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What to compute?

In geometry we are interested in D-modules not only on affine
spaces but on more general varieties such as Grassmannians, flag
varieties etc.

While for Weyl algebras many useful routines have
been implemented, there seem to be hardly any computational
tools for D-modules on projective (or even affine!) varieties.

For geometric applications one of the most important desiderata
would be direct images for projection maps f : Y = X × Z → X
of smooth varieties.

Here we usually work with right D-modules M , so the direct image
is

fD
∗ (M ) = Rf∗(M ⊗LDY

DY→X)

' Rf∗
[
M ⊗OY

Altd(TY/X)→ · · · →M ⊗OY
TY/X →M

]
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The convolution product

An interesting case is the convolution of holonomic D-modules on
commutative group varieties G.

It is defined by

∗ : Hol(DG)×Hol(DG) −→ Dbhol(DG),

M1 ∗M2 = fD
∗ (M1 � M2),

where

• M1 � M2 = pr∗1(M1)⊗ pr∗2(M2) ∈ Hol(DG×G),

• f : G×G→ G, (a, b) 7→ ab is the multiplication in G.

Let’s look at two concrete examples: Tori and abelian varieties.
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Warm-up: Hypergeometric D-modules in dimension 1

For P,Q ∈ C[s] \ {0} consider the hypergeometric D-module

HP,Q = D/D · (P (z∂)− zQ(z∂))

on Gm = SpecC[z, z−1].

This is a holonomic left D-module, and
it is simple iff the polynomials P and Q have no common zeroes
modulo Z. Hypergeometric modules appear in many contexts:

• rigid local systems on P1 \ {0, 1,∞},
• construction of examples in inverse Galois theory,

• equidistribution for exponential sums over finite fields, ...

In dimension 1 they are all obtained by convolution as follows.
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Warm-up: Hypergeometric D-modules in dimension 1

Any simple holonomic D-module M on Gm has non-negative Euler
characteristic

χ(M ) =
∑
i∈Z

(−1)i dim Hi(Gm,DR(M )) ≥ 0,

with equality iff M = D/D(x∂ − c) for some c ∈ C (exercise).

Theorem (Katz)

The following are equivalent:

• χ(M ) = 1,

• M is hypergeometric,

• M is an iterated convolution of elementary modules of the
form Hc,1 = δc, Hs−α,1 and H1,s−α where c ∈ C and α
varies in a set of representatives for C/Z.
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What about higher-dimensional tori?

Now let’s move to affine tori T = Gnm of any dimension n ∈ N.

Theorem (Gabber-Loeser)

1 Any simple M ∈ Hol(DT ) satisfies χ(M ) ≥ 0.

2 Equality holds iff there exists a splitting T ' S×Gm such
that

M ' N � D/D(x∂ − c) with N ∈ Hol(DS), c ∈ C.

3 The subcategory Hol(DT ) ⊂ Hol(DT ) of modules with no
subobjects or quotients as above is Tannakian wrt “∗”.



What about higher-dimensional tori?

Now let’s move to affine tori T = Gnm of any dimension n ∈ N.

Theorem (Gabber-Loeser)

1 Any simple M ∈ Hol(DT ) satisfies χ(M ) ≥ 0.

2 Equality holds iff there exists a splitting T ' S×Gm such
that

M ' N � D/D(x∂ − c) with N ∈ Hol(DS), c ∈ C.

3 The subcategory Hol(DT ) ⊂ Hol(DT ) of modules with no
subobjects or quotients as above is Tannakian wrt “∗”.



What about higher-dimensional tori?

Now let’s move to affine tori T = Gnm of any dimension n ∈ N.

Theorem (Gabber-Loeser)

1 Any simple M ∈ Hol(DT ) satisfies χ(M ) ≥ 0.

2 Equality holds iff there exists a splitting T ' S×Gm such
that

M ' N � D/D(x∂ − c) with N ∈ Hol(DS), c ∈ C.

3 The subcategory Hol(DT ) ⊂ Hol(DT ) of modules with no
subobjects or quotients as above is Tannakian wrt “∗”.



What about higher-dimensional tori?

Now let’s move to affine tori T = Gnm of any dimension n ∈ N.

Theorem (Gabber-Loeser)

1 Any simple M ∈ Hol(DT ) satisfies χ(M ) ≥ 0.

2 Equality holds iff there exists a splitting T ' S×Gm such
that

M ' N � D/D(x∂ − c) with N ∈ Hol(DS), c ∈ C.

3 The subcategory Hol(DT ) ⊂ Hol(DT ) of modules with no
subobjects or quotients as above is Tannakian wrt “∗”.



Hypergeometric D-modules on tori

The last phrase means that there is an affine group G over C with
an equivalence

ω : Hol(DT )
∼−→ Rep(G)

translating ∗ into the usual tensor product ⊗ of representations.

We have χ(M ) = dim(ω(M )) for all M , and representations of
dimension one are precisely the hypergeometric modules:

Theorem (Loeser-Sabbah)

A module M ∈ Hol(DT ) has χ(M ) = 1 iff it is a convolution
of pushforwards of elementary hypergeometric modules on Gm
under closed embeddings i : Gm ↪→ T of tori.
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Remarks

• Euler characteristics have a meaning in algebraic statistics:

Algebraic subvarieties X ⊂ T of maximum likelihood degree 1
are related to GKZ systems (June Huh).

In general, the perverse intersection complex δX of any X ⊂ T
has χ(δX) ≥ MLdeg(X) (Huh-Sturmfels and Budur-Wang).

• What about representations of dimension > 1?

To understand the Tannakian group G one needs to know its
invariants in tensor powers of representations, so we want to
compute Hom(δ1,M1 ∗M2) for M1,M2 ∈ Hol(DT ).

...this can be done by computer algebra!
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Getting serious: Abelian varieties

Now let A be a complex abelian variety.

As a complex manifold A = Cg/L for a lattice L ⊂ Cg of maximal
rank. For g = 1 we find elliptic curves:

For g > 1 it becomes much harder to work with explicit equations
for projective models, but there are some well-understood families
such as the Horrocks-Mumford abelian surfaces A ⊂ P4...



Getting serious: Abelian varieties

Now let A be a complex abelian variety.

As a complex manifold A = Cg/L for a lattice L ⊂ Cg of maximal
rank.

For g = 1 we find elliptic curves:

For g > 1 it becomes much harder to work with explicit equations
for projective models, but there are some well-understood families
such as the Horrocks-Mumford abelian surfaces A ⊂ P4...



Getting serious: Abelian varieties

Now let A be a complex abelian variety.

As a complex manifold A = Cg/L for a lattice L ⊂ Cg of maximal
rank. For g = 1 we find elliptic curves:

For g > 1 it becomes much harder to work with explicit equations
for projective models, but there are some well-understood families
such as the Horrocks-Mumford abelian surfaces A ⊂ P4...



Getting serious: Abelian varieties

Now let A be a complex abelian variety.

As a complex manifold A = Cg/L for a lattice L ⊂ Cg of maximal
rank. For g = 1 we find elliptic curves:

For g > 1 it becomes much harder to work with explicit equations
for projective models, but there are some well-understood families
such as the Horrocks-Mumford abelian surfaces A ⊂ P4...



Convolution on Abelian varieties

Again the group structure on A defines a convolution product ∗
and we have a counterpart of the Gabber-Loeser theorem:

Theorem (K-Weissauer, Schnell, Bhatt-Schnell-Scholze)

1 Any simple M ∈ Hol(DA) has χ(M ) ≥ 0.

2 Equality holds iff M is invariant by translations under some
positive-dimensional abelian subvariety.

3 The subcategory Hol(DA) ⊂ Hol(DA) of modules with no
subobject or quotient as above is Tannakian wrt “∗”.
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Convolution on abelian varieties

The last phrase means that there is an affine group G over C and
an equivalence

ω : Hol(DA)
∼−→ RepC(G)

translating ∗ into the usual tensor product ⊗ of representations.

We have χ(M ) = dim(ω(M )) for all M . The one-dimensional
representations are the Dirac modules on the points of A.

General Question

For M ∈ Hol(DA), what is the geometric meaning of the
algebraic group

G(M ) := Image
(
G→ Gl(ω(M )

)
?
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Example: Schottky

IfA = Jac(C) is the Jacobian of a smooth nonhyperelliptic curve C
of genus g > 1, then the perverse intersection complex on the theta
divisor has

δΘ ' Alt∗(g−1)(δC),

G(δΘ) ' Sl2g−2(C)/µg−1.

Does the last property characterize Jacobians among ppav’s?

Theorem (K)

YES for g = 4, by a computation of Chern-Mather classes.

More generally, for any semisimple module M ∈ Hol(DA) the
group G(M ) is reductive and the weights of its representations
are related to the geometry of the characteristic cycle CC(M ).
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Example: Cubic threefolds

Theorem (K)

The intermediate Jacobian A = Jac(T ) of a smooth cubic
threefold T ⊂ P4 has the Tannakian group G(δΘ) ' E6(C).



Example: Inverse Galois theory

For computer algebra, let’s be more modest and take g = 1!

Theorem (Katz, Dettweiler-Reiter-Sawin)

There is a family of perverse sheaves P on elliptic curves E,
constructed explicitly from certain elliptic surfaces, for which
the group G(P ) is exceptional of type G2(C).

Katz uses point counts over finite fields. Dettweiler-Reiter-Sawin
rely on monodromy computations in MAGMA with braid groups,
which has no hope to extend for dimensions g > 1.

Can we implement algorithms for D-modules on elliptic curves that
are powerful enough to deal with this example?
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Let’s get started!

Ultimate goal: Given M ,N ∈ Hol(DA), compute M ∗N or at
least

dim Hom(δ0,M ∗N ).

• By a coordinate change A×A→ A×A, (x, y) 7→ (x−y, x+y)
we only need to compute the direct image for the projection
onto a factor A×A→ A.

• We have A ↪→ Pn with n ∼ 2g+1. But DA ' OA〈∂1, . . . , ∂g〉
since the tangent bundle is trivial. Can we use this to reduce
the number of variables and work with coherent sheaves?

• Else use a Cech approach, taking the standard charts of Pn
and the direct image for projections in the affine case...

...any help is most welcome!
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Thank you very much!


