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The Holonomic Systems Approach

I seminal paper by Doron Zeilberger in 1990

I created a huge research area

I many applications in mathematics and elsewhere
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D-finite and P-recursive

A function f(x) is called D-finite if it satisfies a linear ordinary
differential equation with polynomial coefficients:

pd(x)f (d)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0,

p0, . . . , pd ∈ K[x] not all zero.

A sequence f(n) is called P-recursive (or P-finite) if it satisfies a
linear recurrence equation with polynomial coefficients:

pd(n)f(n+ d) + · · ·+ p1(n)f(n+ 1) + p0(n)f(n) = 0,

p0, . . . , pd ∈ K[n] not all zero.

−→ In both cases, only finitely many initial conditions are needed!

−→ Also called holonomic function resp. holonomic sequence.
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Example: Harmonic Numbers
Example: The harmonic numbers Hn =

∑n
k=1

1
k satisfy the

recurrence

nHn = (2n− 1)Hn−1 − (n− 1)Hn−2 (n > 2)

with initial conditions H0 = 0 and H1 = 1.

Can express any shift as K(n)-linear combination of Hn and Hn+1:

Hn+4 = 2n+7
n+4 Hn+3 − n+3

n+4Hn+2

= 2n+7
n+4

(
2n+5
n+3 Hn+2 − n+2

n+3Hn+1

)
− n+3

n+4Hn+2

= 3n2+18n+26
(n+3)(n+4) Hn+2 − (2n+7)(n+2)

(n+3)(n+4) Hn+1

= 3n2+18n+26
(n+3)(n+4)

(
2n+3
n+2 Hn+1 − n+1

n+2Hn

)
− (2n+7)(n+2)

(n+3)(n+4) Hn+1

= 2(2n+5)(n2+5n+5)
(n+2)(n+3)(n+4) Hn+1 − (n+1)(3n2+18n+26)

(n+2)(n+3)(n+4) Hn
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Closure Properties

If f(x) and g(x) are D-finite then also the following are D-finite

I f(x) + g(x)

I f(x) · g(x)

I f(a(x)) if a(x) is algebraic

If f(n) and g(n) are P-recursive then also the following are
P-recursive

I f(n) + g(n)

I f(n) · g(n)

I f(an+ b) for integers a and b

A sequence is P-recursive iff its generating function is D-finite.
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Proof
Show that for P-recursive sequences f(n) and g(n) also
h(n) = f(n)g(n) is P-recursive. Assume f and g satisfy
recurrences of order d1 and d2, respectively.

Ansatz: want to find c0, . . . , cd ∈ K[n] such that

0 = cd(n)h(n+ d) + . . .+ c0(n)h(n)

= cd(n)f(n+ d)g(n+ d) + . . .+ c0(n)f(n)g(n)

= cd(n)
(
fd,d1−1f(n+ d1 − 1) + . . .+ fd,0f(n)

)
×
(
gd,d2−1g(n+ d2 − 1) + . . .+ gd,0g(n)

)
+ . . .

. . .+ c0(n)f(n)g(n)

=

d1−1∑
i=0

d2−1∑
j=0

ri,j(c0, . . . , cd, n)f(n+ i)g(n+ j)

All coefficients ri,j must vanish: this yields d1d2 equations for the
unknowns c0, . . . , cd. The choice d = d1d2 ensures a solution.
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Multivariate Generalization

Generalize the finiteness property to

I multivariate functions f(x1, . . . , xs)
(the xi are called continuous variables)

I multidimensional sequences f(n1, . . . , ns)
(the ni are called discrete variables)

I mixed setting: functions in several continuous and discrete
variables f(x1, . . . , xs, n1, . . . , nr)
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Example: Legendre Polynomials Pn(x)

This family of (orthogonal) polynomials is a particular solution of
the differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0.

The Legendre polynomials can be defined recursively:

P0(x) = 1

P1(x) = x

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

Consider the set
{
P

(i)
n (x) : i > 0

}
.

{
P

(i)
n+j(x) : i, j > 0

}
.

i

P
(4)
n (x) =

− 6x
x2−1

P
(3)
n (x) + (n−2)(n+3)

x2−1
P ′′n (x)n2x2−n2+nx2−n+18x2+6

(x2−1)2
P ′′n (x)

−6(n−1)(n+2)x
(x2−1)2

P ′n(x)

−8x(n2x2−n2+nx2−n+3x2+3)
(x2−1)3

P ′n(x)

+n(n+1)(n2x2−n2+nx2−n+18x2+6)
(x2−1)3

Pn(x)

P
(3)
n+1(x) =

− 4x
x2−1

P ′′n+1(x) + n(n+3)
x2−1

P ′n+1(x)(n2x2−n2+3nx2−3n+8x2)
(x2−1)2

P ′n+1(x)

−4(n2x+3nx+2x)
(x2−1)2

Pn+1(x)

Pn+3(x) =

(2n+5)x
n+3 Pn+2(x)− n+2

n+3Pn+1(x)4n2x2−n2+16nx2−4n+15x2−4
(n+2)(n+3) Pn+1(x)

−2n2x+7nx+5x
(n+2)(n+3) Pn(x)

(x2 − 1)P
(4)
n (x) + 6xP

(3)
n (x)− (n− 2)(n+ 3)P ′′n (x) = 0(x2 − 1)P

(3)
n (x) + 4xP ′′n (x)− (n− 1)(n+ 2)P ′n(x) = 0(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0−→ Pn(x) is D-finite w.r.t. x.(x2 − 1)P
(3)
n+1(x) + 4xP ′′n+1(x)− n(n+ 3)P ′n+1(x) = 0(x2 − 1)P ′′n+1(x) + 2xP ′n+1(x)− (n+ 1)(n+ 2)Pn+1(x) = 0(n+ 3)Pn+3(x)− (2n+ 5)xPn+2(x) + (n+ 2)Pn+1(x) = 0(n+ 2)Pn+2(x)− (2n+ 3)xPn+1(x) + (n+ 1)Pn(x) = 0P ′n+1(x)− xP ′n(x)− (n+ 1)Pn(x) = 0(n+ 1)Pn+1(x) + (1− x2)P ′n(x)− (n+ 1)xPn(x) = 0−→ Pn(x) is ∂-finite w.r.t. n and x (of rank 2).
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∂-Finiteness

Let f(x1, . . . , xs, n1, . . . , nr) be a function in the continuous
variables x1, . . . , xs and in the discrete variables n1, . . . , nr.

Definition: f is called ∂-finite (or D-finite) if there is a finite set
of basis functions of the form

di1

dxi11
. . .

dis

dxiss
f(x1, . . . , xs, n1 + j1, . . . , nr + jr)

with i1, . . . , is, j1, . . . , jr ∈ N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(x1, . . . , xs, n1, . . . , nr)-linear combination of the basis functions.

↑ field!

Again, finitely many initial conditions suffice to specify / fix f .
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Algebraic Setting
Write differential/difference equations in operator notation:

I shift operator Sv: Svf(v) = f(v + 1)
I partial derivative Dv: Dvf(v) = d

dvf(v)
I q-shift operator Sv,q: Sv,qf(v) = f(qv)
I arbitrary operator ∂v: any of the above

Example 1: The Legendre differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0

translates to the operator

(x2 − 1)D2
x + 2xDx − n(n+ 1).

Example 2: The three-term recurrence

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

translates to the operator

(n+ 2)S2
n − (2n+ 3)xSn + (n+ 1).

9 / 52



Algebraic Setting
Write differential/difference equations in operator notation:

I shift operator Sv: Svf(v) = f(v + 1)
I partial derivative Dv: Dvf(v) = d

dvf(v)
I q-shift operator Sv,q: Sv,qf(v) = f(qv)
I arbitrary operator ∂v: any of the above

Example 1: The Legendre differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0

translates to the operator

(x2 − 1)D2
x + 2xDx − n(n+ 1).

Example 2: The three-term recurrence

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

translates to the operator

(n+ 2)S2
n − (2n+ 3)xSn + (n+ 1).

9 / 52



Algebraic Setting
Write differential/difference equations in operator notation:

I shift operator Sv: Svf(v) = f(v + 1)
I partial derivative Dv: Dvf(v) = d

dvf(v)
I q-shift operator Sv,q: Sv,qf(v) = f(qv)
I arbitrary operator ∂v: any of the above

Example 1: The Legendre differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0

translates to the operator

(x2 − 1)D2
x + 2xDx − n(n+ 1).

Example 2: The three-term recurrence

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

translates to the operator

(n+ 2)S2
n − (2n+ 3)xSn + (n+ 1).

9 / 52



Operator Algebra
Differential equations and recurrences are translated to skew
polynomials.

Noncommutative multiplication:

Dxx = xDx + 1, Snn = nSn + Sn, etc.

More general:

Dxa(x) = a(x)Dx + a′(x), Sna(n) = a(n+ 1)Sn, etc.

Even more general:

∂va = σ(a)∂v + δ(a)

where σ is an automorphism and δ a σ-derivation, i.e.,

δ(ab) = σ(a)δ(b) + δ(a)b.
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Operator Algebra
Such operators form an Ore algebra

K(v, w, . . . )〈∂v, ∂w, . . . 〉,

i.e., multivariate polynomials in the ∂’s with coefficients being
rational functions in v, w, . . . , where K is a field, char(K) = 0.

In fact, the above notation is a shortcut for

K(v, w, . . . )[∂v;σv, δv][∂w;σw, δw] · · ·

Example: The operators that we encountered with the Legendre
polynomials live in the Ore algebra

K(x, n)〈Dx, Sn〉 = K(x, n)[Dx; 1, d
dx ][Sn;σn, 0].

Definition: We define the annihilator of a function f to be the set

AnnO f :=
{
P ∈ O : P · f = 0

}
(it is a left ideal in O).
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Definition: ∂-Finite Function

Let O = K(v, w, . . . )〈∂v, ∂w, . . . 〉 be an Ore algebra.

A function f(v, w, . . . ) is ∂-finite w.r.t. O if “all its shifts and
derivatives”

O · f = {P · f : P ∈ O}

form a finite-dimensional K(v, w, . . . )-vector space:

dimK(v,w,... )

(
O/AnnO(f)

)
<∞.

i

j

In other words, if the left ideal of annihilating operators of f

AnnO(f) = {P ∈ O : P · f = 0}

is a zero-dimensional ideal.
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Why ∂-Finite Functions?

1. Definition gives rise to a finite data structure.
I annihilating ideal of operators (Gröbner basis is finite)

I finitely many initial values

2. This set of functions is closed under many operations.
I addition, e.g., xn + Pn(x)

I multiplication, e.g., Pn(x)Pn+1(x)

I certain substitutions, e.g., P2n+3

(√
x2 + 1

)
I operator application, e.g., P ′

n+2(x)

3. These operations (closure properties) can be executed
algorithmically.

4. Many elementary and special functions are covered.
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(Incomplete) List of ∂-Finite Functions
ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh,
HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc,
Multinomial, CatalanNumber, QBinomial, CosIntegral, ArcSech,
SphericalHankelH2, HermiteH, ExpIntegralEi, Beta, AiryBiPrime,
SphericalBesselJ, Binomial, ParabolicCylinderD, Erfc, EllipticK,
Fibonacci, QFactorial, Cos, Hypergeometric2F1, Erf, KelvinKer,
HypergeometricPFQRegularized, Log, Factorial, BesselY, Cosh,
CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE,
SinhIntegral, Sinh, BetaRegularized, SphericalHankelH1, ArcSin,
EllipticThetaPrime, Root, LucasL, AppellF1, FresnelC, LegendreQ,
ChebyshevU, GammaRegularized, Erfi, HarmonicNumber, BesselI,
KelvinKei, ArithmeticGeometricMean, Exp, ArcCot, EllipticTheta,
Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE,
FresnelS, EllipticF, ArcCosh, Subfactorial, QPochhammer, Gamma,
StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral,
BesselJ, StruveL, ArcSec, Factorial2, KelvinBer, BesselK, ArcSinh,
HankelH1, Sqrt, PolyGamma, HypergeometricU, AiryAiPrime, Sin,
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Application 1

Finite Elements

Joint work with Joachim Schöberl and Peter Paule
15 / 52



Problem Setting

Simulate the propagation of electromagnetic waves using the
Maxwell equations

dH

dt
= curlE,

dE

dt
= − curlH

where H and E are the magnetic and the electric field respectively.

Define basis functions (this is the 2D case):

ϕi,j(x, y) := (1− x)iP
(2i+1,0)
j (2x− 1)Pi

( 2y
1−x − 1

)
using the Legendre and Jacobi polynomials.

Problem: Represent the partial derivatives of ϕi,j(x, y) in the
basis (i.e., as linear combinations of shifts of the ϕi,j(x, y) itself).

16 / 52



Make an Ansatz!
More precisely, we need a relation of the form∑
(k,l)∈A

ak,l(i, j)
d

dxϕi+k,j+l(x, y) =
∑

(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

that is free of x and y (and similarly for d
dy ).

Sketch of the algorithm:

1. Work in the Ore algebra O = Q(i, j, x, y)〈Si, Sj , Dx〉.
2. Compute a Gröbner basis G of AnnO ϕi,j(x, y).

3. Choose index sets A and B.

4. Reduce the above ansatz with G and obtain a normal form.

5. Do coefficient comparison with respect to x and y.

6. Solve the resulting linear system for ak,l, bm,n ∈ Q(i, j).

7. If there is no solution, go back to step 3.
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Result

With this method, we find the relation

(2i+ j + 3)(2i+ 2j + 7) d
dxϕi,j+1(x, y)+

2(2i+ 1)(i+ j + 3) d
dxϕi,j+2(x, y)−

(j + 3)(2i+ 2j + 5) d
dxϕi,j+3(x, y)+

(j + 1)(2i+ 2j + 7) d
dxϕi+1,j(x, y)−

2(2i+ 3)(i+ j + 3) d
dxϕi+1,j+1(x, y)−

(2i+ j + 5)(2i+ 2j + 5) d
dxϕi+1,j+2(x, y)+

2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi,j+2(x, y)+
2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi+1,j+1(x, y) = 0

and a similar one for d
dyϕi,j(x, y).

−→ The use of these previously unknown formulae caused
a considerable speed-up in the numerical simulations.
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Symbolic Summation and Integration

That was nice, but we want (and can) do more. . .

What about integrals ∫ b

a
f(x, . . . ) dx

and sums
b∑

n=a

f(n, . . . )

19 / 52



Creative Telescoping
Method for doing integrals and sums

(aka Feynman’s differentiating under the integral sign)

Consider the following summation

integration

problem: F (n) =

b∑
k=a

f(n, k)

F (x) =

∫ b

a
f(x, y) dy

Telescoping: write f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).
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Creative Telescoping, O = K(n, k)〈Sn, Sk〉

cd(n)f(n+ d, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k)

= (Sk − 1) · g(n, k).

Where should we look for a suitable g(n, k)?
Note that there are trivial solutions like:

g(n, k) :=

k−1∑
i=0

(
cd(n)f(n+ d, i) + · · ·+ c0(n)f(n, i)

)

A reasonable choice for where to look for g is O · f .

Then the task is to find P (n, Sn) = cd(n)Sdn + · · ·+ c0(n) and
Q ∈ O such that(
P − (Sk − 1)Q

)
· f = 0 ⇐⇒ P − (Sk − 1)Q ∈ AnnO(f).
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Creative Telescoping (Example 1)

Let F (n) denote the double sum over the trinomial coefficients

F (n) =

n∑
j=0

n∑
i=0

(
n

i, j, n− i− j

)
=

n∑
j=0

n∑
i=0

n!

i!j!(n− i− j)!
.

Then the creative telescoping operator

CT = Sn − 3 + (Si − 1)
i

n− i− j + 1
+ (Sj − 1)

j

n− i− j + 1

with CT
((

n
i,j,n−i−j

))
= 0 implies that

F (n+ 1) = 3F (n).

22 / 52



Creative Telescoping (Example 1)

Let F (n) denote the double sum over the trinomial coefficients

F (n) =

n∑
j=0

n∑
i=0

(
n

i, j, n− i− j

)
=

n∑
j=0

n∑
i=0

n!

i!j!(n− i− j)!
.

Then the creative telescoping operator

CT = Sn − 3 + (Si − 1)
i

n− i− j + 1
+ (Sj − 1)

j

n− i− j + 1

with CT
((

n
i,j,n−i−j

))
= 0 implies that

F (n+ 1) = 3F (n).

22 / 52



Creative Telescoping (Example 2)

The lattice Green’s function of the square lattice is given by

G(z) =

∫ 1

0

∫ 1

0

1

(1− xyz)
√

1− x2
√

1− y2
dx dy.

The creative telescoping operator

(z3 − z)D2
z + (3z2 − 1)Dz + z +Dx

y(1− x2)

xyz − 1
+Dy

yz(1− y2)

xyz − 1

that annihilates the integrand, certifies that G(z) satisfies the
differential equation

(z3 − z)G′′(z) + (3z2 − 1)G′(z) + zG(z) = 0.
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How to Find (P,Q)?

Make an ansatz for the telescoper P and the certificate Q.

Fix an integer r and set

P =

r∑
i=0

pi(x)Di
x with pi ∈ K(x) unknown coefficients.

Let U denote the set of monomials under the stairs of a Gröbner
basis for AnnO(f), or any other vector space basis of O/AnnO(f).

Since Q ∈ O/AnnO(f), we can set

Q =
∑
u∈U

qu(x, y)u with unknown qu ∈ K(x, y).

24 / 52



How to Find (P,Q)?

Make an ansatz for the telescoper P and the certificate Q.

Fix an integer r and set

P =

r∑
i=0

pi(x)Di
x with pi ∈ K(x) unknown coefficients.

Let U denote the set of monomials under the stairs of a Gröbner
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Chyzak’s Algorithm
Putting things together:

P −DyQ =

r∑
i=0

pi(x)Di
x −Dy

∑
u∈U

qu(x, y)u

=
r∑
i=0

pi(x)Di
x −

∑
u∈U

(
qu(x, y)Dy + d

dy qu(x, y)
)
u

Since we want P −DyQ ∈ AnnO(f) we reduce the above
expression with a Gröbner basis of AnnO(f) and equate the
(Dx, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the qu’s with parameters p0, . . . , pr.
−→ There are algorithms to find rational solutions of such systems.

Finally: loop over the (a priori) unknown order r of the telescoper.
−→ This is Chyzak’s algorithm (analogously in other Ore algebras).
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Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

P (v,∂v) + ∆1Q1(v,w,∂v,∂w) + · · ·+ ∆mQm(v,w,∂v,∂w)

where ∆i = Swi − 1 or ∆i = Dwi (depending on the problem).

I Corresponds to an m-fold summation/integration problem.

I w = w1, . . . , wm are the summation/integration variables.

I v = v1, . . . , vl are the surviving parameters.

I P (v,∂v) is called the telescoper.

I The Qi(v,w,∂v,∂w) are called the certificates.

I The certificates certify the correctness of the telescoper.

I Research topic: develop fast algorithms to compute it!
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Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

∑
α

pα(v)∂αv +

m∑
i=1

∆i

∑
u∈U

∑
β qi,j,β(v)wβ

di,j(v,w)
u

with unknowns pα and qi,j,β, and with specific denominators di,j .

I input: a (non-commutative) Gröbner basis G of AnnO(f)

I denote by U the (finitely many) monomials under its stairs

I reduce the ansatz with G and equate coefficients to zero

I new: coefficient comparison w.r.t. w

I this leads to a linear system of equations over K(v)

I the denominators di,j can be roughly predicted from the
leading coefficients of the Gröbner basis G

I implemented in HolonomicFunctions (Mathematica)
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I implemented in HolonomicFunctions (Mathematica)

27 / 52



Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

∑
α

pα(v)∂αv +

m∑
i=1

∆i

∑
u∈U

∑
β qi,j,β(v)wβ

di,j(v,w)
u

with unknowns pα and qi,j,β, and with specific denominators di,j .

I input: a (non-commutative) Gröbner basis G of AnnO(f)
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Reduction-Based Telescoping
I Typically, the certificate Q is much larger than the telescoper.
I Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure ρ : F → F s.t.
I for each f ∈ F there is g ∈ F such that f − ρ(f) = g′,
I ρ(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for
∫ b
a f(x, y) dy, apply this reduction ρ

to the successive derivatives of the integrand f :

f = g′0 + ρ
(
f
)

= g′0 + h0

d
dxf = g′1 + ρ

(
d

dxf
)

= g′1 + h1

d2

dx2
f = g′2 + ρ

(
d2

dx2
f
)

= g′2 + h2

If the hi live in a finite-dimensional K(x)-vector space, then there
exists a nontrivial linear combination p0h0 + . . .+ prhr = 0.

−→ Hence, the desired telescoper is p0 + p1Dx + . . .+ prD
r
x .
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Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No! In general not for ∂-finite functions.

Answer 2: Yes! If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No!

In general not for ∂-finite functions.

Answer 2: Yes! If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No!

In general not for ∂-finite functions.

Answer 2: Yes!

If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No! In general not for ∂-finite functions.

Answer 2: Yes!

If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No! In general not for ∂-finite functions.

Answer 2: Yes! If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomy

Question: Does there always exist such a telescoping operator?

Answer 1: No! In general not for ∂-finite functions.

Answer 2: Yes! If additionally the function is holonomic.

Combine the two notions:

I Use ∂-finiteness for computations.

I Use holonomy for justifications.

29 / 52



Holonomic Functions

Assume that f(x1, . . . , xs) depends only on continuous variables.
Consider the Weyl algebra

W = K[x1, . . . , xs]〈Dx1 , . . . , Dxs〉.

Then f is holonomic if the left ideal AnnW(f) has dimension s
(which, by Bernstein’s inequality, is the minimum possible).

Differently stated: f is holonomic if for any (s− 1)-subset

E ⊂
{
x1, . . . , xs, Dx1 , . . . , Dxs

}
, |E| = s− 1,

there exists a nonzero element in AnnW(f) that is free of all
generators in E.

−→ This is why a creative telescoping operator always exists.
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∂-Finite and Holonomic Functions

Theorem: The function f(x1, . . . , xs) is holonomic if and only if
it is ∂-finite.

−→ This equivalence holds only in the continuous case!

A sequence is defined to be holonomic if its (multivariate)
generating function is holonomic.

Example: The sequence 1
n2+k2

is ∂-finite but not holonomic.
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Principia Holonomica

1. Functions and sequences are represented by their
annihilating left ideals (and initial values).

2. An annihilating ideal is given by its Gröbner basis
(i.e., a finite set of generators that allows to decide
ideal membership and equality of ideals).

3. Integrals and sums are treated by the method of
creative telescoping.

4. The output is always given as an annihilating ideal,
not as a closed form.
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Application 2

Special Function Identities
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Some Special Function Identities
n∑
k=0

(
n

k

)2(k + n

k

)2

=

n∑
k=0

(
n

k

)(
k + n

k

) k∑
j=0

(
k

j

)3

(1)

∫ ∞
0

1

(x4 + 2ax2 + 1)m+1 dx =
πP

(m+ 1
2
,−m− 1

2)
m (a)

2m+ 3
2 (a+ 1)m+ 1

2

(2)

e−xxa/2n!Lan(x) =

∫ ∞
0

e−tt
a
2

+nJa
(
2
√
tx
)

dt (3)∫ ∞
−∞

∞∑
m=0

∞∑
n=0

Hm(x)Hn(x)rmsne−x
2

m!n!
dx =

√
πe2rs (4)

∫ 1

−1

(
1− x2

)ν− 1
2 eiaxC(ν)

n (x) dx =
πinΓ(n+ 2ν)Jn+ν(a)

2ν−1aνn!Γ(ν)
(5)

sin
(√
z2 + 2tz

)
z

=

∞∑
n=0

(−t)nyn−1(z)

n!
(6)
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Computer Proof of a Special Function Identity

e−xxa/2n!Lan(x) =

∫ ∞
0

e−tt
a
2

+nJa
(
2
√
tx
)

dt.

<< RISC‘HolonomicFunctions‘

Annihilator[Exp[-x]*x^(a/2)*n!*LaguerreL[n, a, x],

{S[a], S[n], Der[x]}]

{2Sn − 2xDx + (−a− 2n− 2),
4x2D2

x + (4x2 + 4x)Dx + (−a2 + 2ax+ 4nx+ 4x),
2xS2

a + (2ax+ 2x2 + 2x)Dx + (−a2 + ax− a+ 2nx+ 2x)}
CreativeTelescoping[Exp[-t]*t^(a/2+n)*BesselJ[a,2*Sqrt[t*x]],

Der[t], {S[a], S[n], Der[x]}]

{{−2Sn + 2xDx + (a+ 2n+ 2),
4x2D2

x + (4x2 + 4x)Dx + (−a2 + 2ax+ 4nx+ 4x),
2xS2

a + (2ax+ 2x2 + 2x)Dx + (−a2 + ax− a+ 2nx+ 2x)},
{−2t,−4tx,−2tx}}

−→ The annihilating ideals agree; check a few initial values.
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Application 3

MIMO Wireless
Communication Systems

Joint work with Constantin Siriteanu, Akimichi Takemura, Satoshi
Kuriki, Donald St. P. Richards, Hyundong Shin
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MIMO Wireless Communication Systems

MIMO = Multiple Input + Multiple Output:

NT


y1 •——< ))

)
y2 •——< ))

)
...

...
yNT

•——< ))
)

H−→

>——• r1

>——• r2

...
...

>——• rNR

NR

Notation:

I NT: number of transmitting antennas

I NR: number of receiving antennas

I y = (y1, y2, . . . , yNT
)T ∈ CNT : transmitted signal vector

I H: the NR ×NT channel matrix

I r = (r1, r2, . . . , rNR
)T = Hy + n: received signal vector,

where n is some additive zero-mean Gaussian noise
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Channel Matrix

The channel matrix is modeled as a complex-valued Gaussian
random matrix, written as

H = Hd + Hr

where Hd denotes the deterministic component (“mean”) and Hr

the random component.

Fading:

I Rayleigh fading, i.e., Hd = 0 (previous work)

I Rician fading, i.e., Hd 6= 0 (current work)

For sake of simplicity (not w.l.o.g.!), certain assumptions on H:

I Hd has rank 1

I further assumptions (zero row correlation, etc.)
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For sake of simplicity (not w.l.o.g.!), certain assumptions on H:

I Hd has rank 1

I further assumptions (zero row correlation, etc.)
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Zero-Forcing Detection
Recall:

r = Hy + n.

Zero-Forcing means finding the (modulation constellation) symbols
closest to each element of vector(

HHH
)−1

HH r = y +
(
HHH

)−1
HHn.

Goal of the analysis: say something about the quality of the
connection, i.e., how many symbols are transmitted correctly in
average.

The following parameters will be used:

I N = NR −NT + 1

I x1, x2: related to ‖Hd‖2/E{‖Hr‖2}
I Γ1: related to the additive noise
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Signal-to-Noise Ratio (SNR)
The SNR is the ultimate performance measure (determines the
quality of the connection).

Theorem. The moment generating function M(s;x1, x2) of the
SNR for zero-forcing under full-Rician fading with r = 1 is

M(s;x1, x2) =
e−x2

(1− Γ1s)N

∞∑
n2=0

xn2
2

n2!
1F1

(
N ;n2+NR;

Γ1sx1

1− Γ1s

)
.

=

e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

n1∑
m1=0

(
n1

m1

)
(−1)m1

(1− sΓ1)N+n1−m1
.

Obtain the SNR probability density function by Laplace transform:

1

(1− sΓ1)N+n1−m1

Laplace←→ tN+n1−m1−1e−t/Γ1

(N + n1 −m1 − 1)! ΓN+n1−m1
1

Definition. The hypergeometric function 1F1 is defined by

1F1(a; b; z) :=

∞∑
k=0

(a)k
(b)k

zk

k!
, where

(a)k := a · (a+ 1) · · · (a+ k − 1), (a)0 := 1

is the Pochhammer symbol (or rising factorial).
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SNR Probability Density Function
Thus we obtain for the SNR probability density function p(t;x1, x2) :

p(t;x1, x2) =

∫ ∞
0

e−stM(s;x1, x2) ds

= e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

×
n1∑

m1=0

(
n1

m1

)
(−1)m1tN+n1−m1−1e−t/Γ1

(N + n1 −m1 − 1)! ΓN+n1−m1
1

.

Definition. Using this, we define the main object of interest, the
outage probability Po(x1, x2):

Po(x1, x2) =

∫ τ

0
p(t;x1, x2) dt

where τ is a certain prescribed SNR threshold.
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Evaluate

Now, for certain choices of the parameters NR, N, x1, x2,Γ1, τ , we
want to “compute” (i.e., evaluate numerically) the outage
probability.

First try: truncate the infinite series

Po(x1, x2) = e−x2
∞∑

n1=0

∞∑
n2=0

(N)n1

(n2 +NR)n1

xn1
1

n1!

xn2
2

n2!

×
n1∑

m1=0

(
n1

m1

)
(−1)m1γ(N + n1 −m1, τ/Γ1)

(N + n1 −m1 − 1)!

−→ Problem: slow convergence.
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Difficulties in the Evaluation

I Accuracy problems with standard floating-point arithmetic.

I Use arbitrary-precision in a computer algebra system.
But this makes computations even slower.
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Holonomic Gradient Method (HGM)
−→ Methods for evaluating and optimizing certain expressions.
(Nakayama, Nishiyama, Noro, Ohara, Sei, Takayama, Takemura)

Input: f(x1, . . . , xs) holonomic, (a1, . . . , as) ∈ Rs
Output: an approximation of f(a1, . . . , as)

1. Determine a holonomic system (set of differential equations)
to which f is a solution, and let r be its holonomic rank.

2. Determine a suitable “basis” of derivatives
f =

(
f (m1), . . . , f (mr)

)
of f(x1, . . . , xs).

3. Convert the holonomic system into a set of Pfaffian systems,
i.e., d

dxi
f = Aif for each xi.

4. Compute f (m1), . . . , f (mr) at a suitably chosen point
(b1, . . . , bs) ∈ Rs, for which this is easy to achieve.

5. Use your favourite numerical integration procedure (e.g.,
Euler, Runge-Kutta) to obtain f(a1, . . . , as).

44 / 52



Closure Properties (Example)

We have seen that the following expression is holonomic:

M(s;x1, x2) = e−x2
e−x2

(1− Γ1s)N

∞∑
n2=0

xn2
2

n2!

1F1(a; b;x)

1F1

(
N ;n2 +NR;

Γ1s

1− Γ1sx1

)

Substitution a→ N, b→ n2 +NR, x→
Γ1s

1− Γ1sx1

xn2
2

n2!
is holonomic (the generating function is ex2y).MultiplicationSummatione−x2 is holonomic.Multiplication(1− Γ1s)

N is holonomic.Division(1− Γ1s)
−N is holonomic as well!

Hence, by inspection, our SNR moment generating function is
holonomic. Likewise, p(t;x1, x2) and Po(x1, x2) are holonomic.
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Pfaffian Systems

Fix f(x1, . . . , xs).

A suitable “basis of derivatives” f =
(
f (m1), . . . , f (mr)

)
for HGM

step 2 is given by the (finite!) list of monomials that are
irreducible modulo the annihilator ideal.

“monomials under the staircase” (r = 5)

The Pfaffian system (given by the matrix Ai) for xi

d

dxi
f = Aif

is obtained by reduction with the Gröbner basis.

Nota bene. For s = 1 (ODE case) the matrix A is a companion
matrix.

46 / 52



Pfaffian Systems

Fix f(x1, . . . , xs).

A suitable “basis of derivatives” f =
(
f (m1), . . . , f (mr)

)
for HGM

step 2 is given by the (finite!) list of monomials that are
irreducible modulo the annihilator ideal.

“monomials under the staircase” (r = 5)

The Pfaffian system (given by the matrix Ai) for xi

d

dxi
f = Aif

is obtained by reduction with the Gröbner basis.
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Annihilator for M(s;x1, x2)
Apply creative telescoping (HolonomicFunctions package) to

∞∑
n2=0

e−x2

(1− Γ1s)N
xn2

2

n2!
1F1

(
N ;n2 +NR;

Γ1sx1

1− Γ1s

)
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Annihilator for p(t;x1, x2)

...
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Annihilator for Po(x1, x2)

Recall:

Po(x1, x2) =

∫ τ

0
p(t;x1, x2) dt

Hence we apply creative telescoping to p(t;x1, x2):
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Annihilator for Po(x1, x2)

...
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HGM computation
The irreducible monomials of the annihilator of Po(x1, x2) are

1, D1, D2, D
2
1, D

2
2.

Hence, we take the following basis:

f =
(
Po, P

(0,1)
o , P (1,0)

o , P (2,0)
o , P (0,2)

o

)
.

Initial values are computed for some small x1, x2, so that the
infinite series converges quickly.

The matrix A1 of the Pfaffian system D1f = A1f is obtained by

rewriting P
(1,0)
o , P

(1,1)
o , P

(2,0)
o , P

(3,0)
o , P

(1,2)
o in terms of f .

Similar for D2f = A2f .


0 1 0 0 0
0 0 0 1 0

0 −NR+x2
x1

−1 −x2
x1

0

0 〈· · · 〉 −NRx1(2x1+x2)
x2(x1+x2)2

〈· · · 〉 − NRx
2
1

x2(x1+x2)2

0 〈· · · 〉 NRx1
(x1+x2)2

〈· · · 〉 − (x1+x2)2+NRx2
(x1+x2)2

 .A1 and A2 allow to propagate the initial values along both
coordinate axes.
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HGM computation

I dots: computed with truncated series (167s)

I line: computed with HGM (< 1s)
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