long-term optical access to an estimated one million neurons in the live mouse cortex.
Cell Reports, 17(12):3385-3394, 2016.
R A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos.
Nesterov-based alternating optimization for nonnegative tensor factorization: Algorithm and parallel implementation.
IEEE Transactions on Signal Processing, Nov 2017.
R- Daniel D Lee and H Sebastian Seung.
Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788, 1999.

## References IV

A. P. Liavas and N. D. Sidiropoulos.

Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers.
IEEE Transactions on Signal Processing, 63(20):5450-5463, Oct 2015.

Rick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen.
A new truncation strategy for the higher-order singular value decomposition.
SIAM Journal on Scientific Computing, 34(2):A1027-A1052, 2012.

