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Polynomial capacity

Let R+[x ] denote the set of n-variate polynomials with all coefficients ≥ 0.

Definition: Given p ∈ R+[x ] and α ∈ Rn
+, we define

Capα(p) := inf
x>0

p(x)

xα
= inf

x1,x2,...,xn>0

p(x1, x2, . . . , xn)

xα1
1 xα2

2 · · · x
αn
n

.

Intuitions/interpretations of capacity:
1 Combinatorial: Capα(p) > 0 iff α ∈ Newt(p) = hull(supp(p)).
2 Entropic: log Capα(p) is the entropy of a special distribution on

supp(p) with expectation α.
3 Convexity/optimization: log Capα(p) can be converted into a

convex program, and can be approximated if p is easy to evaluate.

Key use: Approximation of polynomial coefficients:

Capκ(p) ≥ 〈xκ〉p(x) ≥ K (κ) · Capκ(p).

Key idea: We use evaluations of p to approximate coefficients of p.
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Gurvits’ original application: Computing permanents

Given a matrix M with entries in R+, define the permanent of M:

per(M) :=
∑
σ∈Sn

n∏
i=1

mi ,σ(i).

Barvinok (I think?): “Like the determinant, but simpler.” Hilarious!

Why? Exact permanent computation is the canonical #P-hard problem.

Already #P-hard for 0-1 matrices, which is equivalent to counting
perfect matchings of a bipartite graph.

Relation to capacity? Defining q(x) :=
∏n

i=1

∑n
j=1mijxj , we have

per(M) = 〈x1x2 · · · xn〉q(x) = ∂x1∂x2 · · · ∂xnq(x).

Upshot: q is easy to evaluate, but the coefficients are hard to compute.
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Coefficient approximation

Last slide: Given M with R+ entries, we define q(x) =
∏n

i=1

∑n
j=1mijxj

which implies per(M) = 〈x1〉q(x).

Theorem (Gurvits ’08)

Given any d-homogeneous, n-variate, “strongly log-concave” (SLC)
p ∈ R+[x ] and any κ ∈ supp(p), we have

Capκ(p) ≥ 〈xκ〉p(x) ≥
(
d

κ

)
κκ11 · · ·κκnn

dd
Capκ(p).

Upshot: Coefficient approximation via capacity (a convex program).

Apply to q with κ = 1: Cap1(q) ≥ per(M) ≥ n!
nn · Cap1(q).

Next: Coefficients of generating functions count combinatorial objects.

Corollary: If “SLC” generating function, we can approximately count.

What is “SLC”? What other classes of log-concave polynomials?
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Log-concave polynomials

SLC / Completely log-concave / Lorentzian (homogeneous):

E.g.: det(
∑

i xiAi ) for PSD Ai , vol(
∑

i xiKi ) for compact convex Ki ,
matroid basis generating polynomials [ALOV ’18, BH ’19], products
of linear forms with non-negative entries, more?

Hot: Hodge theory for matroids [AHK ’15], Mason’s conjectures
[ALOV ’18, BH ’19]∑d

k=0 ckx
kyd−k is SLC ⇐⇒

(
ck
(dk)

)2

≥
(

ck−1

( d
k−1)

)(
ck+1

( d
k+1)

)
.

Denormalized Lorentzian (homogeneous): Multiplying the coefficients
of p by multinomial coefficients gives a Lorentzian polynomial.

E.g.: Schur polynomials [HMMD ’19], polymatroid basis generating
polynomials, contingency tables generating polynomials, more?∑d

k=0 ckx
kyd−k is DL ⇐⇒ c2k ≥ ck−1 · ck+1.

Bonus: Both classes preserved under taking products of polynomials.
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Capacity and denormalized Lorentzian polynomials

Before: Coefficient bounds for SLC polynomials via capacity.

Theorem (Brändén-L-Pak ’20)

Given any d-homogeneous, n-variate, denormalized Lorentzian (DL)
p ∈ R+[x ] and any κ ∈ supp(p), we have

Capκ(p) ≥ 〈xκ〉p(x) ≥ e−(n−1)

[
n∏

i=2

1

κi + 1

]
Capκ(p).

Now: We can approximate the coefficients of DL polynomials.

Coefficients of Schur polynomials. Applications?

Counting contingency tables. Next section.

(Quick comment: Starting at i = 2 is not a typo.)
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Contingency tables

Definition: Given α ∈ Nm and β ∈ Nn, a contingency table (CT) is an
m × n matrix of non-negative integers such that the row sums and column
sums are α and β respectively (α and β called the marginals of M).

Examples: Contingency tables with α = (1, 4) and β = (1, 2, 2):[
1 0 0
0 2 2

]
,

[
0 1 0
1 1 2

]
,

[
0 0 1
1 2 1

]
The permutation matrices are the contingency tables with α = β = 1.

Generating function: Fix matrix M, and to entry mij associate (xiyj)
mij .

M has marginals (α,β) iff
∏m

i=1

∏n
j=1(xiyj)

mij = xαyβ. Therefore:

g(x , y) :=
m∏
i=1

n∏
j=1

1

1− xiyj
=

m∏
i=1

n∏
j=1

∞∑
k=0

(xiyj)
k =

∑
α,β

CT(α,β) · xαyβ,

where CT(α,β) counts contingency tables with the given marginals.
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Capacity bounds for contingency tables

Goal: Apply capacity bounds to generating function.

Problems: Not a polynomial, not homogeneous. We can fix it though:

m∏
i=1

n∏
j=1

∞∑
k=0

(xiyj)
k →

m∏
i=1

n∏
j=1

K∑
k=0

xki y
K−k
j =

∑
α,β

CTK (α,β) · xαymK ·1−β,

where CTK (α,β) is the number of tables with entries bounded by K .

Upshot: New generating function is a product of bivariate homogeneous
polynomials

∑K
k=0 x

k
i y

K−k
j with log-concave coefficients.

Therefore: The new generating function is denormalized Lorentzian.

Finally: Apply capacity bound, then un-twist and send K →∞ to get:

CT(α,β) ≥ e−(m+n−1)

 m∏
i=2

1

αi + 1

n∏
j=1

1

βj + 1

Cap(α,β)(g).
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Transportation/flow polytopes

Definition: For α ∈ Nm, β ∈ Nn, the transportation polytope T (α,β)
is the set of all m × n matrices with R+ entries and marginals α and β.
(Flow polytopes have extra constraint that entries are bounded by kij .)

That is: Contingency tables are the integer points of these polytopes.

Idea: We can extract volume from CT(Mα,Mβ) as M →∞.

How? If hP is the Ehrhart polynomial of an integral polytope P, then
hP(M) counts integer points in M · P for M ∈ N. So:

hT (α,β)(M) = hT (Mα,Mβ)(1) = CT(Mα,Mβ).

Well known: The leading coefficient of hP is vol(P).

Therefore: Since the dimension of T (α,β) is (m − 1)(n − 1), we have

vol(T (α,β)) = lim
M→∞

CT(Mα,Mβ)

M(m−1)(n−1) .

Next: We can bound vol(T (α,β)) by limiting our capacity bound on CTs.
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Volume bounds via capacity

Last slide: vol(T (α,β)) = lim
M→∞

CT(Mα,Mβ)

M(m−1)(n−1) .

From before, we have our capacity bound:

CT(Mα,Mβ) ≥ e−(m+n−1)

 m∏
i=2

1

Mαi + 1

n∏
j=1

1

Mβj + 1

Cap(Mα,Mβ)(g)

Now add in the limit:

lim
M→∞

CT(Mα,Mβ)

Mmn−(m+n−1) = e−(m+n−1)

 m∏
i=2

1

αi

n∏
j=1

1

βj

 lim
M→∞

Cap(Mα,Mβ)(g)

Mmn

Last piece:

lim
M→∞

Cap(Mα,Mβ)(g)

Mmn
= inf

0<x ,y<1

∏m
i=1

∏n
j=1

−1
log(xiyj )

xαyβ
.

This can also be converted into a convex program.
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Volume bounds via capacity

Theorem (Brändén-L-Pak ’20)

Given α ∈ Nm and β ∈ Nn, the volume of T (α,β) can be bounded via

vol(T (α,β)) ≥ e−(m+n−1)

 m∏
i=2

1

αi

n∏
j=1

1

βj

 · inf
0<x ,y<1

∏m
i=1

∏n
j=1

−1
log(xiyj )

xαyβ
.

The same holds for the flow polytope with −1
log(xiyj )

replaced by
(xiyj )

kij−1
log(xiyj )

.

Corollary: For α = α0 · 1 and β = β0 · 1, we obtain a closed-form bound.

For the Birkhoff polytope with α = β = 1 and m = n:

vol(T1,1) ≥ (en)(n−1)
2

n2n2−2n+1
=

e(n−1)
2

nn2
= e−n

2 log n+n2−2n+1.

First two terms coincide with the true asymptotics [Canfield-McKay ’07].
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Questions / Thanks

Questions?

(And thanks for listening!)
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