## Computing with $\mathscr{D}$-modules

# What to compute? 

Part II
Algebraic Geometry

## What to compute?

In geometry we are interested in $\mathscr{D}$-modules not only on affine spaces but on more general varieties such as Grassmannians, flag varieties etc.

## What to compute?

In geometry we are interested in $\mathscr{D}$-modules not only on affine spaces but on more general varieties such as Grassmannians, flag varieties etc. While for Weyl algebras many useful routines have been implemented, there seem to be hardly any computational tools for $\mathscr{D}$-modules on projective (or even affine!) varieties.

## What to compute?

In geometry we are interested in $\mathscr{D}$-modules not only on affine spaces but on more general varieties such as Grassmannians, flag varieties etc. While for Weyl algebras many useful routines have been implemented, there seem to be hardly any computational tools for $\mathscr{D}$-modules on projective (or even affine!) varieties.

For geometric applications one of the most important desiderata would be direct images for projection maps $f: Y=X \times Z \rightarrow X$ of smooth varieties.

## What to compute?

In geometry we are interested in $\mathscr{D}$-modules not only on affine spaces but on more general varieties such as Grassmannians, flag varieties etc. While for Weyl algebras many useful routines have been implemented, there seem to be hardly any computational tools for $\mathscr{D}$-modules on projective (or even affine!) varieties.

For geometric applications one of the most important desiderata would be direct images for projection maps $f: Y=X \times Z \rightarrow X$ of smooth varieties.

Here we usually work with right $\mathscr{D}$-modules $\mathscr{M}$, so the direct image is

$$
\begin{aligned}
& f_{*}^{\mathscr{T}}(\mathscr{M})=R f_{*}\left(\mathscr{M} \otimes_{\mathscr{D}_{Y}}^{L} \mathscr{D}_{Y \rightarrow X}\right) \\
& \quad \simeq R f_{*}\left[\mathscr{M} \otimes_{\mathscr{O}_{Y}} \operatorname{Alt}^{d}\left(\mathscr{T}_{Y / X}\right) \rightarrow \cdots \rightarrow \mathscr{M} \otimes_{\mathscr{O}_{Y}} \mathscr{T}_{Y / X} \rightarrow \mathscr{M}\right]
\end{aligned}
$$

## The convolution product

An interesting case is the convolution of holonomic $\mathscr{D}$-modules on commutative group varieties $G$.

## The convolution product

An interesting case is the convolution of holonomic $\mathscr{D}$-modules on commutative group varieties $G$.

It is defined by

$$
\text { *: } \begin{array}{r}
\operatorname{Hol}\left(\mathscr{D}_{G}\right) \times \operatorname{Hol}\left(\mathscr{D}_{G}\right) \longrightarrow \mathrm{D}_{h o l}^{b}\left(\mathscr{D}_{G}\right), \\
\mathscr{M}_{1} * \mathscr{M}_{2}=f_{*}^{\mathscr{O}}\left(\mathscr{M}_{1} \boxtimes \mathscr{M}_{2}\right),
\end{array}
$$

where

- $\mathscr{M}_{1} \boxtimes \mathscr{M}_{2}=p r_{1}^{*}\left(\mathscr{M}_{1}\right) \otimes p r_{2}^{*}\left(\mathscr{M}_{2}\right) \in \operatorname{Hol}\left(\mathscr{D}_{G \times G}\right)$,
- $f: G \times G \rightarrow G,(a, b) \mapsto a b$ is the multiplication in $G$.


## The convolution product

An interesting case is the convolution of holonomic $\mathscr{D}$-modules on commutative group varieties $G$.

It is defined by

$$
\text { *: } \begin{array}{r}
\operatorname{Hol}\left(\mathscr{D}_{G}\right) \times \operatorname{Hol}\left(\mathscr{D}_{G}\right) \longrightarrow \mathrm{D}_{h o l}^{b}\left(\mathscr{D}_{G}\right), \\
\mathscr{M}_{1} * \mathscr{M}_{2}=f_{*}^{\mathscr{O}}\left(\mathscr{M}_{1} \boxtimes \mathscr{M}_{2}\right),
\end{array}
$$

where

- $\mathscr{M}_{1} \boxtimes \mathscr{M}_{2}=p r_{1}^{*}\left(\mathscr{M}_{1}\right) \otimes p r_{2}^{*}\left(\mathscr{M}_{2}\right) \in \operatorname{Hol}\left(\mathscr{D}_{G \times G}\right)$,
- $f: G \times G \rightarrow G,(a, b) \mapsto a b$ is the multiplication in $G$.

Let's look at two concrete examples: Tori and abelian varieties.

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

For $P, Q \in \mathbb{C}[s] \backslash\{0\}$ consider the hypergeometric $\mathscr{D}$-module

$$
\mathscr{H}_{P, Q}=\mathscr{D} / \mathscr{D} \cdot(P(z \partial)-z Q(z \partial))
$$

$$
\text { on } \mathbb{G}_{m}=\operatorname{Spec} \mathbb{C}\left[z, z^{-1}\right] \text {. }
$$

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

For $P, Q \in \mathbb{C}[s] \backslash\{0\}$ consider the hypergeometric $\mathscr{D}$-module

$$
\mathscr{H}_{P, Q}=\mathscr{D} / \mathscr{D} \cdot(P(z \partial)-z Q(z \partial))
$$

on $\mathbb{G}_{m}=\operatorname{Spec} \mathbb{C}\left[z, z^{-1}\right]$. This is a holonomic left $\mathscr{D}$-module, and it is simple iff the polynomials $P$ and $Q$ have no common zeroes modulo $\mathbb{Z}$.

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

For $P, Q \in \mathbb{C}[s] \backslash\{0\}$ consider the hypergeometric $\mathscr{D}$-module

$$
\mathscr{H}_{P, Q}=\mathscr{D} / \mathscr{D} \cdot(P(z \partial)-z Q(z \partial))
$$

on $\mathbb{G}_{m}=\operatorname{Spec} \mathbb{C}\left[z, z^{-1}\right]$. This is a holonomic left $\mathscr{D}$-module, and it is simple iff the polynomials $P$ and $Q$ have no common zeroes modulo $\mathbb{Z}$. Hypergeometric modules appear in many contexts:

- rigid local systems on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$,
- construction of examples in inverse Galois theory,
- equidistribution for exponential sums over finite fields, ...


## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

For $P, Q \in \mathbb{C}[s] \backslash\{0\}$ consider the hypergeometric $\mathscr{D}$-module

$$
\mathscr{H}_{P, Q}=\mathscr{D} / \mathscr{D} \cdot(P(z \partial)-z Q(z \partial))
$$

on $\mathbb{G}_{m}=\operatorname{Spec} \mathbb{C}\left[z, z^{-1}\right]$. This is a holonomic left $\mathscr{D}$-module, and it is simple iff the polynomials $P$ and $Q$ have no common zeroes modulo $\mathbb{Z}$. Hypergeometric modules appear in many contexts:

- rigid local systems on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$,
- construction of examples in inverse Galois theory,
- equidistribution for exponential sums over finite fields, ...

In dimension 1 they are all obtained by convolution as follows.

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

Any simple holonomic $\mathscr{D}$-module $\mathscr{M}$ on $\mathbb{G}_{m}$ has non-negative Euler characteristic

$$
\chi(\mathscr{M})=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim} H^{i}\left(\mathbb{G}_{m}, \operatorname{DR}(\mathscr{M})\right) \geq 0,
$$

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

Any simple holonomic $\mathscr{D}$-module $\mathscr{M}$ on $\mathbb{G}_{m}$ has non-negative Euler characteristic

$$
\chi(\mathscr{M})=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim} \mathrm{H}^{i}\left(\mathbb{G}_{m}, \operatorname{DR}(\mathscr{M})\right) \geq 0,
$$

with equality iff $\mathscr{M}=\mathscr{D} / \mathscr{D}(x \partial-c)$ for some $c \in \mathbb{C}$ (exercise).

## Warm-up: Hypergeometric $\mathscr{D}$-modules in dimension 1

Any simple holonomic $\mathscr{D}$-module $\mathscr{M}$ on $\mathbb{G}_{m}$ has non-negative Euler characteristic

$$
\chi(\mathscr{M})=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim} \mathrm{H}^{i}\left(\mathbb{G}_{m}, \operatorname{DR}(\mathscr{M})\right) \geq 0,
$$

with equality iff $\mathscr{M}=\mathscr{D} / \mathscr{D}(x \partial-c)$ for some $c \in \mathbb{C}$ (exercise).

## Theorem (Katz)

The following are equivalent:

- $\chi(\mathscr{M})=1$,
- $\mathscr{M}$ is hypergeometric,
- $\mathscr{M}$ is an iterated convolution of elementary modules of the form $\mathscr{H}_{c, 1}=\delta_{c}, \mathscr{H}_{s-\alpha, 1}$ and $\mathscr{H}_{1, s-\alpha}$ where $c \in \mathbb{C}$ and $\alpha$ varies in a set of representatives for $\mathbb{C} / \mathbb{Z}$.


## What about higher-dimensional tori?

Now let's move to affine tori $T=\mathbb{G}_{m}^{n}$ of any dimension $n \in \mathbb{N}$.

## What about higher-dimensional tori?

Now let's move to affine tori $T=\mathbb{G}_{m}^{n}$ of any dimension $n \in \mathbb{N}$.

## Theorem (Gabber-Loeser)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{T}\right)$ satisfies $\chi(\mathscr{M}) \geq 0$.

## What about higher-dimensional tori?

Now let's move to affine tori $T=\mathbb{G}_{m}^{n}$ of any dimension $n \in \mathbb{N}$.

## Theorem (Gabber-Loeser)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{T}\right)$ satisfies $\chi(\mathscr{M}) \geq 0$.
(2) Equality holds iff there exists a splitting $T \simeq S \times \mathbb{G}_{m}$ such that

$$
\mathscr{M} \simeq \mathscr{N} \boxtimes \mathscr{D} / \mathscr{D}(x \partial-c) \text { with } \mathscr{N} \in \operatorname{Hol}\left(\mathscr{D}_{S}\right), c \in \mathbb{C} .
$$

## What about higher-dimensional tori?

Now let's move to affine tori $T=\mathbb{G}_{m}^{n}$ of any dimension $n \in \mathbb{N}$.

## Theorem (Gabber-Loeser)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{T}\right)$ satisfies $\chi(\mathscr{M}) \geq 0$.
(2) Equality holds iff there exists a splitting $T \simeq S \times \mathbb{G}_{m}$ such that

$$
\mathscr{M} \simeq \mathscr{N} \boxtimes \mathscr{D} / \mathscr{D}(x \partial-c) \text { with } \mathscr{N} \in \operatorname{Hol}\left(\mathscr{D}_{S}\right), c \in \mathbb{C} .
$$

(3) The subcategory $\overline{\operatorname{Hol}}\left(\mathscr{D}_{T}\right) \subset \operatorname{Hol}\left(\mathscr{D}_{T}\right)$ of modules with no subobjects or quotients as above is Tannakian wrt " *".

## Hypergeometric $\mathscr{D}$-modules on tori

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ with an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{T}\right) \xrightarrow{\sim} \operatorname{Rep}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ with an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{T}\right) \xrightarrow{\sim} \operatorname{Rep}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.
We have $\chi(\mathscr{M})=\operatorname{dim}(\omega(\mathscr{M}))$ for all $\mathscr{M}$, and representations of dimension one are precisely the hypergeometric modules:

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ with an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{T}\right) \xrightarrow{\sim} \operatorname{Rep}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.
We have $\chi(\mathscr{M})=\operatorname{dim}(\omega(\mathscr{M}))$ for all $\mathscr{M}$, and representations of dimension one are precisely the hypergeometric modules:

## Theorem (Loeser-Sabbah)

A module $\mathscr{M} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{T}\right)$ has $\chi(\mathscr{M})=1$ iff it is a convolution of pushforwards of elementary hypergeometric modules on $\mathbb{G}_{m}$ under closed embeddings $i: \mathbb{G}_{m} \hookrightarrow T$ of tori.

- Euler characteristics have a meaning in algebraic statistics:

Algebraic subvarieties $X \subset T$ of maximum likelihood degree 1 are related to GKZ systems (June Huh).

- Euler characteristics have a meaning in algebraic statistics:

Algebraic subvarieties $X \subset T$ of maximum likelihood degree 1 are related to GKZ systems (June Huh).

In general, the perverse intersection complex $\delta_{X}$ of any $X \subset T$ has $\chi\left(\delta_{X}\right) \geq \operatorname{ML} \operatorname{deg}(X)$ (Huh-Sturmfels and Budur-Wang).

- Euler characteristics have a meaning in algebraic statistics:

Algebraic subvarieties $X \subset T$ of maximum likelihood degree 1 are related to GKZ systems (June Huh).

In general, the perverse intersection complex $\delta_{X}$ of any $X \subset T$ has $\chi\left(\delta_{X}\right) \geq \operatorname{ML} \operatorname{deg}(X)$ (Huh-Sturmfels and Budur-Wang).

- What about representations of dimension $>1$ ?

To understand the Tannakian group $G$ one needs to know its invariants in tensor powers of representations, so we want to compute $\operatorname{Hom}\left(\delta_{1}, \mathscr{M}_{1} * \mathscr{M}_{2}\right)$ for $\mathscr{M}_{1}, \mathscr{M}_{2} \in \operatorname{Hol}\left(\mathscr{D}_{T}\right)$.

- Euler characteristics have a meaning in algebraic statistics:

Algebraic subvarieties $X \subset T$ of maximum likelihood degree 1 are related to GKZ systems (June Huh).

In general, the perverse intersection complex $\delta_{X}$ of any $X \subset T$ has $\chi\left(\delta_{X}\right) \geq \operatorname{ML} \operatorname{deg}(X)$ (Huh-Sturmfels and Budur-Wang).

- What about representations of dimension $>1$ ?

To understand the Tannakian group $G$ one needs to know its invariants in tensor powers of representations, so we want to compute $\operatorname{Hom}\left(\delta_{1}, \mathscr{M}_{1} * \mathscr{M}_{2}\right)$ for $\mathscr{M}_{1}, \mathscr{M}_{2} \in \operatorname{Hol}\left(\mathscr{D}_{T}\right)$.
...this can be done by computer algebra!

## Getting serious: Abelian varieties

Now let $A$ be a complex abelian variety.

## Getting serious: Abelian varieties

Now let $A$ be a complex abelian variety.
As a complex manifold $A=\mathbb{C}^{g} / L$ for a lattice $L \subset \mathbb{C}^{g}$ of maximal rank.

## Getting serious: Abelian varieties

Now let $A$ be a complex abelian variety.
As a complex manifold $A=\mathbb{C}^{g} / L$ for a lattice $L \subset \mathbb{C}^{g}$ of maximal rank. For $g=1$ we find elliptic curves:



## Getting serious: Abelian varieties

Now let $A$ be a complex abelian variety.
As a complex manifold $A=\mathbb{C}^{g} / L$ for a lattice $L \subset \mathbb{C}^{g}$ of maximal rank. For $g=1$ we find elliptic curves:


For $g>1$ it becomes much harder to work with explicit equations for projective models, but there are some well-understood families such as the Horrocks-Mumford abelian surfaces $A \subset \mathbb{P}^{4} \ldots$

## Convolution on Abelian varieties

Again the group structure on $A$ defines a convolution product * and we have a counterpart of the Gabber-Loeser theorem:

## Convolution on Abelian varieties

Again the group structure on $A$ defines a convolution product * and we have a counterpart of the Gabber-Loeser theorem:

## Theorem (K-Weissauer, Schnell, Bhatt-Schnell-Scholze)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{A}\right)$ has $\chi(\mathscr{M}) \geq 0$.

## Convolution on Abelian varieties

Again the group structure on $A$ defines a convolution product * and we have a counterpart of the Gabber-Loeser theorem:

## Theorem (K-Weissauer, Schnell, Bhatt-Schnell-Scholze)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{A}\right)$ has $\chi(\mathscr{M}) \geq 0$.
(2) Equality holds iff $\mathscr{M}$ is invariant by translations under some positive-dimensional abelian subvariety.

## Convolution on Abelian varieties

Again the group structure on $A$ defines a convolution product * and we have a counterpart of the Gabber-Loeser theorem:

## Theorem (K-Weissauer, Schnell, Bhatt-Schnell-Scholze)

(1) Any simple $\mathscr{M} \in \operatorname{Hol}\left(\mathscr{D}_{A}\right)$ has $\chi(\mathscr{M}) \geq 0$.
(2) Equality holds iff $\mathscr{M}$ is invariant by translations under some positive-dimensional abelian subvariety.
(3) The subcategory $\overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right) \subset \operatorname{Hol}\left(\mathscr{D}_{A}\right)$ of modules with no subobject or quotient as above is Tannakian wrt "*".

## Convolution on abelian varieties

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ and an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right) \xrightarrow{\sim} \operatorname{Rep}_{\mathbb{C}}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.

## Convolution on abelian varieties

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ and an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right) \xrightarrow{\sim} \operatorname{Rep}_{\mathbb{C}}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.
We have $\chi(\mathscr{M})=\operatorname{dim}(\omega(\mathscr{M}))$ for all $\mathscr{M}$. The one-dimensional representations are the Dirac modules on the points of $A$.

## Convolution on abelian varieties

The last phrase means that there is an affine group $G$ over $\mathbb{C}$ and an equivalence

$$
\omega: \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right) \xrightarrow{\sim} \operatorname{Rep}_{\mathbb{C}}(G)
$$

translating $*$ into the usual tensor product $\otimes$ of representations.
We have $\chi(\mathscr{M})=\operatorname{dim}(\omega(\mathscr{M}))$ for all $\mathscr{M}$. The one-dimensional representations are the Dirac modules on the points of $A$.

## General Question

For $\mathscr{M} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, what is the geometric meaning of the algebraic group

$$
G(\mathscr{M}):=\operatorname{Image}(G \rightarrow \operatorname{Gl}(\omega(\mathscr{M})) ?
$$

## Example: Schottky

If $A=\mathrm{Jac}(C)$ is the Jacobian of a smooth nonhyperelliptic curve $C$ of genus $g>1$, then the perverse intersection complex on the theta divisor has

$$
\delta_{\Theta} \simeq \operatorname{Alt}^{*(g-1)}\left(\delta_{C}\right),
$$

## Example: Schottky

If $A=\mathrm{Jac}(C)$ is the Jacobian of a smooth nonhyperelliptic curve $C$ of genus $g>1$, then the perverse intersection complex on the theta divisor has

$$
G\left(\delta_{\Theta}\right) \simeq \mathrm{Sl}_{2 g-2}(\mathbb{C}) / \mu_{g-1} .
$$

Does the last property characterize Jacobians among ppav's?

## Example: Schottky

If $A=\mathrm{Jac}(C)$ is the Jacobian of a smooth nonhyperelliptic curve $C$ of genus $g>1$, then the perverse intersection complex on the theta divisor has

$$
G\left(\delta_{\Theta}\right) \simeq \mathrm{Sl}_{2 g-2}(\mathbb{C}) / \mu_{g-1} .
$$

Does the last property characterize Jacobians among ppav's?

## Theorem (K)

YES for $g=4$, by a computation of Chern-Mather classes.

## Example: Schottky

If $A=\mathrm{Jac}(C)$ is the Jacobian of a smooth nonhyperelliptic curve $C$ of genus $g>1$, then the perverse intersection complex on the theta divisor has

$$
G\left(\delta_{\Theta}\right) \simeq \mathrm{Sl}_{2 g-2}(\mathbb{C}) / \mu_{g-1} .
$$

Does the last property characterize Jacobians among ppav's?

## Theorem (K)

YES for $g=4$, by a computation of Chern-Mather classes.

More generally, for any semisimple module $\mathscr{M} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$ the group $G(\mathscr{M})$ is reductive and the weights of its representations are related to the geometry of the characteristic cycle $\mathrm{CC}(\mathscr{M})$.

## Example: Cubic threefolds

## Theorem (K)

The intermediate Jacobian $A=\operatorname{Jac}(T)$ of a smooth cubic threefold $T \subset \mathbb{P}^{4}$ has the Tannakian group $G\left(\delta_{\Theta}\right) \simeq E_{6}(\mathbb{C})$.


## Example: Inverse Galois theory

For computer algebra, let's be more modest and take $g=1$ !

## Example: Inverse Galois theory

For computer algebra, let's be more modest and take $g=1$ !

## Theorem (Katz, Dettweiler-Reiter-Sawin)

There is a family of perverse sheaves $P$ on elliptic curves $E$, constructed explicitly from certain elliptic surfaces, for which the group $G(P)$ is exceptional of type $G_{2}(\mathbb{C})$.

## Example: Inverse Galois theory

For computer algebra, let's be more modest and take $g=1$ !

## Theorem (Katz, Dettweiler-Reiter-Sawin)

There is a family of perverse sheaves $P$ on elliptic curves $E$, constructed explicitly from certain elliptic surfaces, for which the group $G(P)$ is exceptional of type $G_{2}(\mathbb{C})$.

Katz uses point counts over finite fields. Dettweiler-Reiter-Sawin rely on monodromy computations in MAGMA with braid groups, which has no hope to extend for dimensions $g>1$.

## Example: Inverse Galois theory

For computer algebra, let's be more modest and take $g=1$ !

## Theorem (Katz, Dettweiler-Reiter-Sawin)

There is a family of perverse sheaves $P$ on elliptic curves $E$, constructed explicitly from certain elliptic surfaces, for which the group $G(P)$ is exceptional of type $G_{2}(\mathbb{C})$.

Katz uses point counts over finite fields. Dettweiler-Reiter-Sawin rely on monodromy computations in MAGMA with braid groups, which has no hope to extend for dimensions $g>1$.

Can we implement algorithms for $\mathscr{D}$-modules on elliptic curves that are powerful enough to deal with this example?

## Let's get started!

Ultimate goal: Given $\mathscr{M}, \mathscr{N} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, compute $\mathscr{M} * \mathscr{N}$ or at least $\operatorname{dim} \operatorname{Hom}\left(\delta_{0}, \mathscr{M} * \mathscr{N}\right)$.

## Let's get started!

Ultimate goal: Given $\mathscr{M}, \mathscr{N} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, compute $\mathscr{M} * \mathscr{N}$ or at least

$$
\operatorname{dim} \operatorname{Hom}\left(\delta_{0}, \mathscr{M} * \mathscr{N}\right)
$$

- By a coordinate change $A \times A \rightarrow A \times A,(x, y) \mapsto(x-y, x+y)$ we only need to compute the direct image for the projection onto a factor $A \times A \rightarrow A$.


## Let's get started!

Ultimate goal: Given $\mathscr{M}, \mathscr{N} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, compute $\mathscr{M} * \mathscr{N}$ or at least

$$
\operatorname{dim} \operatorname{Hom}\left(\delta_{0}, \mathscr{M} * \mathscr{N}\right)
$$

- By a coordinate change $A \times A \rightarrow A \times A,(x, y) \mapsto(x-y, x+y)$ we only need to compute the direct image for the projection onto a factor $A \times A \rightarrow A$.
- We have $A \hookrightarrow \mathbb{P}^{n}$ with $n \sim 2 g+1$. But $\mathscr{D}_{A} \simeq \mathscr{O}_{A}\left\langle\partial_{1}, \ldots, \partial_{g}\right\rangle$ since the tangent bundle is trivial. Can we use this to reduce the number of variables and work with coherent sheaves?


## Let's get started!

Ultimate goal: Given $\mathscr{M}, \mathscr{N} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, compute $\mathscr{M} * \mathscr{N}$ or at least

$$
\operatorname{dim} \operatorname{Hom}\left(\delta_{0}, \mathscr{M} * \mathscr{N}\right)
$$

- By a coordinate change $A \times A \rightarrow A \times A,(x, y) \mapsto(x-y, x+y)$ we only need to compute the direct image for the projection onto a factor $A \times A \rightarrow A$.
- We have $A \hookrightarrow \mathbb{P}^{n}$ with $n \sim 2 g+1$. But $\mathscr{D}_{A} \simeq \mathscr{O}_{A}\left\langle\partial_{1}, \ldots, \partial_{g}\right\rangle$ since the tangent bundle is trivial. Can we use this to reduce the number of variables and work with coherent sheaves?
- Else use a Cech approach, taking the standard charts of $\mathbb{P}^{n}$ and the direct image for projections in the affine case...


## Let's get started!

Ultimate goal: Given $\mathscr{M}, \mathscr{N} \in \overline{\operatorname{Hol}}\left(\mathscr{D}_{A}\right)$, compute $\mathscr{M} * \mathscr{N}$ or at least

$$
\operatorname{dim} \operatorname{Hom}\left(\delta_{0}, \mathscr{M} * \mathscr{N}\right)
$$

- By a coordinate change $A \times A \rightarrow A \times A,(x, y) \mapsto(x-y, x+y)$ we only need to compute the direct image for the projection onto a factor $A \times A \rightarrow A$.
- We have $A \hookrightarrow \mathbb{P}^{n}$ with $n \sim 2 g+1$. But $\mathscr{D}_{A} \simeq \mathscr{O}_{A}\left\langle\partial_{1}, \ldots, \partial_{g}\right\rangle$ since the tangent bundle is trivial. Can we use this to reduce the number of variables and work with coherent sheaves?
- Else use a Cech approach, taking the standard charts of $\mathbb{P}^{n}$ and the direct image for projections in the affine case...

Thank you very much!

