Holonomic functions in the field

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

September 3, 2019
Computing with D-modules II, MPI Leipzig

ÖAW RICAM

The Holonomic Systems Approach

A holonomic systems approach to special functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- seminal paper by Doron Zeilberger in 1990
- created a huge research area
- many applications in mathematics and elsewhere

D-finite and P -recursive

A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{d}(x) f^{(d)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[x]$ not all zero.

D-finite and P-recursive

A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{d}(x) f^{(d)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[x]$ not all zero.
A sequence $f(n)$ is called \mathbf{P}-recursive (or \mathbf{P}-finite) if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{d}(n) f(n+d)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0,
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[n]$ not all zero.

D-finite and P-recursive

A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{d}(x) f^{(d)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[x]$ not all zero.
A sequence $f(n)$ is called \mathbf{P}-recursive (or \mathbf{P}-finite) if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{d}(n) f(n+d)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0,
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[n]$ not all zero.
\longrightarrow In both cases, only finitely many initial conditions are needed!

D-finite and P-recursive

A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{d}(x) f^{(d)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[x]$ not all zero.
A sequence $f(n)$ is called \mathbf{P}-recursive (or \mathbf{P}-finite) if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{d}(n) f(n+d)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0,
$$

$p_{0}, \ldots, p_{d} \in \mathbb{K}[n]$ not all zero.
\longrightarrow In both cases, only finitely many initial conditions are needed!
\longrightarrow Also called holonomic function resp. holonomic sequence.

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2} \quad(n \geqslant 2)
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2} \quad(n \geqslant 2)
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
H_{n+4}
$$

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2} \quad(n \geqslant 2)
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
H_{n+4}=\frac{2 n+7}{n+4} H_{n+3}-\frac{n+3}{n+4} H_{n+2}
$$

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2} \quad(n \geqslant 2)
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
\begin{aligned}
H_{n+4} & =\frac{2 n+7}{n+4} H_{n+3}-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{2 n+7}{n+4}\left(\frac{2 n+5}{n+3} H_{n+2}-\frac{n+2}{n+3} H_{n+1}\right)-\frac{n+3}{n+4} H_{n+2}
\end{aligned}
$$

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2}
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
\begin{aligned}
H_{n+4} & =\frac{2 n+7}{n+4} H_{n+3}-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{2 n+7}{n+4}\left(\frac{2 n+5}{n+3} H_{n+2}-\frac{n+2}{n+3} H_{n+1}\right)-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{3 n^{2}+18 n+26}{(n+3)(n+4)} H_{n+2}-\frac{(2 n+7)(n+2)}{(n+3)(n+4)} H_{n+1}
\end{aligned}
$$

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2}
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
\begin{aligned}
H_{n+4} & =\frac{2 n+7}{n+4} H_{n+3}-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{2 n+7}{n+4}\left(\frac{2 n+5}{n+3} H_{n+2}-\frac{n+2}{n+3} H_{n+1}\right)-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{3 n^{2}+18 n+26}{(n+3)(n+4)} H_{n+2}-\frac{(2 n+7)(n+2)}{(n+3)(n+4)} H_{n+1} \\
& =\frac{3 n^{2}+18 n+26}{(n+3)(n+4)}\left(\frac{2 n+3}{n+2} H_{n+1}-\frac{n+1}{n+2} H_{n}\right)-\frac{(2 n+7)(n+2)}{(n+3)(n+4)} H_{n+1}
\end{aligned}
$$

Example: Harmonic Numbers

Example: The harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfy the recurrence

$$
n H_{n}=(2 n-1) H_{n-1}-(n-1) H_{n-2}
$$

with initial conditions $H_{0}=0$ and $H_{1}=1$.
Can express any shift as $\mathbb{K}(n)$-linear combination of H_{n} and H_{n+1} :

$$
\begin{aligned}
H_{n+4} & =\frac{2 n+7}{n+4} H_{n+3}-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{2 n+7}{n+4}\left(\frac{2 n+5}{n+3} H_{n+2}-\frac{n+2}{n+3} H_{n+1}\right)-\frac{n+3}{n+4} H_{n+2} \\
& =\frac{3 n^{2}+18 n+26}{(n+3)(n+4)} H_{n+2}-\frac{(2 n+7)(n+2)}{(n+3)(n+4)} H_{n+1} \\
& =\frac{3 n^{2}+18 n+26}{(n+3)(n+4)}\left(\frac{2 n+3}{n+2} H_{n+1}-\frac{n+1}{n+2} H_{n}\right)-\frac{(2 n+7)(n+2)}{(n+3)(n+4)} H_{n+1} \\
& =\frac{2(2 n+5)\left(n^{2}+5 n+5\right)}{(n+2)(n+3)(n+4)} H_{n+1}-\frac{(n+1)\left(3 n^{2}+18 n+26\right)}{(n+2)(n+3)(n+4)} H_{n}
\end{aligned}
$$

Closure Properties

If $f(x)$ and $g(x)$ are D-finite then also the following are D-finite

- $f(x)+g(x)$
- $f(x) \cdot g(x)$
- $f(a(x))$ if $a(x)$ is algebraic

Closure Properties

If $f(x)$ and $g(x)$ are D-finite then also the following are D-finite

- $f(x)+g(x)$
- $f(x) \cdot g(x)$
- $f(a(x))$ if $a(x)$ is algebraic

If $f(n)$ and $g(n)$ are P -recursive then also the following are P-recursive

- $f(n)+g(n)$
- $f(n) \cdot g(n)$
- $f(a n+b)$ for integers a and b

Closure Properties

If $f(x)$ and $g(x)$ are D-finite then also the following are D-finite

- $f(x)+g(x)$
- $f(x) \cdot g(x)$
- $f(a(x))$ if $a(x)$ is algebraic

If $f(n)$ and $g(n)$ are P -recursive then also the following are
P-recursive

- $f(n)+g(n)$
- $f(n) \cdot g(n)$
- $f(a n+b)$ for integers a and b

A sequence is P -recursive iff its generating function is D -finite.

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
0=c_{d}(n) h(n+d)+\ldots+c_{0}(n) h(n)
$$

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0 & =c_{d}(n) h(n+d)+\ldots+c_{0}(n) h(n) \\
& =c_{d}(n) f(n+d) g(n+d)+\ldots+c_{0}(n) f(n) g(n)
\end{aligned}
$$

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(n) h(n+d)+\ldots+c_{0}(n) h(n) \\
= & c_{d}(n) f(n+d) g(n+d)+\ldots+c_{0}(n) f(n) g(n) \\
= & c_{d}(n)\left(f_{d, d_{1}-1} f\left(n+d_{1}-1\right)+\ldots+f_{d, 0} f(n)\right) \\
& \times\left(g_{d, d_{2}-1} g\left(n+d_{2}-1\right)+\ldots+g_{d, 0} g(n)\right)+\ldots \\
& \ldots+c_{0}(n) f(n) g(n)
\end{aligned}
$$

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(n) h(n+d)+\ldots+c_{0}(n) h(n) \\
= & c_{d}(n) f(n+d) g(n+d)+\ldots+c_{0}(n) f(n) g(n) \\
= & c_{d}(n)\left(f_{d, d_{1}-1} f\left(n+d_{1}-1\right)+\ldots+f_{d, 0} f(n)\right) \\
& \times\left(g_{d, d_{2}-1} g\left(n+d_{2}-1\right)+\ldots+g_{d, 0} g(n)\right)+\ldots \\
& \ldots+c_{0}(n) f(n) g(n) \\
= & \sum_{i=0}^{d_{1}-1} \sum_{j=0}^{d_{2}-1} r_{i, j}\left(c_{0}, \ldots, c_{d}, n\right) f(n+i) g(n+j)
\end{aligned}
$$

Proof

Show that for P -recursive sequences $f(n)$ and $g(n)$ also $h(n)=f(n) g(n)$ is P-recursive. Assume f and g satisfy recurrences of order d_{1} and d_{2}, respectively.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(n) h(n+d)+\ldots+c_{0}(n) h(n) \\
= & c_{d}(n) f(n+d) g(n+d)+\ldots+c_{0}(n) f(n) g(n) \\
= & c_{d}(n)\left(f_{d, d_{1}-1} f\left(n+d_{1}-1\right)+\ldots+f_{d, 0} f(n)\right) \\
& \times\left(g_{d, d_{2}-1} g\left(n+d_{2}-1\right)+\ldots+g_{d, 0} g(n)\right)+\ldots \\
& \ldots+c_{0}(n) f(n) g(n) \\
= & \sum_{i=0}^{d_{1}-1} \sum_{j=0}^{d_{2}-1} r_{i, j}\left(c_{0}, \ldots, c_{d}, n\right) f(n+i) g(n+j)
\end{aligned}
$$

All coefficients $r_{i, j}$ must vanish: this yields $d_{1} d_{2}$ equations for the unknowns c_{0}, \ldots, c_{d}. The choice $d=d_{1} d_{2}$ ensures a solution.

Multivariate Generalization

Generalize the finiteness property to

- multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ (the x_{i} are called continuous variables)

Multivariate Generalization

Generalize the finiteness property to

- multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ (the x_{i} are called continuous variables)
- multidimensional sequences $f\left(n_{1}, \ldots, n_{s}\right)$ (the n_{i} are called discrete variables)

Multivariate Generalization

Generalize the finiteness property to

- multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ (the x_{i} are called continuous variables)
- multidimensional sequences $f\left(n_{1}, \ldots, n_{s}\right)$ (the n_{i} are called discrete variables)
- mixed setting: functions in several continuous and discrete variables $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
P_{n}^{(4)}(x)=
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

$$
\left(x^{2}-1\right) P_{n}^{(4)}(x)+6 x P_{n}^{(3)}(x)-(n-2)(n+3) P_{n}^{\prime \prime}(x)=0
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

$$
\left(x^{2}-1\right) P_{n}^{(3)}(x)+4 x P_{n}^{\prime \prime}(x)-(n-1)(n+2) P_{n}^{\prime}(x)=0
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{8 x\left(n^{2} x^{2}-n^{2}+n x^{2}-n+3 x^{2}+3\right)}{\left(x^{2}-1\right)^{3}} P_{n}^{\prime}(x) \\
& +\frac{n(n+1)\left(n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6\right)}{\left(x^{2}-1\right)^{3}} P_{n}(x)
\end{aligned}
$$

$\longrightarrow P_{n}(x)$ is D-finite w.r.t. x.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

This family of (orthogonal) polynomials is a particular solution of the differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

$$
\begin{array}{ccccc}
{ }^{j} & & & & \\
\bullet & \bullet & \cdot & \cdot & \cdot \\
\bullet & \bullet & \cdot & \cdot & \cdot \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

$$
P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)-(n+1) P_{n}(x)=0
$$

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

$$
(n+1) P_{n+1}(x)+\left(1-x^{2}\right) P_{n}^{\prime}(x)-(n+1) x P_{n}(x)=0
$$

Example: Legendre Polynomials $P_{n}(x)$

The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

$\longrightarrow P_{n}(x)$ is ∂-finite w.r.t. n and x (of rank 2).

∂-Finiteness

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

∂-Finiteness

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Definition: f is called ∂-finite (or D -finite) if there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f\left(x_{1}, \ldots, x_{s}, n_{1}+j_{1}, \ldots, n_{r}+j_{r}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions.

∂-Finiteness

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Definition: f is called ∂-finite (or D-finite) if there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f\left(x_{1}, \ldots, x_{s}, n_{1}+j_{1}, \ldots, n_{r}+j_{r}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions. \uparrow field!

∂-Finiteness

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Definition: f is called ∂-finite (or D-finite) if there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f\left(x_{1}, \ldots, x_{s}, n_{1}+j_{1}, \ldots, n_{r}+j_{r}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions. \uparrow field!

Again, finitely many initial conditions suffice to specify / fix f.

Algebraic Setting

Write differential/difference equations in operator notation:

- shift operator $S_{v}: S_{v} f(v)=f(v+1)$
- partial derivative $D_{v}: D_{v} f(v)=\frac{\mathrm{d}}{\mathrm{d} v} f(v)$
- q-shift operator $S_{v, q}: S_{v, q} f(v)=f(q v)$
- arbitrary operator ∂_{v} : any of the above

Algebraic Setting

Write differential/difference equations in operator notation:

- shift operator $S_{v}: S_{v} f(v)=f(v+1)$
- partial derivative $D_{v}: D_{v} f(v)=\frac{\mathrm{d}}{\mathrm{d} v} f(v)$
- q-shift operator $S_{v, q}: S_{v, q} f(v)=f(q v)$
- arbitrary operator ∂_{v} : any of the above

Example 1: The Legendre differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

translates to the operator

$$
\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)
$$

Algebraic Setting

Write differential/difference equations in operator notation:

- shift operator $S_{v}: S_{v} f(v)=f(v+1)$
- partial derivative $D_{v}: D_{v} f(v)=\frac{\mathrm{d}}{\mathrm{d} v} f(v)$
- q-shift operator $S_{v, q}: S_{v, q} f(v)=f(q v)$
- arbitrary operator ∂_{v} : any of the above

Example 1: The Legendre differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

translates to the operator

$$
\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)
$$

Example 2: The three-term recurrence

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

translates to the operator

$$
(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)
$$

Operator Algebra

Differential equations and recurrences are translated to skew polynomials.

Noncommutative multiplication:

$$
D_{x} x=x D_{x}+1, \quad S_{n} n=n S_{n}+S_{n}, \quad \text { etc. }
$$

Operator Algebra

Differential equations and recurrences are translated to skew polynomials.

Noncommutative multiplication:

$$
D_{x} x=x D_{x}+1, \quad S_{n} n=n S_{n}+S_{n}, \quad \text { etc. }
$$

More general:

$$
D_{x} a(x)=a(x) D_{x}+a^{\prime}(x), \quad S_{n} a(n)=a(n+1) S_{n}, \quad \text { etc. }
$$

Operator Algebra

Differential equations and recurrences are translated to skew polynomials.

Noncommutative multiplication:

$$
D_{x} x=x D_{x}+1, \quad S_{n} n=n S_{n}+S_{n}, \quad \text { etc. }
$$

More general:

$$
D_{x} a(x)=a(x) D_{x}+a^{\prime}(x), \quad S_{n} a(n)=a(n+1) S_{n}, \quad \text { etc. }
$$

Even more general:

$$
\partial_{v} a=\sigma(a) \partial_{v}+\delta(a)
$$

where σ is an automorphism and δ a σ-derivation, i.e.,

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b .
$$

Operator Algebra

Such operators form an Ore algebra

$$
\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in v, w, \ldots, where \mathbb{K} is a field, $\operatorname{char}(\mathbb{K})=0$.

Operator Algebra

Such operators form an Ore algebra

$$
\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in v, w, \ldots, where \mathbb{K} is a field, $\operatorname{char}(\mathbb{K})=0$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(v, w, \ldots)\left[\partial_{v} ; \sigma_{v}, \delta_{v}\right]\left[\partial_{w} ; \sigma_{w}, \delta_{w}\right] \cdots
$$

Operator Algebra

Such operators form an Ore algebra

$$
\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in v, w, \ldots, where \mathbb{K} is a field, $\operatorname{char}(\mathbb{K})=0$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(v, w, \ldots)\left[\partial_{v} ; \sigma_{v}, \delta_{v}\right]\left[\partial_{w} ; \sigma_{w}, \delta_{w}\right] \cdots
$$

Example: The operators that we encountered with the Legendre polynomials live in the Ore algebra

$$
\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle=\mathbb{K}(x, n)\left[D_{x} ; 1, \frac{\mathrm{~d}}{\mathrm{~d} x}\right]\left[S_{n} ; \sigma_{n}, 0\right]
$$

Operator Algebra

Such operators form an Ore algebra

$$
\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in v, w, \ldots, where \mathbb{K} is a field, $\operatorname{char}(\mathbb{K})=0$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(v, w, \ldots)\left[\partial_{v} ; \sigma_{v}, \delta_{v}\right]\left[\partial_{w} ; \sigma_{w}, \delta_{w}\right] \cdots
$$

Example: The operators that we encountered with the Legendre polynomials live in the Ore algebra

$$
\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle=\mathbb{K}(x, n)\left[D_{x} ; 1, \frac{\mathrm{~d}}{\mathrm{~d} x}\right]\left[S_{n} ; \sigma_{n}, 0\right] .
$$

Definition: We define the annihilator of a function f to be the set

$$
\operatorname{Ann}_{\mathscr{O}} f:=\{P \in \mathbb{O}: P \cdot f=0\}
$$

(it is a left ideal in \mathbb{O}).

Definition: ∂-Finite Function

Let $\mathbb{O}=\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle$ be an Ore algebra.
A function $f(v, w, \ldots)$ is ∂-finite w.r.t. (1) if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f: P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(v, w, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(v, w, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty
$$

Definition: ∂-Finite Function

Let $\mathbb{O}=\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle$ be an Ore algebra.
A function $f(v, w, \ldots)$ is ∂-finite w.r.t. (1) if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f: P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(v, w, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(v, w, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty .
$$

Definition: ∂-Finite Function

Let $\mathbb{O}=\mathbb{K}(v, w, \ldots)\left\langle\partial_{v}, \partial_{w}, \ldots\right\rangle$ be an Ore algebra.
A function $f(v, w, \ldots)$ is ∂-finite w.r.t. (1) if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f: P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(v, w, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(v, w, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty
$$

In other words, if the left ideal of annihilating operators of f

$$
\operatorname{Ann}_{\mathscr{O}}(f)=\{P \in \mathbb{O}: P \cdot f=0\}
$$

is a zero-dimensional ideal.

Why ∂-Finite Functions?

1. Definition gives rise to a finite data structure.

- annihilating ideal of operators (Gröbner basis is finite)
- finitely many initial values

Why ∂-Finite Functions?

1. Definition gives rise to a finite data structure.

- annihilating ideal of operators (Gröbner basis is finite)
- finitely many initial values

2. This set of functions is closed under many operations.

- addition,
- multiplication,
- certain substitutions,
- operator application,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$

Why ∂-Finite Functions?

1. Definition gives rise to a finite data structure.

- annihilating ideal of operators (Gröbner basis is finite)
- finitely many initial values

2. This set of functions is closed under many operations.

- addition,
e.g., $x^{n}+P_{n}(x)$
- multiplication,
- certain substitutions,
- operator application,
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$

3. These operations (closure properties) can be executed algorithmically.

Why ∂-Finite Functions?

1. Definition gives rise to a finite data structure.

- annihilating ideal of operators (Gröbner basis is finite)
- finitely many initial values

2. This set of functions is closed under many operations.

- addition,
e.g., $x^{n}+P_{n}(x)$
- multiplication,
- certain substitutions,
- operator application,
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$

3. These operations (closure properties) can be executed algorithmically.
4. Many elementary and special functions are covered.

(Incomplete) List of ∂-Finite Functions

ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh, HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc, Multinomial, CatalanNumber, QBinomial, CosIntegral, ArcSech, SphericalHankelH2, HermiteH, ExplntegralEi, Beta, AiryBiPrime, SphericalBesselJ, Binomial, ParabolicCylinderD, Erfc, EllipticK, Fibonacci, QFactorial, Cos, Hypergeometric2F1, Erf, KelvinKer, HypergeometricPFQRegularized, Log, Factorial, BesselY, Cosh, CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE, SinhIntegral, Sinh, BetaRegularized, SphericalHankelH1, ArcSin, EllipticThetaPrime, Root, LucasL, AppellF1, FresneIC, LegendreQ, ChebyshevU, GammaRegularized, Erfi, HarmonicNumber, Bessell, KelvinKei, ArithmeticGeometricMean, Exp, ArcCot, EllipticTheta, Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE, FresnelS, EllipticF, ArcCosh, Subfactorial, QPochhammer, Gamma, StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, BesselJ, StruveL, ArcSec, Factorial2, KelvinBer, BesselK, ArcSinh, HankelH1, Sqrt, PolyGamma, HypergeometricU, AiryAiPrime, Sin,

Application 1

Finite Elements

Joint work with Joachim Schöberl and Peter Paule

Problem Setting

Simulate the propagation of electromagnetic waves using the Maxwell equations

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H
$$

where H and E are the magnetic and the electric field respectively.
Define basis functions (this is the 2D case):

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using the Legendre and Jacobi polynomials.
Problem: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\mathrm{Ann}_{\mathscr{D}} \varphi_{i, j}(x, y)$.

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\mathrm{Ann}_{\mathbb{O}} \varphi_{i, j}(x, y)$.
3. Choose index sets A and B.

Make an Ansatz!

More precisely, we need a relation of the form
$\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)$,
that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\operatorname{Ann}_{\mathscr{D}} \varphi_{i, j}(x, y)$.
3. Choose index sets A and B.
4. Reduce the above ansatz with G and obtain a normal form.

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\operatorname{Ann}_{\mathscr{D}} \varphi_{i, j}(x, y)$.
3. Choose index sets A and B.
4. Reduce the above ansatz with G and obtain a normal form.
5. Do coefficient comparison with respect to x and y.

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\mathrm{Ann}_{\mathscr{O}} \varphi_{i, j}(x, y)$.
3. Choose index sets A and B.
4. Reduce the above ansatz with G and obtain a normal form.
5. Do coefficient comparison with respect to x and y.
6. Solve the resulting linear system for $a_{k, l}, b_{m, n} \in \mathbb{Q}(i, j)$.

Make an Ansatz!

More precisely, we need a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Sketch of the algorithm:

1. Work in the Ore algebra $\mathbb{O}=\mathbb{Q}(i, j, x, y)\left\langle S_{i}, S_{j}, D_{x}\right\rangle$.
2. Compute a Gröbner basis G of $\mathrm{Ann}_{\mathscr{O}} \varphi_{i, j}(x, y)$.
3. Choose index sets A and B.
4. Reduce the above ansatz with G and obtain a normal form.
5. Do coefficient comparison with respect to x and y.
6. Solve the resulting linear system for $a_{k, l}, b_{m, n} \in \mathbb{Q}(i, j)$.
7. If there is no solution, go back to step 3 .

Result

With this method, we find the relation

$$
\begin{aligned}
& (2 i+j+3)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+1}(x, y)+ \\
& 2(2 i+1)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+2}(x, y)- \\
& (j+3)(2 i+2 j+5) \frac{d}{\mathrm{~d} x} \varphi_{i, j+3}(x, y)+ \\
& (j+1)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j}(x, y)- \\
& 2(2 i+3)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+1}(x, y)- \\
& (2 i+j+5)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i+1, j+1}(x, y)=0
\end{aligned}
$$

and a similar one for $\frac{\mathrm{d}}{\mathrm{d} y} \varphi_{i, j}(x, y)$.

Result

With this method, we find the relation

$$
\begin{aligned}
& (2 i+j+3)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+1}(x, y)+ \\
& 2(2 i+1)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+2}(x, y)- \\
& (j+3)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+3}(x, y)+ \\
& (j+1)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j}(x, y)- \\
& 2(2 i+3)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+1}(x, y)- \\
& (2 i+j+5)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i+1, j+1}(x, y)=0
\end{aligned}
$$

and a similar one for $\frac{\mathrm{d}}{\mathrm{d} y} \varphi_{i, j}(x, y)$.
\longrightarrow The use of these previously unknown formulae caused a considerable speed-up in the numerical simulations.

Symbolic Summation and Integration

That was nice, but we want (and can) do more...
What about integrals

$$
\int_{a}^{b} f(x, \ldots) \mathrm{d} x
$$

and sums

$$
\sum_{n=a}^{b} f(n, \ldots)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n)=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n)=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n)=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{d}(n) F(n+d)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing integrals and sums

 (aka Feynman's differentiating under the integral sign)Consider the following integration problem: $F(x)=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: write $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: write

$$
c_{d}(x) \frac{\mathrm{d}^{d}}{\mathrm{~d} x^{d}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y) .
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{d}(x) \frac{\mathrm{d}^{d}}{\mathrm{~d} x^{d}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Creative Telescoping, $\mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$

$$
\begin{aligned}
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Where should we look for a suitable $g(n, k)$?
Note that there are trivial solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(c_{d}(n) f(n+d, i)+\cdots+c_{0}(n) f(n, i)\right)
$$

Creative Telescoping, $\mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$

$$
\begin{aligned}
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Where should we look for a suitable $g(n, k)$?
Note that there are trivial solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(c_{d}(n) f(n+d, i)+\cdots+c_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to look for g is $\mathbb{O} \cdot f$.

Creative Telescoping, $\mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$

$$
\begin{aligned}
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Where should we look for a suitable $g(n, k)$?
Note that there are trivial solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(c_{d}(n) f(n+d, i)+\cdots+c_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to look for g is $\mathbb{O} \cdot f$.
Then the task is to find $P\left(n, S_{n}\right)=c_{d}(n) S_{n}^{d}+\cdots+c_{0}(n)$ and $Q \in \mathbb{O}$ such that

$$
\left(P-\left(S_{k}-1\right) Q\right) \cdot f=0 \quad \Longleftrightarrow \quad P-\left(S_{k}-1\right) Q \in \operatorname{Ann}_{\mathscr{O}}(f)
$$

Creative Telescoping (Example 1)

Let $F(n)$ denote the double sum over the trinomial coefficients

$$
F(n)=\sum_{j=0}^{n} \sum_{i=0}^{n}\binom{n}{i, j, n-i-j}=\sum_{j=0}^{n} \sum_{i=0}^{n} \frac{n!}{i!j!(n-i-j)!} .
$$

Creative Telescoping (Example 1)

Let $F(n)$ denote the double sum over the trinomial coefficients

$$
F(n)=\sum_{j=0}^{n} \sum_{i=0}^{n}\binom{n}{i, j, n-i-j}=\sum_{j=0}^{n} \sum_{i=0}^{n} \frac{n!}{i!j!(n-i-j)!} .
$$

Then the creative telescoping operator

$$
C T=S_{n}-3+\left(S_{i}-1\right) \frac{i}{n-i-j+1}+\left(S_{j}-1\right) \frac{j}{n-i-j+1}
$$

with $C T\left(\binom{n}{i, j, n-i-j}\right)=0$ implies that

$$
F(n+1)=3 F(n)
$$

Creative Telescoping (Example 2)

The lattice Green's function of the square lattice is given by

$$
G(z)=\int_{0}^{1} \int_{0}^{1} \frac{1}{(1-x y z) \sqrt{1-x^{2}} \sqrt{1-y^{2}}} \mathrm{~d} x \mathrm{~d} y
$$

Creative Telescoping (Example 2)

The lattice Green's function of the square lattice is given by

$$
G(z)=\int_{0}^{1} \int_{0}^{1} \frac{1}{(1-x y z) \sqrt{1-x^{2}} \sqrt{1-y^{2}}} \mathrm{~d} x \mathrm{~d} y
$$

The creative telescoping operator

$$
\left(z^{3}-z\right) D_{z}^{2}+\left(3 z^{2}-1\right) D_{z}+z+D_{x} \frac{y\left(1-x^{2}\right)}{x y z-1}+D_{y} \frac{y z\left(1-y^{2}\right)}{x y z-1}
$$

that annihilates the integrand, certifies that $G(z)$ satisfies the differential equation

$$
\left(z^{3}-z\right) G^{\prime \prime}(z)+\left(3 z^{2}-1\right) G^{\prime}(z)+z G(z)=0
$$

How to Find (P, Q) ?

Make an ansatz for the telescoper P and the certificate Q.
Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with } p_{i} \in \mathbb{K}(x) \text { unknown coefficients. }
$$

How to Find (P, Q) ?

Make an ansatz for the telescoper P and the certificate Q.
Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with } p_{i} \in \mathbb{K}(x) \text { unknown coefficients. }
$$

Let \mathfrak{U} denote the set of monomials under the stairs of a Gröbner basis for $\operatorname{Ann}_{\mathscr{O}}(f)$, or any other vector space basis of $\mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$.

Since $Q \in \mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$, we can set

$$
Q=\sum_{u \in \mathfrak{U}} q_{u}(x, y) u \quad \text { with unknown } q_{u} \in \mathbb{K}(x, y)
$$

Chyzak's Algorithm

Putting things together:

$$
P-D_{y} Q=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u
$$

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters p_{0}, \ldots, p_{r}.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters p_{0}, \ldots, p_{r}.
\longrightarrow There are algorithms to find rational solutions of such systems.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathbb{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters p_{0}, \ldots, p_{r}.
\longrightarrow There are algorithms to find rational solutions of such systems.
Finally: loop over the (a priori) unknown order r of the telescoper. \longrightarrow This is Chyzak's algorithm (analogously in other Ore algebras).

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.
- $\boldsymbol{v}=v_{1}, \ldots, v_{l}$ are the surviving parameters.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.
- $\boldsymbol{v}=v_{1}, \ldots, v_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)$ is called the telescoper.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.
- $\boldsymbol{v}=v_{1}, \ldots, v_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)$ is called the telescoper.
- The $Q_{i}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)$ are called the certificates.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.
- $\boldsymbol{v}=v_{1}, \ldots, v_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)$ is called the telescoper.
- The $Q_{i}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)$ are called the certificates.
- The certificates certify the correctness of the telescoper.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)
$$

where $\Delta_{i}=S_{w_{i}}-1$ or $\Delta_{i}=D_{w_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{w}=w_{1}, \ldots, w_{m}$ are the summation/integration variables.
- $\boldsymbol{v}=v_{1}, \ldots, v_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{v}, \boldsymbol{\partial}_{\boldsymbol{v}}\right)$ is called the telescoper.
- The $Q_{i}\left(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\partial}_{\boldsymbol{v}}, \boldsymbol{\partial}_{\boldsymbol{w}}\right)$ are called the certificates.
- The certificates certify the correctness of the telescoper.
- Research topic: develop fast algorithms to compute it!

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{w}

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{w}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{v})$

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{w}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{v})$
- the denominators $d_{i, j}$ can be roughly predicted from the leading coefficients of the Gröbner basis G

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{v}) \boldsymbol{\partial}_{\boldsymbol{v}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{v}) \boldsymbol{w}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{v}, \boldsymbol{w})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a (non-commutative) Gröbner basis G of $\operatorname{Ann}_{\mathscr{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{w}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{v})$
- the denominators $d_{i, j}$ can be roughly predicted from the leading coefficients of the Gröbner basis G
- implemented in HolonomicFunctions (Mathematica)

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f)=g_{0}^{\prime}+h_{0} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=g_{1}^{\prime}+h_{1} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)=g_{2}^{\prime}+h_{2}
\end{aligned}
$$

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f)=g_{0}^{\prime}+h_{0} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=g_{1}^{\prime}+h_{1} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)=g_{2}^{\prime}+h_{2}
\end{aligned}
$$

If the h_{i} live in a finite-dimensional $\mathbb{K}(x)$-vector space, then there exists a nontrivial linear combination $p_{0} h_{0}+\ldots+p_{r} h_{r}=0$.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f)=g_{0}^{\prime}+h_{0} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=g_{1}^{\prime}+h_{1} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)=g_{2}^{\prime}+h_{2}
\end{aligned}
$$

If the h_{i} live in a finite-dimensional $\mathbb{K}(x)$-vector space, then there exists a nontrivial linear combination $p_{0} h_{0}+\ldots+p_{r} h_{r}=0$.
\longrightarrow Hence, the desired telescoper is $p_{0}+p_{1} D_{x}+\ldots+p_{r} D_{x}^{r}$.

Holonomy

Question: Does there always exist such a telescoping operator?

Holonomy

Question: Does there always exist such a telescoping operator?
Answer 1: No!

Holonomy

Question: Does there always exist such a telescoping operator?
Answer 1: No!
Answer 2: Yes!

Holonomy

Question: Does there always exist such a telescoping operator?
Answer 1: No! In general not for ∂-finite functions.
Answer 2: Yes!

Holonomy

Question: Does there always exist such a telescoping operator?
Answer 1: No! In general not for ∂-finite functions.
Answer 2: Yes! If additionally the function is holonomic.

Holonomy

Question: Does there always exist such a telescoping operator?
Answer 1: No! In general not for ∂-finite functions.
Answer 2: Yes! If additionally the function is holonomic.
Combine the two notions:

- Use ∂-finiteness for computations.
- Use holonomy for justifications.

Holonomic Functions

Assume that $f\left(x_{1}, \ldots, x_{s}\right)$ depends only on continuous variables.
Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Holonomic Functions

Assume that $f\left(x_{1}, \ldots, x_{s}\right)$ depends only on continuous variables.
Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle .
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Differently stated: f is holonomic if for any $(s-1)$-subset

$$
E \subset\left\{x_{1}, \ldots, x_{s}, D_{x_{1}}, \ldots, D_{x_{s}}\right\}, \quad|E|=s-1
$$

there exists a nonzero element in $\operatorname{Ann}_{\mathbb{W}}(f)$ that is free of all generators in E.

Holonomic Functions

Assume that $f\left(x_{1}, \ldots, x_{s}\right)$ depends only on continuous variables.
Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle .
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Differently stated: f is holonomic if for any $(s-1)$-subset

$$
E \subset\left\{x_{1}, \ldots, x_{s}, D_{x_{1}}, \ldots, D_{x_{s}}\right\}, \quad|E|=s-1,
$$

there exists a nonzero element in $\mathrm{Ann}_{\mathbb{W}}(f)$ that is free of all generators in E.
\longrightarrow This is why a creative telescoping operator always exists.

∂-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is ∂-finite.

∂-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is ∂-finite.
\longrightarrow This equivalence holds only in the continuous case!

∂-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is ∂-finite.
\longrightarrow This equivalence holds only in the continuous case!
A sequence is defined to be holonomic if its (multivariate) generating function is holonomic.

∂-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is ∂-finite.
\longrightarrow This equivalence holds only in the continuous case!
A sequence is defined to be holonomic if its (multivariate) generating function is holonomic.

Example: The sequence $\frac{1}{n^{2}+k^{2}}$ is ∂-finite but not holonomic.

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows to decide ideal membership and equality of ideals).

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows to decide ideal membership and equality of ideals).
3. Integrals and sums are treated by the method of creative telescoping.

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows to decide ideal membership and equality of ideals).
3. Integrals and sums are treated by the method of creative telescoping.
4. The output is always given as an annihilating ideal, not as a closed form.

Application 2

Special Function Identities

Some Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
\int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}\\
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{(\nu)}(x) \mathrm{d} x=\frac{\pi i^{n} \Gamma(n+2 \nu) J_{n+\nu}(a)}{2^{\nu-1} a^{\nu} n!\Gamma(\nu)} \tag{5}\\
\frac{\sin \left(\sqrt{z^{2}+2 t z}\right)}{z}=\sum_{n=0}^{\infty} \frac{(-t)^{n} y_{n-1}(z)}{n!} \tag{6}
\end{gather*}
$$

Computer Proof of a Special Function Identity

$$
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t
$$

Computer Proof of a Special Function Identity

$$
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t .
$$

<< RISC'HolonomicFunctions'
Annihilator $\left[\operatorname{Exp}[-\mathrm{x}] * \mathrm{x}^{\wedge}(\mathrm{a} / 2) * \mathrm{n}!* \operatorname{LaguerreL}[\mathrm{n}, \mathrm{a}, \mathrm{x}]\right.$, \{S[a], S[n], Der[x]\}]

$$
\begin{aligned}
& \left\{2 S_{n}-2 x D_{x}+(-a-2 n-2),\right. \\
& \\
& 4 x^{2} D_{x}^{2}+\left(4 x^{2}+4 x\right) D_{x}+\left(-a^{2}+2 a x+4 n x+4 x\right), \\
& \\
& \left.2 x S_{a}^{2}+\left(2 a x+2 x^{2}+2 x\right) D_{x}+\left(-a^{2}+a x-a+2 n x+2 x\right)\right\}
\end{aligned}
$$

Computer Proof of a Special Function Identity

$$
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t
$$

<< RISC'HolonomicFunctions‘
Annihilator $\left[\operatorname{Exp}[-\mathrm{x}] * \mathrm{x}^{\wedge}(\mathrm{a} / 2) * \mathrm{n}!* \operatorname{LaguerreL}[\mathrm{n}, \mathrm{a}, \mathrm{x}]\right.$, \{S[a], S[n], Der[x]\}]

$$
\begin{aligned}
& \left\{2 S_{n}-2 x D_{x}+(-a-2 n-2),\right. \\
& \\
& 4 x^{2} D_{x}^{2}+\left(4 x^{2}+4 x\right) D_{x}+\left(-a^{2}+2 a x+4 n x+4 x\right), \\
& \\
& \left.2 x S_{a}^{2}+\left(2 a x+2 x^{2}+2 x\right) D_{x}+\left(-a^{2}+a x-a+2 n x+2 x\right)\right\}
\end{aligned}
$$

CreativeTelescoping [Exp [-t] *t^ $(\mathrm{a} / 2+\mathrm{n}) * \operatorname{Bessel} J[\mathrm{a}, 2 * \operatorname{Sqrt}[\mathrm{t} * \mathrm{x}]]$, $\operatorname{Der}[\mathrm{t}],\{\mathrm{S}[\mathrm{a}], \mathrm{S}[\mathrm{n}], \operatorname{Der}[\mathrm{x}]\}]$

$$
\begin{aligned}
\{ & \left\{-2 S_{n}+2 x D_{x}+(a+2 n+2),\right. \\
& 4 x^{2} D_{x}^{2}+\left(4 x^{2}+4 x\right) D_{x}+\left(-a^{2}+2 a x+4 n x+4 x\right), \\
& \left.2 x S_{a}^{2}+\left(2 a x+2 x^{2}+2 x\right) D_{x}+\left(-a^{2}+a x-a+2 n x+2 x\right)\right\}, \\
& \{-2 t,-4 t x,-2 t x\}\}
\end{aligned}
$$

\longrightarrow The annihilating ideals agree; check a few initial values.

Application 3

MIMO Wireless Communication Systems

Joint work with Constantin Siriteanu, Akimichi Takemura, Satoshi Kuriki, Donald St. P. Richards, Hyundong Shin

MIMO Wireless Communication Systems

$\mathrm{MIMO}=$ Multiple Input + Multiple Output:

Notation:

- N_{T} : number of transmitting antennas
- N_{R} : number of receiving antennas
- $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{N_{\mathrm{T}}}\right)^{\mathcal{T}} \in \mathbb{C}^{N_{\mathrm{T}}}$: transmitted signal vector
- \mathbf{H} : the $N_{\mathrm{R}} \times N_{\mathrm{T}}$ channel matrix
- $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{N_{\mathrm{R}}}\right)^{\mathcal{T}}=\mathbf{H y}+\mathbf{n}$: received signal vector, where \mathbf{n} is some additive zero-mean Gaussian noise

Channel Matrix

The channel matrix is modeled as a complex-valued Gaussian random matrix, written as

$$
\mathbf{H}=\mathbf{H}_{\mathrm{d}}+\mathbf{H}_{\mathrm{r}}
$$

where \mathbf{H}_{d} denotes the deterministic component ("mean") and \mathbf{H}_{r} the random component.

Channel Matrix

The channel matrix is modeled as a complex-valued Gaussian random matrix, written as

$$
\mathbf{H}=\mathbf{H}_{\mathrm{d}}+\mathbf{H}_{\mathrm{r}}
$$

where \mathbf{H}_{d} denotes the deterministic component ("mean") and \mathbf{H}_{r} the random component.

Fading:

- Rayleigh fading, i.e., $\mathbf{H}_{\mathrm{d}}=0$ (previous work)
- Rician fading, i.e., $\mathbf{H}_{\mathrm{d}} \neq 0$ (current work)

Channel Matrix

The channel matrix is modeled as a complex-valued Gaussian random matrix, written as

$$
\mathbf{H}=\mathbf{H}_{\mathrm{d}}+\mathbf{H}_{\mathrm{r}}
$$

where \mathbf{H}_{d} denotes the deterministic component ("mean") and \mathbf{H}_{r} the random component.

Fading:

- Rayleigh fading, i.e., $\mathbf{H}_{\mathrm{d}}=0$ (previous work)
- Rician fading, i.e., $\mathbf{H}_{\mathrm{d}} \neq 0$ (current work)

For sake of simplicity (not w.l.o.g.!), certain assumptions on \mathbf{H} :

- \mathbf{H}_{d} has rank 1
- further assumptions (zero row correlation, etc.)

Zero-Forcing Detection

Recall:

$$
\mathbf{r}=\mathbf{H} \mathbf{y}+\mathbf{n} .
$$

Zero-Forcing means finding the (modulation constellation) symbols closest to each element of vector

$$
\left(\mathbf{H}^{\mathcal{H}} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathcal{H}} \mathbf{r}=\mathbf{y}+\left(\mathbf{H}^{\mathcal{H}} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathcal{H}} \mathbf{n} .
$$

Goal of the analysis: say something about the quality of the connection, i.e., how many symbols are transmitted correctly in average.

The following parameters will be used:

- $N=N_{\mathrm{R}}-N_{\mathrm{T}}+1$
- x_{1}, x_{2} : related to $\left\|\mathbf{H}_{\mathrm{d}}\right\|^{2} / \mathbb{E}\left\{\left\|\mathbf{H}_{\mathrm{r}}\right\|^{2}\right\}$
- Γ_{1} : related to the additive noise

Signal-to-Noise Ratio (SNR)

The SNR is the ultimate performance measure (determines the quality of the connection).

Theorem. The moment generating function $M\left(s ; x_{1}, x_{2}\right)$ of the SNR for zero-forcing under full-Rician fading with $r=1$ is

$$
M\left(s ; x_{1}, x_{2}\right)=\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s x_{1}}{1-\Gamma_{1} s}\right)
$$

Signal-to-Noise Ratio (SNR)

The SNR is the ultimate performance measure (determines the quality of the connection).

Theorem. The moment generating function $M\left(s ; x_{1}, x_{2}\right)$ of the SNR for zero-forcing under full-Rician fading with $r=1$ is

$$
M\left(s ; x_{1}, x_{2}\right)=\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s x_{1}}{1-\Gamma_{1} s}\right)
$$

Definition. The hypergeometric function ${ }_{1} F_{1}$ is defined by

$$
\begin{aligned}
{ }_{1} F_{1}(a ; b ; z) & :=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{z^{k}}{k!}, \quad \text { where } \\
(a)_{k} & :=a \cdot(a+1) \cdots(a+k-1), \quad(a)_{0}:=1
\end{aligned}
$$

is the Pochhammer symbol (or rising factorial).

Signal-to-Noise Ratio (SNR)

The SNR is the ultimate performance measure (determines the quality of the connection).

Theorem. The moment generating function $M\left(s ; x_{1}, x_{2}\right)$ of the SNR for zero-forcing under full-Rician fading with $r=1$ is

$$
\begin{gathered}
M\left(s ; x_{1}, x_{2}\right)=\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}{ }_{n}!}{n_{2}} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s x_{1}}{1-\Gamma_{1} s}\right)= \\
e^{-x_{2}} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \frac{(N)_{n_{1}}}{\left(n_{2}+N_{\mathrm{R}}\right)_{n_{1}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \sum_{m_{1}=0}^{n_{1}}\binom{n_{1}}{m_{1}} \frac{(-1)^{m_{1}}}{\left(1-s \Gamma_{1}\right)^{N+n_{1}-m_{1}}} .
\end{gathered}
$$

Signal-to-Noise Ratio (SNR)

The SNR is the ultimate performance measure (determines the quality of the connection).

Theorem. The moment generating function $M\left(s ; x_{1}, x_{2}\right)$ of the SNR for zero-forcing under full-Rician fading with $r=1$ is

$$
\begin{gathered}
M\left(s ; x_{1}, x_{2}\right)=\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s x_{1}}{1-\Gamma_{1} s}\right)= \\
e^{-x_{2}} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \frac{(N)_{n_{1}}}{\left(n_{2}+N_{\mathrm{R}}\right)_{n_{1}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \sum_{m_{1}=0}^{n_{1}}\binom{n_{1}}{m_{1}} \frac{(-1)^{m_{1}}}{\left(1-s \Gamma_{1}\right)^{N+n_{1}-m_{1}}} .
\end{gathered}
$$

Obtain the SNR probability density function by Laplace transform:

$$
\frac{1}{\left(1-s \Gamma_{1}\right)^{N+n_{1}-m_{1}}} \stackrel{\text { Laplace }}{\longleftrightarrow} \frac{t^{N+n_{1}-m_{1}-1} e^{-t / \Gamma_{1}}}{\left(N+n_{1}-m_{1}-1\right)!\Gamma_{1}^{N+n_{1}-m_{1}}}
$$

SNR Probability Density Function

Thus we obtain for the SNR probability density function $p\left(t ; x_{1}, x_{2}\right)$:

$$
\begin{aligned}
p\left(t ; x_{1}, x_{2}\right)= & \int_{0}^{\infty} e^{-s t} M\left(s ; x_{1}, x_{2}\right) \mathrm{d} s \\
= & e^{-x_{2}} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \frac{(N)_{n_{1}}}{\left(n_{2}+N_{\mathrm{R}}\right)_{n_{1}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \\
& \times \sum_{m_{1}=0}^{n_{1}}\binom{n_{1}}{m_{1}} \frac{(-1)^{m_{1}} t^{N+n_{1}-m_{1}-1} e^{-t / \Gamma_{1}}}{\left(N+n_{1}-m_{1}-1\right)!\Gamma_{1}^{N+n_{1}-m_{1}}}
\end{aligned}
$$

SNR Probability Density Function

Thus we obtain for the SNR probability density function $p\left(t ; x_{1}, x_{2}\right)$:

$$
\begin{aligned}
p\left(t ; x_{1}, x_{2}\right)= & \int_{0}^{\infty} e^{-s t} M\left(s ; x_{1}, x_{2}\right) \mathrm{d} s \\
= & e^{-x_{2}} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \frac{(N)_{n_{1}}}{\left(n_{2}+N_{\mathrm{R}}\right)_{n_{1}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \\
& \times \sum_{m_{1}=0}^{n_{1}}\binom{n_{1}}{m_{1}} \frac{(-1)^{m_{1}} t^{N+n_{1}-m_{1}-1} e^{-t / \Gamma_{1}}}{\left(N+n_{1}-m_{1}-1\right)!\Gamma_{1}^{N+n_{1}-m_{1}}} .
\end{aligned}
$$

Definition. Using this, we define the main object of interest, the outage probability $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$:

$$
P_{\mathrm{o}}\left(x_{1}, x_{2}\right)=\int_{0}^{\tau} p\left(t ; x_{1}, x_{2}\right) \mathrm{d} t
$$

where τ is a certain prescribed SNR threshold.

Evaluate

Now, for certain choices of the parameters $N_{\mathrm{R}}, N, x_{1}, x_{2}, \Gamma_{1}, \tau$, we want to "compute" (i.e., evaluate numerically) the outage probability.

First try: truncate the infinite series

$$
\begin{aligned}
& P_{\mathrm{o}}\left(x_{1}, x_{2}\right)=e^{-x_{2}} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \frac{(N)_{n_{1}}}{\left(n_{2}+N_{\mathrm{R}}\right)_{n_{1}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \\
& \times \sum_{m_{1}=0}^{n_{1}}\binom{n_{1}}{m_{1}} \frac{(-1)^{m_{1}} \gamma\left(N+n_{1}-m_{1}, \tau / \Gamma_{1}\right)}{\left(N+n_{1}-m_{1}-1\right)!}
\end{aligned}
$$

\longrightarrow Problem: slow convergence.

Difficulties in the Evaluation

- Accuracy problems with standard floating-point arithmetic.

Difficulties in the Evaluation

- Accuracy problems with standard floating-point arithmetic.
- Use arbitrary-precision in a computer algebra system. But this makes computations even slower.

Holonomic Gradient Method (HGM)

\longrightarrow Methods for evaluating and optimizing certain expressions.
(Nakayama, Nishiyama, Noro, Ohara, Sei, Takayama, Takemura)
Input: $f\left(x_{1}, \ldots, x_{s}\right)$ holonomic, $\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{R}^{s}$
Output: an approximation of $f\left(a_{1}, \ldots, a_{s}\right)$

1. Determine a holonomic system (set of differential equations) to which f is a solution, and let r be its holonomic rank.
2. Determine a suitable "basis" of derivatives $\mathbf{f}=\left(f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}\right)$ of $f\left(x_{1}, \ldots, x_{s}\right)$.
3. Convert the holonomic system into a set of Pfaffian systems, i.e., $\frac{\mathrm{d}}{\mathrm{d} x_{i}} \mathbf{f}=\mathbf{A}_{i} \mathbf{f}$ for each x_{i}.
4. Compute $f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}$ at a suitably chosen point $\left(b_{1}, \ldots, b_{s}\right) \in \mathbb{R}^{s}$, for which this is easy to achieve.
5. Use your favourite numerical integration procedure (e.g., Euler, Runge-Kutta) to obtain $\mathbf{f}\left(a_{1}, \ldots, a_{s}\right)$.

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
{ }_{1} F_{1}(a ; b ; x)
$$

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Substitution $a \rightarrow N, b \rightarrow n_{2}+N_{\mathrm{R}}, x \rightarrow \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}$

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

$\frac{x_{2}^{n_{2}}}{n_{2}!}$ is holonomic (the generating function is $e^{x_{2} y}$).

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Multiplication

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Summation

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

$e^{-x_{2}}$ is holonomic.

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
e^{-x_{2}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!} 1 F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Multiplication

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
e^{-x_{2}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!} 1 F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

$\left(1-\Gamma_{1} s\right)^{N}$ is holonomic.

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Division

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Division

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

$\left(1-\Gamma_{1} s\right)^{-N}$ is holonomic as well!

Closure Properties (Example)

We have seen that the following expression is holonomic:

$$
M\left(s ; x_{1}, x_{2}\right)=\frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \sum_{n_{2}=0}^{\infty} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s}{1-\Gamma_{1} s x_{1}}\right)
$$

Hence, by inspection, our SNR moment generating function is holonomic. Likewise, $p\left(t ; x_{1}, x_{2}\right)$ and $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are holonomic.

Pfaffian Systems

Fix $f\left(x_{1}, \ldots, x_{s}\right)$.
A suitable "basis of derivatives" $\mathbf{f}=\left(f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}\right)$ for HGM step 2 is given by the (finite!) list of monomials that are irreducible modulo the annihilator ideal.

Pfaffian Systems

Fix $f\left(x_{1}, \ldots, x_{s}\right)$.
A suitable "basis of derivatives" $\mathbf{f}=\left(f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}\right)$ for HGM step 2 is given by the (finite!) list of monomials that are irreducible modulo the annihilator ideal.

"monomials under the staircase" $(r=5)$

Pfaffian Systems

Fix $f\left(x_{1}, \ldots, x_{s}\right)$.
A suitable "basis of derivatives" $\mathbf{f}=\left(f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}\right)$ for HGM step 2 is given by the (finite!) list of monomials that are irreducible modulo the annihilator ideal.

The Pfaffian system (given by the matrix \mathbf{A}_{i}) for x_{i}

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \mathbf{f}=\mathbf{A}_{i} \mathbf{f}
$$

is obtained by reduction with the Gröbner basis.

Pfaffian Systems

Fix $f\left(x_{1}, \ldots, x_{s}\right)$.
A suitable "basis of derivatives" $\mathbf{f}=\left(f^{\left(\mathbf{m}_{1}\right)}, \ldots, f^{\left(\mathbf{m}_{r}\right)}\right)$ for HGM step 2 is given by the (finite!) list of monomials that are irreducible modulo the annihilator ideal.

The Pfaffian system (given by the matrix \mathbf{A}_{i}) for x_{i}

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{i}} \mathbf{f}=\mathbf{A}_{i} \mathbf{f}
$$

is obtained by reduction with the Gröbner basis.
Nota bene. For $s=1$ (ODE case) the matrix \mathbf{A} is a companion matrix.

Annihilator for $M\left(s ; x_{1}, x_{2}\right)$

Apply creative telescoping (HolonomicFunctions package) to

$$
\sum_{n_{2}=0}^{\infty} \frac{e^{-x_{2}}}{\left(1-\Gamma_{1} s\right)^{N}} \frac{x_{2}^{n_{2}}}{n_{2}!}{ }_{1} F_{1}\left(N ; n_{2}+N_{\mathrm{R}} ; \frac{\Gamma_{1} s x_{1}}{1-\Gamma_{1} s}\right)
$$

```
annM =
    CreativeTelescoping[Exp[-x2] / (1-G1 * s)^N * x2^n2 / n2!**
        Hypergeometric1F1[N, n2 + NR, G1 * s * x1 / (1 - G1 * s)],
        s[n2] - 1, {Der[s], Der[x1], Der[x2]}][[1]]
{(-s+G1 s
    (-G1s x1 x2 + x2 2 -G1sm2 2 ) D D 2 + (-NR x1 + G1 NR s x1) D D D1 +
    (G1 N s x1 - G1 NR s x1 + NR x2 - G1 NR s x2 - G1 s x1 x2 + x2 2 - G1 s x2 2 )
        Dx2 +G1 N s x1, (G1 s x1 - x2 +G1 s x2) D D ( 
    (-NR + G1 NR s + G1 s x1 - x2 + G1 s x2) D D | + G1 N s D D2 + G1 N s,
(G1s x1 2 -G1 's s
```



```
    (-G1Nssx2 +G1'N Ns m2) D D N2 -G1 N N s
```


Annihilator for $p\left(t ; x_{1}, x_{2}\right)$

```
ops = {Der[s], Der[t], Der[x1], Der[x2]};
annM1 = ToOrePolynomial[Prepend[annM, Der[t]], OreAlgebra @@ops];
annp = CreativeTelescoping[
    DFiniteTimes[annM1, Annihilator[Exp[-s*t], ops]], Der[s]][[1]]
{(G1 x1 ' x2 + 2G1 x1 x 2 2 +G1 x 2 3})\mp@subsup{D}{\textrm{x}2}{2}
    G1 NR t x1 Dt + (-G1 NR x1 ' -G1 NR x1 x2) D D m1 +
    (-G1 N x1 ' + G1 NR x1 2 -G1 N x1 x2 + 2 G1 NR x1 x2 +
            t x1 x2 +G1 x1 ' x2 +G1 NR x2 2 + 2 G1 x1 x2 2 +G1 x2 ') D D2 +
    (G1 NR x1 - G1 N NR x1 + NR t x1 - G1 N x1 2 - G1 N x1 x2 + t x1 x2),
```



```
    (-G1N x1 - G1 N x2 + t x2) D D2 +
    (G1 NR - G1 N NR + NR t - G1 N x1 - G1 N x2 + t x2),
```



```
    (G1 t x1 2 +G1 NR t x2 + 2 G1 t x1 x2 +G1 t x2 2})\mp@subsup{D}{t}{}
    (G1 NR x1 ' +G1 x1 ' +G1 NR x1 x2 + 2 G1 x1 ' x2 +G1 x1 x2 2) D D D1 +
    (-G1Nx1 x2 -G1N x2 2 + tx2 2) D D2 + (G1 x12 +G1 NR x2 - G1 N NR x2 +
        :
```


Annihilator for $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$

Recall:

$$
P_{\mathrm{o}}\left(x_{1}, x_{2}\right)=\int_{0}^{\tau} p\left(t ; x_{1}, x_{2}\right) \mathrm{d} t
$$

Hence we apply creative telescoping to $p\left(t ; x_{1}, x_{2}\right)$:

$$
\begin{aligned}
& \text { ct }=\text { CreativeTelescoping[annp, Der [t]] } \\
& \left\{\left\{D_{x 2}, D_{x 1}\right\},\right. \\
& \left\{\frac{G 1 N t-t^{2}}{N x 1} D_{t}+\frac{t}{N} D_{x 1}-\frac{t}{N} D_{x 2}+\frac{G 1^{2} N-G 1^{2} N^{2}-G 1 t+2 G 1 N t-t^{2}}{G 1 N x 1},\right. \\
& \left.\left.\quad \frac{G 1 t}{x 1} D_{t}+\frac{G 1-G 1 N+t}{x 1}\right\}\right\}
\end{aligned}
$$

Annihilator for $P_{o}\left(x_{1}, x_{2}\right)$

```
OreGroebnerBasis[
    Flatten[
    MapThread[Function[{p,q},
            (# ** p) & /@ DFiniteSubstitute[DFiniteOreAction[annp, q],
                {t }->\tau},Algebra->OreAlgebra[Der[x1], Der[x2]]]], ct]]
```



```
            (G1 x1 2 -G1N N1 2 +G1 NR x1 2 + 3 G1 x1 x2 - G1 N x1 x2 + 4 G1 NR x1 x2 +
```



```
        (2G1 NR x12 + G1 NR x1 x2) D D P1 + (G1 NR x1 - G1NNR x1 + 2G1 NR' x1 +
        G1 x12 -G1N N1 + +G1 NR x2 +G1 NR ' x2 + 3 G1 x1 x2 - G1N N1 x2 +
        2G1 NR x1 x2 + 2G1 x2 2 +G1 NR x2 ' + NR x1 \tau + x1 x2 \tau) D D2,
```



```
        (-G1 x1 x x2 -G1 x1 x2 2 -G1 N x1 x2 2 -G1 NR x1 x2 2 -
```



```
        :
```


HGM computation

The irreducible monomials of the annihilator of $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are

$$
1, D_{1}, D_{2}, D_{1}^{2}, D_{2}^{2}
$$

Hence, we take the following basis:

$$
\mathbf{f}=\left(P_{\mathrm{o}}, P_{\mathrm{o}}^{(0,1)}, P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(0,2)}\right)
$$

HGM computation

The irreducible monomials of the annihilator of $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are

$$
1, D_{1}, D_{2}, D_{1}^{2}, D_{2}^{2}
$$

Hence, we take the following basis:

$$
\mathbf{f}=\left(P_{\mathrm{o}}, P_{\mathrm{o}}^{(0,1)}, P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(0,2)}\right)
$$

Initial values are computed for some small x_{1}, x_{2}, so that the infinite series converges quickly.

HGM computation

The irreducible monomials of the annihilator of $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are

$$
1, D_{1}, D_{2}, D_{1}^{2}, D_{2}^{2}
$$

Hence, we take the following basis:

$$
\mathbf{f}=\left(P_{\mathrm{o}}, P_{\mathrm{o}}^{(0,1)}, P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(0,2)}\right)
$$

Initial values are computed for some small x_{1}, x_{2}, so that the infinite series converges quickly.

The matrix \mathbf{A}_{1} of the Pfaffian system $D_{1} \mathbf{f}=\mathbf{A}_{1} \mathbf{f}$ is

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & -\frac{N_{\mathrm{R}}+x_{2}}{x_{1}} & -1 & -\frac{x_{2}}{x_{1}} & 0 \\
0 & \langle\cdots\rangle & -\frac{N_{\mathrm{R}} x_{1}\left(2 x_{1}+x_{2}\right)}{x_{2}\left(x_{1}+x_{2}\right)^{2}} & \langle\cdots\rangle & -\frac{N_{\mathrm{R}} x_{1}^{2}}{x_{2}\left(x_{1}+x_{2}\right)^{2}} \\
0 & \langle\cdots\rangle & \frac{N_{\mathrm{R}} x_{1}}{\left(x_{1}+x_{2}\right)^{2}} & \langle\cdots\rangle & -\frac{\left(x_{1}+x_{2}\right)^{2}+N_{\mathrm{R}} x_{2}}{\left(x_{1}+x_{2}\right)^{2}}
\end{array}\right)
$$

HGM computation

The irreducible monomials of the annihilator of $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are

$$
1, D_{1}, D_{2}, D_{1}^{2}, D_{2}^{2}
$$

Hence, we take the following basis:

$$
\mathbf{f}=\left(P_{\mathrm{o}}, P_{\mathrm{o}}^{(0,1)}, P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(0,2)}\right) .
$$

Initial values are computed for some small x_{1}, x_{2}, so that the infinite series converges quickly.

The matrix \mathbf{A}_{1} of the Pfaffian system $D_{1} \mathbf{f}=\mathbf{A}_{1} \mathbf{f}$ is obtained by rewriting $P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(1,1)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(3,0)}, P_{\mathrm{o}}^{(1,2)}$ in terms of \mathbf{f}.
Similar for $D_{2} \mathbf{f}=\mathbf{A}_{2} \mathbf{f}$.

HGM computation

The irreducible monomials of the annihilator of $P_{\mathrm{o}}\left(x_{1}, x_{2}\right)$ are

$$
1, D_{1}, D_{2}, D_{1}^{2}, D_{2}^{2}
$$

Hence, we take the following basis:

$$
\mathbf{f}=\left(P_{\mathrm{o}}, P_{\mathrm{o}}^{(0,1)}, P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(0,2)}\right) .
$$

Initial values are computed for some small x_{1}, x_{2}, so that the infinite series converges quickly.

The matrix \mathbf{A}_{1} of the Pfaffian system $D_{1} \mathbf{f}=\mathbf{A}_{1} \mathbf{f}$ is obtained by rewriting $P_{\mathrm{o}}^{(1,0)}, P_{\mathrm{o}}^{(1,1)}, P_{\mathrm{o}}^{(2,0)}, P_{\mathrm{o}}^{(3,0)}, P_{\mathrm{o}}^{(1,2)}$ in terms of \mathbf{f}.
Similar for $D_{2} \mathbf{f}=\mathbf{A}_{2} \mathbf{f}$.
\mathbf{A}_{1} and \mathbf{A}_{2} allow to propagate the initial values along both coordinate axes.

HGM computation

- dots: computed with truncated series (167s)
- line: computed with HGM $(<1 s)$

