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A little bit of history and context

In 1960, Ehrenpreis announced his Fundamental Principle, which states that
the solutions of a linear system of PDE with constant coefficients can be
represented in terms of certain integrals.

But, there was a mistake in his proof. Palamodov pointed out the mistake.

Then, complete and correct proofs were presented (independently) by Ehren-
preis and Palamodov.

Later, other slightly different proofs were given by Björk and Hörmander.
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The Theorem

Let I = (p1, . . . , pm) ⊂ C[∂1, . . . , ∂n] and K ⊂ Rn be a compact convex set. We
consider the system of equations:

p1(i∂) · u = 0, p2(i∂) · u = 0, . . . , pm(i∂) · u = 0,

u ∈ C∞(K).

Ehrenpreis–Palamodov Theorem
There exist polynomials {Aj(x1, . . . , xn, ξ1, . . . , ξn)}t

j=1 (independent of K) s.t.:
If u ∈ C∞(K) is a solution of the above system, then there exist measures {µj}t

j=1
on a variety Vj ⊂ Cn that corresponds with an associated prime of I, s.t.:

u(x) =
t∑

j=1

∫
Vj

Aj(x , ξ) exp (−i〈x , ξ〉) dµj(ξ).
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What is so special about these polynomials Aj(x , ξ)?

Make the substitutions ξi 7→ ∂i and ∂i 7→ xi :

Aj(x , ξ) 7→ Aj(x , ∂) ∈ C〈x , ∂〉 and pk(∂) 7→ pk(x) ∈ C[x ].

Fix one of the varieties Vj , then for all pk we can prove that

Aj(x , ∂) · pk(q) = 0 for all q ∈ Vj .

Equivalently, we have

Aj(x , ∂) · pk(x) ⊂ I(Vj) ⊂ C[x ].

By setting I = (p1(x), . . . , pm(x)) ⊂ C[x ], we obtain

Aj(x , ∂) · I ⊂ I(Vj).
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Noetherian operators

This is a theorem of “local nature”. Suppose that there is only variety Vj ,
that is V1 = V2 = · · · = Vt , then we are in the following situation:

I = (p1(x), . . . , pm(x)) ⊂ C[x ] is a primary ideal and

Aj(x , ∂) · I ⊂
√
I.

Condition of Ehrenpreis-Palamodov Theorem: Noetherian operators
I ⊂ C[x ] primary ideal, if we find {Aj(x , ∂)}tj=1 such that

I =
{
f ∈ R | Aj(x , ∂) · f ∈

√
I for all 1 ≤ j ≤ t

}
,

then the statement of the theorem holds!
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Our problem

Classical problem of finding Noetherian operators
Let p ⊂ C[x1, . . . , xn] be a prime ideal and I ⊂ C[x1, . . . , xn] be a
p-primary ideal. Find differential operators A1, . . . ,At ∈ Dn(C) =
C〈x1, . . . , xn, ∂1, . . . , ∂n〉, such that

I =
{
f ∈ R | Aj · f ∈ p for all 1 ≤ j ≤ t

}
.

More general problem
Let R be a Noetherian ring, p ⊂ R be a prime ideal and I ⊂ R be a
primary ideal. Describe I via “differential operators”.

Yairon Cid Ruiz MPI MiS Ehrenpreis–Palamodov Theorem (actually, Noetherian operators and primary ideals)



Our problem

Classical problem of finding Noetherian operators
Let p ⊂ C[x1, . . . , xn] be a prime ideal and I ⊂ C[x1, . . . , xn] be a
p-primary ideal. Find differential operators A1, . . . ,At ∈ Dn(C) =
C〈x1, . . . , xn, ∂1, . . . , ∂n〉, such that

I =
{
f ∈ R | Aj · f ∈ p for all 1 ≤ j ≤ t

}
.

More general problem
Let R be a Noetherian ring, p ⊂ R be a prime ideal and I ⊂ R be a
primary ideal. Describe I via “differential operators”.

Yairon Cid Ruiz MPI MiS Ehrenpreis–Palamodov Theorem (actually, Noetherian operators and primary ideals)



Some “algebraic” results

The existence of Noetherian operators for prime ideals is due to
Gröbner in the 1930’s.

G. Brumfiel (1978). “Differential operators and primary ideals”. In: J.
Algebra 51.2, pp. 375–398.

Ulrich Oberst (1999). “The construction of Noetherian operators”.
In: J. Algebra 222.2, pp. 595–620.
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Definition
Let R be a commutative ring and A be a subring. Let M,N be R-modules. The
n-th order A-linear differential operators Diffn

R/A(M,N) ⊆ HomA(M,N) are defined
inductively by:

1 Diff0R/A(M,N) := HomR(M,N).

2 Diffn
R/A(M,N) :=

{
δ ∈ HomA(M,N) | [δ, r ] ∈ Diffn−1

R/A(M,N) for all r ∈ R
}
,

where [δ, r ](m) = δ(rm)− rδ(m) for all m ∈ M.

The A-linear differential operators are given by

DiffR/A(M,N) :=
∞⋃

n=0
Diffn

R/A(M,N).

Example
For R = C[x1, . . . , xn] we have that

Dn(C) = C〈x1, . . . , xn, ∂1, . . . , ∂n〉 = DiffR/C(R,R).
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What “kind of differential operators” can we use to describe primary ideals?

Life can be hard outside polynomial rings...
Consider R = C[x ,y ,z]

(x3+y3+z3) , then Bernstein, Gelfand, and Gelfand 1972 showed that:

1 DiffR/C(R,R) is not a Noetherian ring.

2 Let m = (x , y , z) ⊂ R. For all δ ∈ DiffR/C(R,R), we have that δ(m) ⊂ m.

Observation
The differential operator “∂x” does not exist in DiffR/C(R,R) because we would
obtain 0 = ∂x (0) = ∂x (x3 + y3 + z3) = 3x2 (a contradiction).

In R = C[x ,y ,z]
(x3+y3+z3) , m

2 cannot be described with differential operators

If δ1, . . . , δm ∈ DiffR/C(R,R) were Noetherian operators from m2 we would have

m2 =
{
f ∈ R | δi · f ∈ m for all 1 ≤ i ≤ m

}
⊇ m

(a contradiction).
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(Simplified) Data
Let k be a field, R be a k-algebra of finite type, p ∈ Spec(R) be a prime ideal, and
I ⊂ R be a p-primary ideal.

The canonical map π : R � R/p induces a map

DiffR/k(π) : DiffR/k(R,R)→ DiffR/k(R,R/p), δ 7→ δ = π ◦ δ.

If δ1, . . . , δm ∈ DiffR/k(R,R) and I =
{
f ∈ R | δi (f ) ∈ p for all 1 ≤ i ≤ m

}
then

I =
{
f ∈ R | δi (f ) = 0 for all 1 ≤ i ≤ m

}
.

Set R = C[x ,y ,z]
(x3+y3+z3) and m = (x , y , z). In DiffR/C(R,R/m) we do have the operator

“∂x” because
0 = ∂x (0) = ∂x (x3 + y3 + z3) = 3x2 = 0.

Therefore, DiffR/k(π) is not surjective.
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The main result

Theorem
Let k be a field, R be a k-algebra of finite type, p ∈ Spec(R) be a prime
ideal, and I ⊂ R be a p-primary ideal. Then:

1 There exist δ1, . . . , δm ∈ DiffR/k(R,R/p) such that

I =
{
f ∈ R | δi (f ) = 0 for all 1 ≤ i ≤ m

}
.

2 If k is a perfect field and I ⊇ pn+1, then there exist
δ1, . . . , δm ∈ Diffn

R/k(R,R/p) such that

I =
{
f ∈ R | δi (f ) = 0 for all 1 ≤ i ≤ m

}
.

Yairon Cid Ruiz MPI MiS Ehrenpreis–Palamodov Theorem (actually, Noetherian operators and primary ideals)



The main result

Theorem
Let k be a field, R be a k-algebra of finite type, p ∈ Spec(R) be a prime
ideal, and I ⊂ R be a p-primary ideal. Then:

1 There exist δ1, . . . , δm ∈ DiffR/k(R,R/p) such that

I =
{
f ∈ R | δi (f ) = 0 for all 1 ≤ i ≤ m

}
.

2 If k is a perfect field and I ⊇ pn+1, then there exist
δ1, . . . , δm ∈ Diffn

R/k(R,R/p) such that

I =
{
f ∈ R | δi (f ) = 0 for all 1 ≤ i ≤ m

}
.

Yairon Cid Ruiz MPI MiS Ehrenpreis–Palamodov Theorem (actually, Noetherian operators and primary ideals)



Important result (from Grothendieck 1967 EGA IV)
If R is smooth over k, then the map

DiffR/k(π) : DiffR/k(R,R)→ DiffR/k(R,R/p), δ 7→ δ = π ◦ δ

is surjective.

Corollary
Suppose that R is smooth over k. Then:

1 There exist δ1, . . . , δm ∈ DiffR/k(R,R) such that

I =
{
f ∈ R | δi (f ) ∈ p for all 1 ≤ i ≤ m

}
.

2 If k is a perfect field and I ⊇ pn+1, then there exist
δ1, . . . , δm ∈ Diffn
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Non reduced schemes

Basic Question
It is well known that the reduced scheme structure of a scheme is unique. But,
how to differentiate schemes with the same underlying topological space?

One approach could be to use differential operators.

Example
R = C[x ] and X = A1

C = Spec(R).

Xn = Spec (R/(xn)) – “n-th multiple point at 0”.

Equivalently, we could give the following data:

Xn ∼=

(
X1 = Spec (R/(x)) ,

{
1, ∂x , . . . , ∂

n−1
x

})
.

Follows from: (xn) = {f ∈ R | ∂j
x (f ) ∈ (x) for all 1 ≤ j ≤ n − 1}.
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Zariski-Nagata Theorem

Let V be a variety in Cr and p = I(V ) ⊂ C[x1, . . . , xr ]. The n-th symbolic
power of p is defined as: p(n) = pnRp ∩ R.

Zariski-Nagata Theorem
For all n ≥ 1 we have

p(n) =
⋂

q∈V mq
n. (mq is the maximal ideal corresponding with q)

p(n) = {f ∈ R | ∂αf
∂xα (q) = 0 for all |α| ≤ n − 1 and q ∈ V }.

Easy reinterpretation (in the sense of Noetherian operators)
p(n) = {f ∈ R | ∂α

∂xα (f ) ∈ p for all |α| ≤ n − 1}
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Extension of Zariski-Nagata Theorem
Theorem (Dao, De Stefani, Grifo, Huneke, and Núñez-Betancourt 2018)
Let k be a perfect field, R be a smooth algebra of finite type over k, and p ∈
Spec(R) be a prime ideal. Set

p〈n〉 :=
{
f ∈ R | δ(f ) ∈ p for all δ ∈ Diffn−1

R/k(R,R)
}
.

Then p(n) = p〈n〉.

We can proof the following further extension:
Theorem
k perfect field, R algebra of finite type over k, and p ∈ Spec(R). Set

p{n} :=
{
f ∈ R | δ(f ) = 0 for all δ ∈ Diffn−1

R/k(R,R/p)
}
.

Then:

p(n) = p{n}.

If R is smooth over k, then p(n) = p{n} = p〈n〉.
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Lets compute THE EXAMPLE

For the rest of the presentation we fix:

R = C[x1, x2, x3].
I =

(
x1x3 − x2, x22 , x23

)
⊂ R.

p = (x2, x3) =
√
I ⊂ R.

The Noetherian operators for I are A1 = 1 and A2 = ∂3 + x1∂2, that is

I =
{
f ∈ R | f ∈ p and (∂2 + x1∂2) · f ∈ p

}
.

This example was given by Palamodov as a counter-example to Ehrenpreis
claim: “Noetherian operators can always be chosen with constant
coefficients”.

Probably the simplest example, because the claim holds for the monomial
and zero-dimensional cases (see Sturmfels 2002).
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Since I ⊃ p2, our main theorem says that we can find differential operators inside
Diff1R/C(R,R).

Diff1R/C(R,R) = {δ ∈ HomC(R,R) | [[δ, r1] , r2] = 0 for all r1, r2 ∈ R}.
Now, HomC(R,R) is a (R − R)-bimodule or a (R ⊗C R)-module:

(r1 ⊗C r2) · δ is defined by ((r1 ⊗C r2) · δ) (t) = r1δ(r2t).

Therefore Diff1R/C(R,R)

= {δ ∈ HomC(R,R) | (1⊗C r2−r2⊗C1)(1⊗C r1−r1⊗C1)·δ = 0 for all r1, r2 ∈ R}.

By writing ∆R/C = (1⊗C x1 − x1 ⊗C 1, 1⊗C x2 − x2 ⊗C 1, 1⊗C x3 − x3 ⊗C 1):

Diff1R/C(R,R) = {δ ∈ HomC(R,R) | ∆2
R/C · δ = 0}

∼= {δ ∈ HomC(R,HomR(R,R)) | ∆2
R/C · δ = 0}

∼= {δ ∈ HomR(R ⊗C R,R) | ∆2
R/C · δ = 0}

Diff1R/C(R,R) ∼= HomR

(
R ⊗C R
∆2

R/C

,R
)
.
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Proposition (Grothendieck 1967, Heyneman and Sweedler 1969)
We have the isomorphism

HomR

(
R ⊗C R
∆n+1

R/C

,R
)

∼=−→ Diffn
R/C(R,R)

ϕ 7→ ϕ ◦ dn

where
dn : R → R ⊗C R

∆n+1
R/C

, r 7→ 1⊗C r .

Reminder (“Derivations are the dual of Kähler differentials”)
We have the isomorphism

HomR
(
ΩR/C,R

) ∼=−→ DerC(R)

ϕ 7→ ϕ ◦ d

where
d : R → ΩR/C =

∆R/C

∆2
R/C

, r 7→ 1⊗C r − r ⊗C 1.
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We have R = C[x1, x2, x3], I = (x1x3 − x2, x22 , x23 ), p = (x2, x3). We want to show
I =

{
f ∈ R | f ∈ p and (∂3 + x1∂2) · f ∈ p

}
.

Step 1. Since C[x1] ∩ p = 0
(
V (p) = {(α, 0, 0) | α ∈ C}

)
we will “naively”

consider the ring R ′ = C(x1)[x2, x3] and the differential operators inside

Diff1R′/C(x1)(R ′,R ′) ⊂ D2 (C(x1)) = C(x1)〈x2, x3, ∂2, ∂3〉.

Step 2. The canonical map R ′ � R ′/(x2, x3) ∼= C(x1) induces the map

Diff1R′/C(x1)(R ′,R ′)→ Diff1R′/C(x1)(R ′,C(x1)).

Step 3. Diff1R′/C(x1)(R ′,C(x1)) ∼= HomR′

(
R′⊗R′

(1⊗x2−x2⊗1,1⊗x3−x3⊗1)2 ,C(x1)
)

∼= HomC(x1)

(
R′⊗R′(

x2⊗1, x3⊗1, (1⊗x2−x2⊗1,1⊗x3−x3⊗1)2
) ,C(x1)

)
∼= HomC(x1)

(
1⊗R′

(1⊗x2,1⊗x3)2 ,C(x1)
)
.
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We have R = C[x1, x2, x3], I = (x1x3 − x2, x22 , x23 ), p = (x2, x3). We want to show
I =

{
f ∈ R | f ∈ p and (∂3 + x1∂2) · f ∈ p

}
.

Step 4. Since (x2, x3)2 ⊂ I ′ = (x1x3 − x2, x22 , x23 ) ⊂ R ′, then we have the
inclusion

HomC(x1)

(
1⊗R′

1⊗I′ ,C(x1)
)
⊂ HomC(x1)

(
1⊗R′

(1⊗x2,1⊗x3)2 ,C(x1)
)
∼= Diff1R′/C(x1)(R ′,C(x1)).

Step 5. Note that 1⊗C(x1) R ′ ∼= R ′, that 1⊗C(x1) I ′ ∼= I ′ and that

I ′ =
{
f ∈ R ′ | (ϕ◦d1)(f ) = ϕ (1⊗ f ) = 0 for all ϕ ∈ HomC(x1)

(
1⊗ R ′
1⊗ I ′ ,C(x1)

)}
.

Step 6. We have that 1⊗R′

1⊗I′
∼= C(x1)[x2,x3]

(x1x3−x2,x2
2 ,x2

3 )
∼= C(x1) · {1, x3} is a dimension

two C(x1)-vector space.
By pulling back the dual basis C(x1) · {(1)∗, (x3)∗} we obtain the two
Noetherian operators A1 = 1 and A2 = ∂3 + x1∂2 inside

D3(C) = C〈x1, x2, x3, ∂1, ∂2, ∂3〉.
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