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K a convex body in RY;

74 =~ N\ C R a lattice.

@ The width of K w.r.t. a functional f € (RY)* is

maxpek f(p) — minpek £(p). (Equivalently, it is the length of f(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widtha(K).
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Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition

@ The width of K w.r.t. a functional f € (RY)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widtha(K).

That is: widtha(K) = min. length of a 1-dim lattice projection of K.
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Definition

@ The width of K w.r.t. a functional f € (RY)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widtha(K).

That is: widtha(K) = min. length of a 1-dim lattice projection of K.
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K a convex body in RY;  Z9 = A c R a lattice.
Definition

@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

That is: widtha(K) = min. length of a 1-dim lattice projection of K.
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K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

That is: widtha(K) = min. length of a 1-dim lattice projection of K.
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Hollow convex bodies are flat

K is lattice-free or hollow if int(K) NA =0

Theorem (Flatness Theorem)

For each dimension d,

Fltg ;= sup widthp(K) < oo.
K hollow

T

I

Known values: Flt; =1; Flty = 14 3/1/2 ~ 2.1547 (Hurkens 1990)
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@ Khinchine 1948: Flty < O(d!)

@ Lenstra 1983: Flty € 20(d) 4 poly-time algorithm.
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Flatness History

Khinchine 1948: Flty < O(d!)

Lenstra 1983: Flty € 20(¢°) + poly-time algorithm.

Kannan-Lovdsz 1988: Flty € O(d?). Def of covering minima.

Banaszczyk-Litvak-Pajor-Szarek 1999, Flty € O(d%/?).

Also, Flty € O(d log d) if restricted to simplices or to c.s. hollow
bodies.

Rudelson 2000 Flty € O(d*/3 log® d)
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Flatness History

@ Khinchine 1948: Fity < O(d!)
@ Lenstra 1983: Flty € 20(d*) 4 poly-time algorithm.

@ Kannan-Lovész 1988: Flty € O(d?). Def of covering minima.

@ Banaszczyk-Litvak-Pajor-Szarek 1999, Flty € O(d/?).

Also, Flty € O(dlogd) if restricted to simplices or to c.s. hollow
bodies.

@ Rudelson 2000 Flty € O(d*/3log® d)

Common guess: Flty € ©(d) (perhaps modulo poly-log factors). J




@ Flty > d is trivial (d-th dilation of unimodular simplex is hollow).
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@ Flty > d is trivial (d-th dilation of unimodular simplex is hollow)
@ Flty =1+2/v/3 =2.1547... (Hurkens 1990).

@ Fltz > 2+ /2 =3.4142... (Codenotti-S. 2019).
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@ Flty > d is trivial (d-th dilation of unimodular simplex is hollow).
@ Flty =1+2/v/3 =2.1547... (Hurkens 1990).
@ Fltz > 2+ /2 =3.4142... (Codenotti-S. 2019).

(We conjecture it to be an equality; proof of local maximality by
Averkov-Codenotti-Macchia-S.'2021+)
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Flatness lower bounds

@ Flty > d is trivial (d-th dilation of unimodular simplex is hollow).
@ Flty =1+42//3 =2.1547... (Hurkens 1990).

@ Flt3 > 2+ /2 =3.4142... (Codenotti-S. 2019).
(We conjecture it to be an equality; proof of local maximality by
Averkov-Codenotti-Macchia-S.'2021+)

@ Flty 14, > Flty, + Fltg,, via a direct sum argument (Codenotti-S.
2019, based on Averkov-Basu 2015).
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Flatness lower bounds

@ Flty > d is trivial (d-th dilation of unimodular simplex is hollow).
@ Flty =1+42//3 =2.1547... (Hurkens 1990).

@ Flt3 > 2+ /2 =3.4142... (Codenotti-S. 2019).
(We conjecture it to be an equality; proof of local maximality by
Averkov-Codenotti-Macchia-S.'2021+)

@ Flty 14, > Flty, + Fltg,, via a direct sum argument (Codenotti-S.
2019, based on Averkov-Basu 2015).

The last remark implies:

Corollary (Codenotti-S.-2019)

~ 1.1381...

ol
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set of points in an affine lattice A.
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Lattice polytopes. P := convex hull of a finite
set of points in an affine lattice A.

@ P is hollow (or lattice-free) if
ANint(P) =0
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Lattice polytopes. P := convex hull of a finite
set of points in an affine lattice A.

@ P is hollow (or lattice-free) if
ANint(P) = 0

@ P is empty if
AN P = vertices(P)
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Lattice polytopes. P := convex hull of a finite
set of points in an affine lattice A.

@ P is hollow (or lattice-free) if
ANint(P) = 0

@ P is empty if
AN P = vertices(P)
E.g.: empty d-simplex < lattice
d-polytope with exacty d + 1 lattice
points.

PN G



We would like to understand better the width of hollow lattice polytopes
and, especially, empty simplices.
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We would like to understand better the width of hollow lattice polytopes
and, especially, empty simplices.

- Empty simplices are the building blocks for lattice polytopes; every
lattice polytope can be triangulated into empty simplices.
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Some facts

We would like to understand better the width of hollow lattice polytopes
and, especially, empty simplices.

- Empty simplices are the building blocks for lattice polytopes; every
lattice polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.
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Some facts

We would like to understand better the width of hollow lattice polytopes
and, especially, empty simplices.

- Empty simplices are the building blocks for lattice polytopes; every
lattice polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.
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Some facts

We would like to understand better the width of hollow lattice polytopes
and, especially, empty simplices.

- Empty simplices are the building blocks for lattice polytopes; every
lattice polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.

- Better understanding of hollow polytopes may lead to better bounds
for the “flatness constant”.



@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick’s theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = (b + 2i — 2).
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick’s theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = (b + 2i — 2).

Theorem (Classification of hollow
polygons) The hollow polygons are

the polygons of width one and the
second dilation of a unimodular triangle.



Width and Flatness Lattice polytopes Empty cyclotomic simplices Circulant simplices
0000 00000 0000000 00000000000

12

@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick’s theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = (b + 2i — 2).

Theorem (Classification of hollow . o
polygons) The hollow polygons are . .
the polygons of width one and the .

second dilation of a unimodular triangle.
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In dimension 3, there are infinitely many (classes of) empty simplices

(0,1,

(0,0,0) (1,0,0)
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In dimension 3, there are infinitely many (classes of) empty simplices.

Yet, they have a nice and relatively simple classification:
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In dimension 3, there are infinitely many (classes of) empty simplices.

Yet, they have a nice and relatively simple classification:

Every empty tetrahedron has width one.
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In dimension 3, there are infinitely many (classes of) empty simplices.

Yet, they have a nice and relatively simple classification:

z
o ~/ 0.1
Every empty tetrahedron has width one.
Hence it is equivalent to A(p, q) :=
Ay,
COI‘]V{(O, Oa 0)’(1707 0),(0, Oyl)a(Pa qyl)}, '0' 2=0
for some g € N, p € Z, gcd(p, q) = 1. o |/ - "




In dimension 4, Haase and Ziegler (2000) experimentally found that:
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gecd(D,6) = 1).

@ Among the empty 4-simplices of (normalized) volume up to 1000
those of width larger than two have volume < 179. (There are 178 of
width three plus one of width 4 and volume 101).

10
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gecd(D,6) = 1).

@ Among the empty 4-simplices of (normalized) volume up to 1000
those of width larger than two have volume < 179. (There are 178 of
width three plus one of width 4 and volume 101).

Theorem (lglesias-S, 2019), Conjectured by (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gecd(D,6) = 1).
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those of width larger than two have volume < 179. (There are 178 of
width three plus one of width 4 and volume 101).

Theorem (lglesias-S, 2019), Conjectured by (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
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Theorem (lglesias-S, 2019), Conjectured by (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex A is called cyclic if the quotient group A/Aa is cyclic, where
Aa is the (affine) lattice spanned by the vertices of A.
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gecd(D,6) = 1).

@ Among the empty 4-simplices of (normalized) volume up to 1000
those of width larger than two have volume < 179. (There are 178 of
width three plus one of width 4 and volume 101).

Theorem (lglesias-S, 2019), Conjectured by (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex A is called cyclic if the quotient group A/Aa is cyclic, where
Aa is the (affine) lattice spanned by the vertices of A.

Observe that |A/Aa| equals the normalized volume (= the determinant)
of A.

10
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All empty 4-simplices are cyclic.
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All empty 4-simplices are cyclic.

Empty 4-simplices that project to a hollow 3-polytope have width < 2. l

11
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The complete classification of empty 4-simplices
(Iglesias-S., 2021)

Theorem 0 (Barile et al 2011)

All empty 4-simplices are cyclic.

Theorem 1

Empty 4-simplices that project to a hollow 3-polytope have width < 2.

Theorem 2

There are exactly 2461 empty 4-simplices that do not project. Their
volumes range from 24 to 419. There is one of width 4 (volume=101),
178 of width three (volumes € [49,179]), and the rest have width two.

11
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The complete classification of empty 4-simplices
(Iglesias-S., 2021)

Theorem 0 (Barile et al 2011)

All empty 4-simplices are cyclic.

Theorem 1
Empty 4-simplices that project to a hollow 3-polytope have width < 2.

v

Theorem 2

There are exactly 2461 empty 4-simplices that do not project. Their
volumes range from 24 to 419. There is one of width 4 (volume=101),
178 of width three (volumes € [49,179]), and the rest have width two.

v

A. YES; it happens to have an affine symmetry. \
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If A= (vy,...,vq) C R? is a simplex, every point p € R? can be

expressed uniquely as Z?:o Bivi with >, 8i = 1. The vector (5o, ..., B4)
are the barycentric coordinates of p w.r.t. A.

1 2 4
p=s7votivit+zv
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Barycentric coordinates

If A= (v,...,vy) C R is a simplex, every point p € R? can be
expressed uniquely as 27:0 Bivi with >, 8i = 1. The vector (5o, ..., B4)
are the barycentric coordinates of p w.r.t. A.

1 2 4
p=3votivi+zv

® If Ais a lattice simplex of (normalized)
volume N and p € A, then 3; € £Z, Vi.

¢ Hence, we write
[ J

(507"~76d) = %(bow..,bd)
[ )

with (b(), RN bd) € 79+ and Z,- b; = N.

12



Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zy, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, - - -, ba) € (Zn)9*! representing the (normalized) barycentric
coordinates of a generator of A/An.
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Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zp, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, - - -, ba) € (Zn)9*! representing the (normalized) barycentric
coordinates of a generator of A/An.

We are only interested in b; only mod N because different representatives of
the same p € A/Aa have barycentric coordinates differing by an integer vector.
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Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zp, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, ..., bg) € (Zn)?+! representing the (normalized) barycentric
coordinates of a generator of A/Aa.

We are only interested in b; only mod N because different representatives of
the same p € A/Aa have barycentric coordinates differing by an integer vector.

e [Ihe cyclic 2-simplex of volume
seven and with generator
° (1,2,4) € (Z7)3
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Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zp, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, ..., bg) € (Zn)?+! representing the (normalized) barycentric
coordinates of a generator of A/Aa.

We are only interested in b; only mod N because different representatives of
the same p € A/Aa have barycentric coordinates differing by an integer vector.

e [Ihe cyclic 2-simplex of volume
seven and with generator
° (1,2,4) € (Z7)3

Observe there is an affine lattice symmetry
° shifting Vo = VI — Vo — V.
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Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zp, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, ..., bg) € (Zn)?+! representing the (normalized) barycentric
coordinates of a generator of A/Aa.

We are only interested in b; only mod N because different representatives of
the same p € A/Aa have barycentric coordinates differing by an integer vector.

e [Ihe cyclic 2-simplex of volume
seven and with generator
° (1,2,4) € (Z7)3

Observe there is an affine lattice symmetry
° shifting Vo = VI — Vo — V.

The reason is that (1,2, 4) generates the same subgroup of (Z7)* as
(2,4,1).

13
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Cyclic simplices

Suppose now that A is a cyclic lattice simplex. That is, the quotient
N/Aa = Zp, where Ap is the lattice generated by the vertices of A.
Then, A is completely characterized by its volume N and the vector
(bo, ..., bg) € (Zn)?+! representing the (normalized) barycentric
coordinates of a generator of A/Aa.

We are only interested in b; only mod N because different representatives of
the same p € A/Aa have barycentric coordinates differing by an integer vector.

e [Ihe cyclic 2-simplex of volume
seven and with generator
° (1,2,4) € (Z7)3

Observe there is an affine lattice symmetry
° shifting Vo = VI — Vo — V.

The reason is that (1,2, 4) generates the same subgroup of (Z7)* as

(2,4,1). The two vectors are multiples of one another.
13




Let A be a cyclic simplex of prime volume N, defined by a (d + 1)-tuple

(bo, - .., bg). If there is an automorphism of A permuting cyclically its
vertices, then by, ..., by are (d + 1)-th roots of unity modulo N.

14
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Cyclic simplices with cyclic symmetry

Lemma

Let A be a cyclic simplex of prime volume N, defined by a (d + 1)-tuple
(bo, - .., bg). If there is an automorphism of A permuting cyclically its
vertices, then by, ..., by are (d + 1)-th roots of unity modulo N.

Proof.

(bo,---,bg) and (by,..., by, by) must be multiples of one another in
(Zn)?+1, since they generate the same subgroup. If k € Zy is the scaling
factor, then Hence,

bi = bok!,Vi and k¥*l=1 (mod N).

Multiplying by by *, we get (b, ..., by) = (1, k, ..., k9). O

14



Let N € N be a prime and let d < N be such that d + 1 divides N — 1.
Let k be a (d + 1)-th roots of unity modulo N. The cyclotomic

Cycl(N, d) is the cyclic d-simplex of volume N with generator
(1,k, ..., k9).

Experiments show that empty cyclotomic simplices attain large widths

15
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Cyclic simplices with cyclic symmetry

Definition

Let N € N be a prime and let d < N be such that d + 1 divides N — 1.
Let k be a (d + 1)-th roots of unity modulo N. The cyclotomic
Cycl(N, d) is the cyclic d-simplex of volume N with generator

(1,k, ..., k9).

Experiments show that empty cyclotomic simplices attain large widths

@ The unique empty 4-simplex of width 4 has volume 101 and
generator (1, —6,36,—14,—17). These are the powers of —6, and
(—6)°> =1 (mod 101).

15
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Cyclic simplices with cyclic symmetry

Definition
Let N € N be a prime and let d < N be such that d + 1 divides N — 1.
Let k be a (d + 1)-th roots of unity modulo N. The cyclotomic

Cycl(N, d) is the cyclic d-simplex of volume N with generator
(1,k, ..., k9).

Experiments show that empty cyclotomic simplices attain large widths

@ The unique empty 4-simplex of width 4 has volume 101 and
generator (1, —6,36,—14,—17). These are the powers of —6, and
(—6)°> =1 (mod 101).

@ The smallest empty 4-simplex of width 3 has volume 41 and
generator (1, —4,16, —64,256) = (1, —4, 16, —23,10).

15



are:

We have computed all the cyclotomic simplices with d + 1 € {5,7,11}

and N < 231, checked their emptyness and computed their width. There
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Circulant simplices

Empty cyclotomic simplices
00000000000

Width and Flatness Lattice polytopes
0000e00
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Exploring cyclotomic simplices

We have computed all the cyclotomic simplices with d + 1 € {5,7,11}
and N < 231, checked their emptyness and computed their width. There

are:

d = 4: exactly 4 empty cyclotomic simplices:

N | (bo,...,bs) |width
11| (1,45 09 23) 2
41 |(1, 10, 18, 16, 37) | 3
61 | (1,9, 20,58 34) | 3
101 | (1, 95, 36, 87, 84) | 4

16



Width and Flatness Lattice polytopes Empty cyclotomic simplices Circulant simplices
0000 000000 0000®00 00000000000

Exploring cyclotomic simplices

We have computed all the cyclotomic simplices with d + 1 € {5,7,11}
and N < 231, checked their emptyness and computed their width. There

are:

d = 4: exactly 4 empty cyclotomic simplices:

N | (bo,...,bs) |width
11| (1,45 09 23) 2
41 |(1, 10, 18, 16, 37) | 3
61 | (1,9, 20,58 34) | 3
101 | (1, 95, 36, 87, 84) | 4

d = 6: exactly 88 empty cyclotomic simplices, with volumes < 17 683;
six of them of width six, with volumes 6301, 10753, 11117, 15121,

16493, and 17 683.

16
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Exploring cyclotomic simplices

d = 10: there are 218 075 empty cyclotomic simplices (of volume < 231).
Their maximum width is 11, attained by the following five:

Cycl(10, 582595883),  Cycl(10, 728807 201),
Cycl(10, 976965023), Cycl(10, 1066 142419),
Cycl(10, 1113718783).

For d = 4,6 it is clear that our lists are complete. For d = 10 the list
should also be. Between 10° and 23! ~ 2-10° there are only 30, and only
one above 1.5-10%, of volume 1757211061 and width 10. 2

“Breaking news; according to one of my coauthors we have now extended
our computations to N < 2% and no new empty cyclotomic 10-simplices arise.

17
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Symmetric simplices via circulant matrices

A more direct way to impose cyclic symmetry on lattice simplices is to
take as vertices the columns of a circulant matrix.

Let v = (vo,...,vq) € Z9TL. For i € [d], let v(7) be the vector obtained
from v by a cyclic shift of / places. That is:

() -
V() = (Vd+1—f7"'7vd7 Vo, - - '7Vd—i)

Definition
If the v()'s defined above are linearly independent, we call
conv(v(® . v(d)

the circulant simplex (of dimension d) with generator v.

10



We define Circ(d, m,) as the circulant simplex defined by the matrix

1 -m 0 0 m
m 1 —m . 0
o m 1 .7
M(d, m) :=
1
0
-m 0

20



The standard simplex
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The simplex Circ(d, m) for d = m = 2. The i-th vertex v;

vi = e + ma;,
where adj ‘= €41 — €i—-1,

i=0,...,d.

21
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A particular circulant matrix
Lemma

For every even d > 2, and every m € R we have

Vol(Circ(d, m)) = det(M(d, m)) =

Zoda1 fdr1-i\
—_— m’
Lod+1—i i
d/2 ’
_ d+1/d—1i\
—1+; ; (i_1>m.
Vol(Circ(4,2)) =1+ 2(3)22 + 3(3)2* = 1+ 20 + 80 = 101
Vol(Circ(6,3)) = 1+ 7(3)3 + 1(})3* + 3 (3)3° = -+ = 6301
=} =
bl




A particular circulant matrix

Vol(Circ(4,2)) =1+ 2(3)22 + 3(3)2* =1+ 20 + 80 = 101
Vol(Circ(6,3)) =1+ 7(3)32 + £($)3* + 5(3)3° = - -- = 6301

These volumes coincide with those of the unique widest empty 4-simplex
(Cycl(101,4)) and the smallest among the six cyclotomic empty
6-simplices of width 6 (Cycl(6301,6)).

u]
]
1
n
it
N
el
Q
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A particular circulant matrix

Vol(Circ(4,2)) =1+ 2(3)22 + 3(3)2* =1+ 20 + 80 = 101
Vol(Circ(6,3)) =1+ 7(3)32 + £($)3* + 5(3)3° = - -- = 6301

These volumes coincide with those of the unique widest empty 4-simplex
(Cycl(101,4)) and the smallest among the six cyclotomic empty
6-simplices of width 6 (Cycl(6301,6)).

This led us to conjecture that for every even d, the simplex Circ(d, d/2)
is empty and has width d.
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A particular circulant matrix

Vol(Circ(4,2)) =1+ 2(3)22 + 3(3)2* =1+ 20 + 80 = 101
Vol(Circ(6,3)) =1+ 7(3)32 + £($)3* + 5(3)3° = - -- = 6301

These volumes coincide with those of the unique widest empty 4-simplex
(Cycl(101,4)) and the smallest among the six cyclotomic empty
6-simplices of width 6 (Cycl(6301,6)).

This led us to conjecture that for every even d, the simplex Circ(d, d/2)
is empty and has width d. It turns out we have been able to prove much
more than this.

u]
]
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n
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N
el
Q
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For even d and every m, the width of Circ(d, m) equals 2m.

24
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Width

Theorem

For even d and every m, the width of Circ(d, m) equals 2m.

Proof.

Consider a functional w € Z*! and let v(!) denote the i-th vertex. We
have _
<W7V(’)> =m(wit1 — wi—1) + w;.

Since d + 1 is odd, we go through all the /s in steps of two. Thus, there
exist indices ip and jo with wy;, = min(w) and

Wo(ig—1) > Wojp = Wo(jp41) = «++ = Woj < Wo(ji41)-

(It could well be that iy = jo, but this is ok). We distinguish two
cases: O

24



@ Case 1: wojp—1 < wojpy1. Then:
(Wa V(2j0+1)> - <W7 V(2i0_1)> -

m (Wajp 42 — Woj)
>1
- m(WZio - W2i0—2)
<-1

+ Wojp+1 — Wajp—1

> 2m.
>0
@ Case 2: woj,—1 > wojp41. (Slightly more complicated).




The following conditions are equivalent for the circulant simplex
Circ(d, m), with d even:

© Circ(d, m) is an empty simplex.

«0» «4F)r « =)



Emptyness

The following conditions are equivalent for the circulant simplex
Circ(d, m), with d even:

© Circ(d, m) is an empty simplex.

@ Circ(d, m) does not contain the standard basis vectors.
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Emptyness

Theorem

The following conditions are equivalent for the circulant simplex
Circ(d, m), with d even:

@ Circ(d, m) is an empty simplex.
@ Circ(d, m) does not contain the standard basis vectors.
© m is smaller than the unique positive solution of

d/2—1

d—1—1i ]
dfliz 2i
N ( i > '

i=0

QO m< ﬁ where « is the unique solution of cosh a = sinh(dc).

26



Width and Flatness Lattice polytopes Empty cyclotomic simplices Circulant simplices

0000 000000 0000000 00000000e00
Emptyness
Idea of proof of 2 = 1.
Consider the vectors a; = ;41 — €1, i =0, ...,d, so that the vertices of
Circ(d, m) are v; :== e; + ma;. Let A= conv(ap, ..., aq).
e L] [ ] [ ] [ ]
may®
¢ The simplex mA,
O decomposed into
d + 1 dilated
* unimodular simplices.
mai

27



Emptyness

Our simplex Circ(d, m)

27

PN G



Emptyness

Our simplex Circ(d, m) is covered by the Minkowski sum Ag + mA.

27
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Emptyness

Idea of proof of 2 = 1.

Our simplex Circ(d, m) is covered by the Minkowski sum Ag + mA, which
decomposes nicely as a mixed subdivision.

27
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Emptyness

Idea of proof of 2 = 1.

Our simplex Circ(d, m) is covered by the Minkowski sum Ag + mA, which
decomposes nicely as a mixed subdivision. All lattice points of Ag + mA
lie in the dilated unimodular simplices coming from mA. It can be directly
checked (working out the facet description of Circ(d, m)) that for m below

the threshold all lattice points in these pieces lie outside Circ(d, m).
27




Let mo(d) be the threshold in the previous theorem:

. 2mo(d) 1
dll>n;o d

~ arcsinh(1)

~ 1.1346.

28
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Let mo(d) be the threshold in the previous theorem:
d—o0 d

= ~ 1.1346.
arcsinh(1) 346
In arbitrary (even) dimension d there are empty lattice simplices of width
~ 1.1346d.

28




@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):
limg_yoo e > 24v2 11381 ..
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@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):
limg_yoo e > 24v2 11381 ..

@ Both our constructions use cyclic symmetry acting transitively on
vertices. Is this (only) because we like symmetry?

«0O0» «4F»r <«
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Final remarks

@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):

limgsoo Tia > 25¥2 (11381 ..
@ Both our constructions use cyclic symmetry acting transitively on
vertices. Is this (only) because we like symmetry? Observe that:

o The unique convex 2-body attaining Flt(2) = 1 4+2/+/3
(Hurkens 1990) has cyclic symmetry.
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Final remarks

@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):
limg_yoo Ma > 25¥2 11381 ...

@ Both our constructions use cyclic symmetry acting transitively on
vertices. Is this (only) because we like symmetry? Observe that:

e The unique convex 2-body attaining FIt(2) = 1+2//3
(Hurkens 1990) has cyclic symmetry.

e The unique empty 4-simplex of width four has cyclic symmetry.
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Final remarks

@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):
limg_yoo Ma > 25¥2 11381 ...

@ Both our constructions use cyclic symmetry acting transitively on
vertices. Is this (only) because we like symmetry? Observe that:
o The unique convex 2-body attaining Flt(2) =1 +2//3
(Hurkens 1990) has cyclic symmetry.
e The unique empty 4-simplex of width four has cyclic symmetry.
o The conjectured maximizer of Flt(3) = 2 4+ /2
(Codenotti-S.-2019) has cyclic symmetry.
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Final remarks

@ The width we achieve for empty simplices is very close (only 0.3%
off) to the best known lower bound for Flt(d):

limg_yoo Ma > 25¥2 11381 ...

@ Both our constructions use cyclic symmetry acting transitively on
vertices. Is this (only) because we like symmetry? Observe that:

o The unique convex 2-body attaining Flt(2) =1 +2//3
(Hurkens 1990) has cyclic symmetry.

e The unique empty 4-simplex of width four has cyclic symmetry.

o The conjectured maximizer of Flt(3) = 2 4+ /2
(Codenotti-S.-2019) has cyclic symmetry.

Question

Does Flt(d) change (significantly) if restricted to convex bodies/simplices
that have a symmetry acting as cyclic permutation of the lattice
generators?
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Thank you for your attention

If you want to know more: http:\arXiv:2103.14925
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