Universal valuation of Coxeter matroids

Mariel Supina

The universal valuation of Coxeter matroids A polytopal view

Mariel Supina

 $\mathsf{UC}\;\mathsf{Berkeley}\longrightarrow\mathsf{KTH}$

Polytop(ics) April 8, 2021

Coauthors

Universal valuation of Coxeter matroids

Chris Eur (Stanford University)

Mario Sanchez (UC Berkeley)

<u>arXiv: 2008.01121</u>

Subdivisions

Universal valuation of Coxeter matroids

Mariel Supin

Let \mathscr{P} be a family of polyhedra in V.

Definition

A subdivision of $P \in \mathscr{P}$ is a set $\{Q_1, \ldots, Q_k\} \subseteq \mathscr{P}$ such that

- $\supseteq \forall i$ the vertices of Q_i are vertices of P,
- $Q_1 \cup \cdots \cup Q_k = P$, and
- 4 $\forall i \neq j$ if $Q_i \cap Q_j$ is nonempty, then it is a proper face of both Q_i and Q_j .

Example: $\mathscr{P} = \{\text{all polyhedra in } \mathbb{R}^2\}$

For $I \subseteq [k]$, let $Q_I = \bigcap_{i \in I} Q_i$.

Definition *Polytope version!*

A function $f: \mathscr{P} \to A$ (abelian group) is valuative if for any subdivision $\{Q_1, \ldots, Q_k\}$ of $P \in \mathscr{P}$ the following relation holds:

$$f(P) = \sum_{\varnothing \subsetneq I \subseteq [k]} (-1)^{\dim P - \dim Q_I} f(Q_I)$$

Examples:

- Euclidean volume of polytopes
- Ehrhart polynomials of lattice polytopes
- Tutte polynomials of matroids
- Order polynomials of posets
- Chow classes of generalized permutahedra

Alternatively, for $P \in \mathscr{P}$ define $\mathbb{1}_P : V \to \mathbb{Z}$ by

$$\mathbb{1}_P(x) = \begin{cases} 1, & x \in P \\ 0, & \text{otherwise} \end{cases}$$

and let $\mathbb{I}(\mathscr{P})$ be the \mathbb{Z} -module of indicator functions

$$\mathbb{I}(\mathscr{P}) := \left\{ \sum_{P \in \mathscr{P}} a_P \mathbb{1}_P \;\middle|\; a_P \in \mathbb{Z}, \; ext{finitely many } a_P ext{'s nonzero}
ight\}.$$

Alternatively, for $P \in \mathscr{P}$ define $\mathbb{1}_P : V \to \mathbb{Z}$ by

$$\mathbb{1}_P(x) = \begin{cases} 1, & x \in P \\ 0, & \text{otherwise} \end{cases}$$

and let $\mathbb{I}(\mathscr{P})$ be the \mathbb{Z} -module of indicator functions

$$\mathbb{I}(\mathscr{P}) := \left\{ \sum_{P \in \mathscr{P}} a_P \mathbb{1}_P \;\middle|\; a_P \in \mathbb{Z}, \; ext{finitely many } a_P ext{'s nonzero}
ight\}.$$

Definition *Commutative diagram version!*

A function $f: \mathscr{P} \to A$ is a valuation if there exists a \mathbb{Z} -linear map $\tilde{f}: \mathbb{I}(\mathscr{P}) \to A$ such that $f(P) = \tilde{f}(\mathbb{1}_P)$.

Think: $\mathbb{I}(\mathscr{P})$ "models" valuative-ness since

$$1_P + 1_Q = 1_{P \cup Q} + 1_{P \cap Q}$$
.

Universal valuation

Universal valuation of Coxeter matroids

Mariel Supina

Universal valuation

Universal valuation of Coxeter matroids

Mariel Sunin

Universal valuation \mathcal{F} : For any valuation f there exists a unique φ such that $f = \varphi \circ \mathcal{F}$.

How to construct \mathcal{F} : Choose a basis of $\mathbb{I}(\mathscr{P})$

 $P \stackrel{\mathcal{F}}{\longmapsto}$ Expression for $\mathbb{1}_P$ in this basis

Deformations

Universal valuation of Coxeter matroids

Mariel Supin

We will focus on the case where $\mathscr{P}=\mathrm{Def}(Q)$, the collection of deformations of some polytope $Q\subset V$.

Definition

A polyhedron $P \subseteq V$ is a deformation of Q if the normal fan of P coarsens a subfan of the normal fan of Q.

Example: A polytope Q and deformations $P_1, P_2 \in \mathrm{Def}(Q)$

Two definitions by picture

Universal valuation of Coxeter matroids

Mariel Sunina

Tangent cone of a polytope at a face:

Two definitions by picture

Universal valuation of Coxeter matroids

Mariel Suning

Tangent cone of a polytope at a face:

Tight containment of a polyhedron in a cone:

Universal valuation of deformations

Universal valuation of Coxeter matroids

Mariel Supin

Let $Q \subseteq V$ be a polytope.

Proposition [Eur-Sanchez-S. 2020]

Translated tangent cones of Q form a basis for $\mathbb{I}(\mathrm{Def}(Q))$:

$$\mathcal{T} := \{\mathbb{1}_{C+\nu} | C \text{ is a tangent cone of } Q, \ \nu \in V\}.$$

Theorem [Eur-Sanchez-S. 2020]

The universal valuation of $\operatorname{Def}(Q)$ is $\mathcal{F}:\operatorname{Def}(Q)\to\mathbb{Z}^{\mathcal{T}}$ given by

$$\mathcal{F}(P) = \sum_{\substack{C+v \text{ tightly} \\ \text{contains } P}} e_{C+v}$$

where the C + v are translated tangent cones of Q.

Generalized permutahedra

Universal valuation of Coxeter matroids

Mariel Supin

Definition

The *n*-permutahedron Π_n is the convex hull of all permutations of the coordinates of $(1, 2, ..., n) \in \mathbb{R}^n$.

Definition

A generalized permutahedron is an element of $Def(\Pi_n)$.

Equivalently, it is a polyhedron with edge and ray directions of the form $e_i - e_i$.

Coxeter combinatorics

Universal valuation of Coxeter matroids

Mariel Supin

Coxeter combinatorics: Consider combinatorial objects associated to finite reflection groups other than S_n

Definition

Let W be a finite group obtained from reflecting across hyperplanes in V. Let $R \subset V$ be the collection of normal vectors of those hyperplanes. We call the pair $\Phi = (V, R)$ a root system.

$$A_{n-1} = (\mathbb{R}^n/(1,\ldots,1), \ \{\pm(e_i - e_j) : 1 \le i < j \le n\})$$

$$B_n = (\mathbb{R}^n, \ \{\pm e_i \pm e_j : 1 \le i < j \le n\} \cup \{\pm e_i : 1 \le i \le n\})$$

$$C_n = (\mathbb{R}^n, \ \{\pm e_i \pm e_j : 1 \le i < j \le n\} \cup \{\pm 2e_i : 1 \le i \le n\})$$

$$D_n = (\mathbb{R}^n, \ \{\pm e_i \pm e_j : 1 \le i < j \le n\})$$

Generalized Coxeter permutahedra

Universal valuation of Coxeter matroids

Mariel Supina

Let $\Phi = (V, R)$ be a root system with reflection group W.

Definition

The Φ -permutahedron Π_{Φ} is the convex hull of the W-orbit of a "generic" point in V.

Example: B_2 - and B_3 -permutahedra

Generalized Coxeter permutahedra

Universal valuation of Coxeter matroids

Mariel Supin

Let $\Phi = (V, R)$ be a root system with reflection group W.

Definition

The Φ -permutahedron Π_{Φ} is the convex hull of the W-orbit of a "generic" point in V.

Example: B_2 - and B_3 -permutahedra

Definition

A generalized Φ -permutahedron is an element of $\mathrm{Def}(\Pi_{\Phi})$. Equivalently, it is a polyhedron with edge and ray directions in the set of roots R.

Universal valuation of generalized Φ-permutahedra

Universal valuation of Coxeter matroids

Mariel Supina

Corollary [Derksen–Fink 2010 (Type A), Eur–Sanchez–S. 2020]

The universal valuation of generalized Φ -permutahedra is given by

$$\mathcal{F}(P) = \sum_{\substack{C+v \text{ tightly} \\ \text{contains } P}} e_{C+v}$$

where the C + v are translated tangent cones of the standard Φ -permutahedron.

Universal valuation of generalized Φ-permutahedra

Universal valuation of Coxeter matroids

Mariel Supina

Corollary [Derksen–Fink 2010 (Type A), Eur–Sanchez–S. 2020]

The universal valuation of generalized Φ -permutahedra is given by

$$\mathcal{F}(P) = \sum_{\substack{C+\nu \text{ tightly} \\ \text{contains } P}} e_{C+\nu}$$

where the ${\it C} + {\it v}$ are translated tangent cones of the standard Φ -permutahedron.

Example: Translated tangent cones of the hexagon (Π_3)

Matroids

Universal valuation of Coxeter matroids

Mariel Supina

Matroids are combinatorial objects that generalize the notion of independence. They are a subfamily of $\mathrm{Def}(\Pi_n)$.

Definition *Polytope version!* [GGMS 1987]

A matroid is a polytope with edge directions of the form $e_i - e_j$ and vertices in $\{0,1\}^n$.

Example:

Uniform matroids

Universal valuation of Coxeter matroids

Mariel Supin

All vertices of a matroid have the same number of 1's, which gives the rank.

Definition

The uniform matroid $U_{r,n}$ is the convex hull of $\{v \in \{0,1\}^n : |v| = r\}.$

All matroids of rank r are contained in $U_{r,n}$!

Example: $U_{2,4}$

Matroid valuations

Universal valuation of Coxeter matroids

Mariel Supina

Recall: The universal valuation of generalized permutahedra is

$$\mathcal{F}(P) = \sum_{\substack{C+\nu \text{ tightly} \\ \text{contains } P}} e_{C+\nu}$$

for translated tangent cones C + v of the permutahedron.

- Let's evaluate \mathcal{F} on a matroid M of rank r
- Since $M \subseteq U_{r,n}$, we don't need to think about the entire cone C + v
- What is $(C + v) \cap U_{r,n}$? A Schubert matroid (up to permutation)

Definition

Let $v \in \{0,1\}^n$ with r 1's. The Schubert matroid Ω_v is the convex hull of all $u \in \{0,1\}^n$ with r 1's that are lexicographically > v.

4 L > 4 m > 4 = > 4 = > = *) 4 (>

Valuative matroid invariants

Universal valuation of Coxeter matroids

Mariel Supin

Since matroids are generalized permutahedra, they have a natural S_n -action.

Definition

A valuative invariant is a matroid valuation f such that $f(\sigma \cdot M) = f(M)$ for all matroids M and all $\sigma \in S_n$.

Theorem [Derksen-Fink 2010]

The universal valuative matroid invariant is given by

$$\mathcal{G}(M) = \sum_{\substack{\sigma \cdot \Omega_{\nu} \supseteq M \\ ext{for some } \sigma \in S_n}} \mathsf{e}_{\Omega_{\nu}}.$$

Coxeter matroids

Universal valuation of Coxeter matroids

Mariel Supin

Let $\Phi = (V, R)$ be a root system with reflection group W. Root systems come with special points called fundamental weights.

Definition

A uniform Φ -matroid is the convex hull of the W-orbit of a fundamental weight.

Definition *Polytope version!* [BGW 2003]

A Φ -matroid is a polytope whose vertices are a subset of the vertices of a uniform Φ -matroid and whose edge directions are roots in R.

The universal valuative invariant for Φ-matroids

Universal valuation of Coxeter matroids

Mariel Supina

Can we take the same approach as we did in type A? No :(

Example: A uniform matroid of type B_3 intersected with a tangent cone of the B_3 -permutahedron

- New vertices
- Bad edge directions
- Not a B_3 -matroid
- Not even a generalized B₃-permutahedron!

The universal valuative invariant for Φ-matroids

Universal valuation of Coxeter matroids

Mariel Supin

Nevertheless, our result is analogous to Derksen and Fink's result in Type A! We just needed different proof techniques (0-Hecke algebras).

Definition

Let ϖ be a fundamental weight of Φ and let $w \in W$. The Φ -Schubert matroid Ω_w is the convex hull of $u \cdot \varpi$ such that $u \geq w$ in the Bruhat order.

Theorem [Eur-Sanchez-S. 2020]

The universal valuative Φ-matroid invariant is given by

$$\mathcal{G}(M) = \sum_{\substack{u \cdot \Omega_w \supseteq M \\ \text{for some } u \in W}} e_{\Omega_w}.$$

Applications

Universal valuation of Coxeter matroids

Mariel Supin

Theorem [Eur-Sanchez-S. 2020]

The interlace polynomial is a specialization of the \mathcal{G} -invariant, and hence is a valuative invariant for delta matroids (which are B_n -matroid with vertices in $\{\frac{1}{2}(\pm e_1 \pm \cdots \pm e_n)\}$).

Applications

Universal valuation of Coxeter matroids

Mariel Supin

Theorem [Eur-Sanchez-S. 2020]

The interlace polynomial is a specialization of the \mathcal{G} -invariant, and hence is a valuative invariant for delta matroids (which are \mathcal{B}_n -matroid with vertices in $\{\frac{1}{2}(\pm e_1 \pm \cdots \pm e_n)\}$).

Theorem [Bastidas, Ardila-Sanchez 2020]

Derksen and Fink's universal valuation for generalized permutahedra is a morphism of Hopf monoids. Using this framework, one can prove that a variety of functions on posets, matroids, and generalized permutahedra are valuative.

Applications

Universal valuation of Coxeter matroids

Theorem [Eur–Sanchez–S. 2020]

The interlace polynomial is a specialization of the \mathcal{G} -invariant, and hence is a valuative invariant for delta matroids (which are B_n -matroid with vertices in $\{\frac{1}{2}(\pm e_1 \pm \cdots \pm e_n)\}$).

Theorem [Bastidas, Ardila-Sanchez 2020]

Derksen and Fink's universal valuation for generalized permutahedra is a morphism of Hopf monoids. Using this framework, one can prove that a variety of functions on posets, matroids, and generalized permutahedra are valuative.

Idea

Our universal valuation for Coxeter GPs should play the same role in Hopf theory for other types as Derksen and Fink's universal valuation does in Type A.

References

Universal valuation of Coxeter matroids

Mariel Supin

- F. Ardila, M. Sanchez, Valuations and the Hopf monoid of generalized permutahedra, arXiv:2010.11178 (2020).
- A. Borovik, I. Gelfand, N. White, Coxeter Matroids, (2003).
- H. Derksen, A. Fink, Valuative invariants for polymatroids, Advances in Mathematics 225 (2010), 1840-1892.
- C. Eur, M. Sanchez, M. Supina, *The universal valuation of Coxeter matroids*, Bulletin of the London Mathematical Society (2021)
- A. Fink, D. Speyer, *K-classes for matroids and equivariant localization*, Duke Mathematical Journal **161** (2010), 2699-2723.
- Gelfand, R. Goresky, R. MacPherson, V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Advances in Mathematics 63(3) (1987) 301-316.
- M. Kapranov, *Chow quotients of Grassmannians I*, I.M. Gelfand Seminar **16(2)** (1992) 29-110.
- F. Rincón, *Isotropical linear spaces and valuated Delta-matroids*, JCTA **119** (2012) 14-32.
- D. Speyer, Tropical linear spaces, SIAM J. Discrete Math 22(4) (2008), 1527-1558.

Thank you!