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Generic Orientation

Any edge generic linear functional induces a unique sink orientation on the
graph of a polytope:
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Monotone Paths

A monotone path is a path from the minimum to the maximum on the
oriented one-skeleton of a polytope with orientation induced by a generic
linear functional:
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Monotone Paths on Simplices

Exercise

The set of all monotone paths on the simplex ∆n (or more generally any
neighborly polytope with n + 1 vertices) is in bijection with subsets of
[n − 1].
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Flip Graph

One may form a graph of monotone paths called the flip graph, where two
monotone paths are adjacent if they agree everywhere except on a
two-dimensional face.
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Cellular Strings

Definition

A cellular string is a sequence of increasing faces of a polytope connected
end to end.
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Baues Poset

Definition

The Baues poset is the poset of all cellular strings under refinement.

Theorem (Billera and Sturmfels, 1992)

The order complex of the Baues poset has a canonical deformation
retraction onto a polytope. We call this polytope the monotone path
polytope MPPϕ(P). Its faces correspond to coherent cellular strings with
its vertices being coherent monotone paths.
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Monotone Path Polytopes of Simplices

Every cellular string on a simplex is coherent!

Theorem (Billera and Sturmfels, 1992)

A monotone path polytope of a simplex ∆n vertices for a generic linear
functional is combinatorially equivalent to a hyper-cube Cn−1.

∅

{e2}

{e3}

{e4}

{e2, e3}

{e2, e4}

{e3, e4}

{e2, e3, e4}
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Monotone Path Polytopes of Cubes

Every cellular string on the cube is coherent!

Theorem (Billera and Sturmfels, 1992)

A monotone path polytope of a cube Cn for a generic linear functional is
normally equivalent to the permutahedron conv({Sn(1, 2, . . . , n)}).
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What about cross-polytopes?

Not every monotone path on the cross-polytope is coherent.

Theorem (B. and De Loera, 2021)

The face lattice of the monotone path polytope of a cross-polytope �n−1

for a generic linear functional is equivalent to the lattice of intervals in the
sign poset: {+,−, 0}n−1 \ {~0}.

Alex Black (UC Davis) Monotone Paths on Cross-Polytopes 4/8/2021 10 / 22



Combinatorially Equivalent Form: Signohedron

Theorem (B. and De Loera, 2021)

For any generical linear functional ϕ, MPPϕ(�n) is combinatorially
equivalent to (�n−1 + Cn−1)∗.
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But what does coherence mean?

Definition

A monotone path on a polytope P is coherent if there exists a
two-dimensional projection of P taking the path to the lower edges of a
polygon.

π

eT1ϕ
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Incoherence on Centrally Symmetric Polytopes

Corollary (B. and De Loera, 2021)

A monotone path on a centrally symmetric polytope containing a pair of
antipodes other than the max and min cannot be coherent.

−e3 e3

e2

−e2

(0, 0)
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Coherence on the Simplex

Theorem (Billera and Sturmfels, 1992)

All cellular strings on the simplex are coherent.

x1

x2

x3 x4

x5

x6
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x9
x10
x11

x12
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Coherence on the Cross-Polytope

Theorem (B. and De Loera)

A cellular string on the cross-polytope is coherent if and only if it does not
contain a pair of antipodes other than the max and min.

−xn

xi1
xi2

xi3 xi4 xi5

xn

−xi5−xi4−xi3
−xi2
−xi1

xs1 xs2 −xs2−xs1xs3 −xs3
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The Sign Poset Correspondence

Theorem (B. and De Loera, 2021)

Coherent monotone paths on the cross-polytope are in bijection with
elements of the sign poset.

(i) If ei is in the path xi = +

(ii) If −ei is in the path xi = −
(iii) If neither are in the path xi = 0

For example,
−e4,−e2, e3, e4 7→ (0,−,+)
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The Sign Poset Correspondence

Theorem (B. and De Loera, 2021)

Coherent cellular strings on the cross-polytope are in bijection with
intervals in the sign poset.

A coherent cellular string is determined by two things:

(i) Endpoints of the string

(ii) The vertices in each cell

Each of (i) and (ii) corresponds to the vertices of a monotone path and
thus a sign vector. The cellular string corresponds to the interval between
those sign vectors.
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Why the cross-polytope?

Lemma (Billera and Sturmfels, 1992)

Let P,Q be polytopes, and θ : P → Q be a surjective linear map and
ϕ : Q → R be a linear functional. Then

θ(MPPϕ◦θ(P)) = MPPϕ(Q)

Projections take monotone path polytopes to monotone path polytopes.

Corollary (B. and De Loera, 2021)

The monotone path polytopes of centrally symmetric polytopes are
projections of combinatorial signohedra.
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Description of the Signohedra

Proposition (B. and De Loera, 2021)

The f−vector of the signohedron MPPϕ(�n) is given by

fm(MPPϕ(�n)) =
n−m−1∑
k=1

(
n − 1

k ,m, n − k −m − 1

)
2k+m

= 2m
n−m−1∑
k=1

(
n − 1

k ,m, n − k −m − 1

)
2k .

Proposition (B. and De Loera, 2021)

diam(MPPϕ(�n)) = 2(n − 1) = (n − 1)diam(�n).
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Explicit Polyhedral Realization

Proposition (B. and De Loera, 2021)

MPPϕ(�n) = {x ∈ Rn : π(x) = 0 and ϕi ,ε(x) ≥ −ai − an

for all ε : [n − 1]→ {±1}, k ∈ [n − 1]}

where we define ϕi ,ε on the basis F1 ∪ F2 ∪ {en} by

ϕi ,ε(ek) =


−ak − an if k ∈ F1
ai+an
an−ai

(ak − an) if k ∈ F2

0 if k = n

for F1 = {k : ε(k)k ≤ i} and F2 = {k : ε(k)k ≥ i}.
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Explicit Vertex Realization

Proposition (B. and De Loera, 2021)

The set of vertices of the Signohedron is given by{(
1− aik + ai1

2an

)
en +

k∑
i=1

(
aik−1

+ aik+1

2an

)
eik :

− n = i0 < · · · < ik+1 = n and ia 6= −ib for all a, b ∈ [k]

}
.
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The Plot of MPPϕ(�4)
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