Generators for type B permutahedra VIA McMullen's Polytope algebra

Jose Bastidas
Cornell University

(Polytop)ics: Recent advances on polytopes
Max Planck Institute for Mathematics in the Sciences
April 6, 2021

Question

(Posed by Ardila-Castillo-Eur-Postnikov '20)

What is a nice type B analog of the following result?

Theorem (Postnikov '09, Ardila-Benedetti-Doker '10)
Every generalized permutahedron in \mathbb{R}^{d} can be written uniquely as a signed Minkowski sum of the faces of the standard simplex $\Delta_{[d]}$.

The (Type B) PERMUTAHEDRON

$$
\pi_{d}=\operatorname{Conv}\left\{\sigma \cdot(1,2, \ldots, d): \sigma \in \mathfrak{S}_{d}\right\} \quad \pi_{d}^{B}=\operatorname{Conv}\left\{\tau \cdot(1,2, \ldots, d): \tau \in \mathfrak{S}_{d}^{ \pm}\right\}
$$

GENERALIZED PERMUTAHEDRA

Generalized (type B) permutahedra are deformations of $\pi_{d}^{(B)}$.

Their normal fan is refined by the corresponding Coxeter fan.

Signed Minkowski sum

The Minkowski sum of two polytopes $\mathfrak{p}, \mathfrak{q} \subseteq \mathbb{R}^{d}$ is the polytope

$$
\mathfrak{p}+\mathfrak{q}=\{a+b: a \in \mathfrak{p}, b \in \mathfrak{q}\}
$$

We can express the trapezoid above as the signed Minkowski sum:

McMullen's polytope algebra

Let $\Pi\left(\mathbb{R}^{d}\right)$ be the abelian group generated by classes of polytopes $[\mathfrak{p}]$, with relations:

- $[\mathfrak{p} \cup \mathfrak{q}]+[\mathfrak{p} \cap \mathfrak{q}]=[\mathfrak{p}]+[\mathfrak{q}]$, whenever $\mathfrak{p} \cup \mathfrak{q}$ is a polytope.
- $[\mathfrak{p}+\{t\}]=[\mathfrak{p}]$ for any translation $t \in \mathbb{R}^{d}$.

Example: Let \triangle be a 2-simplex. Then, $[3 \triangle]+3[\triangle]=3[2 \triangle]+[\cdot]$

McMullen's Polytope algebra

Let $\Pi\left(\mathbb{R}^{d}\right)$ be the abelian group generated by classes of polytopes $[\mathfrak{p}]$, with relations:

- $[\mathfrak{p} \cup \mathfrak{q}]+[\mathfrak{p} \cap \mathfrak{q}]=[\mathfrak{p}]+[\mathfrak{q}]$, whenever $\mathfrak{p} \cup \mathfrak{q}$ is a polytope.
$-[\mathfrak{p}+\{t\}]=[\mathfrak{p}]$ for any translation $t \in \mathbb{R}^{d}$.

Example: Let \triangle be a 2-simplex. Then, $[3 \triangle]+3[\triangle]=3[2 \triangle]+[\cdot]$.

- The product in $\Pi\left(\mathbb{R}^{d}\right)$ is given by Minkowski sum:

$$
[\mathfrak{p}] \cdot[\mathfrak{q}]=[\mathfrak{p}+\mathfrak{q}] \quad\binom{1=[\cdot]}{[\mathfrak{p}]^{n}=[n \mathfrak{p}]}
$$

The previous example can be restated as $([\triangle]-1)^{3}=0$.

McMullen's polytope algebra

In fact, for any polytope $\mathfrak{p} \subseteq \mathbb{R}^{d},([\mathfrak{p}]-1)^{\operatorname{dim}(\mathfrak{p})+1}=0$. So we can define

$$
\log [\mathfrak{p}]:=\sum_{k=1}^{\operatorname{dim}(\mathfrak{p})} \frac{(-1)^{k-1}}{k}([\mathfrak{p}]-1)^{k}
$$

Theorem (McMullen '89)

$\Pi\left(\mathbb{R}^{d}\right)$ is a graded ring:

$$
\Pi\left(\mathbb{R}^{d}\right)=\bigoplus_{r=0}^{d} \Pi_{r}\left(\mathbb{R}^{d}\right)
$$

The space $\Pi_{1}\left(\mathbb{R}^{d}\right)$ is spanned by elements of the form $\log [\mathfrak{p}]$.

$$
\begin{gathered}
\log [\mathfrak{p}+\mathfrak{q}]=\log ([\mathfrak{p}] \cdot[\mathfrak{q}])=\log [\mathfrak{p}]+\log [\mathfrak{q}] \\
\log [n \mathfrak{p}]=\log \left([\mathfrak{p}]^{n}\right)=n \log [\mathfrak{p}]
\end{gathered}
$$

So signed Minkowski sums become linear combinations in $\Pi_{1}\left(\mathbb{R}^{d}\right)$.

Subalgebra of generalized permutahedra

Let $\Pi\left(\pi_{d}^{B}\right)=\bigoplus_{r=0}^{d} \Pi_{r}\left(\pi_{d}^{B}\right)$ be the subalgebra of $\Pi\left(\mathbb{R}^{d}\right)$ generated by classes of type B generalized permutahedra.

Coming up:

- $\Pi\left(\pi_{d}^{B}\right)$ is a module over the Tits algebra of the type B arrangement.
- The module structure of $\Pi_{1}\left(\pi_{d}^{B}\right)$ will give us information about generating collections of type B generalized permutahedra.

Tits monoid of a Hyperplane arrangement

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^{d}.

- $\mathcal{L}=\mathcal{L}[\mathcal{A}]$ denotes the lattice of flats of \mathcal{A}.
flat $=$ intersection of some hyperplanes of \mathcal{A}
- $\Sigma=\Sigma[\mathcal{A}]$ denotes the collection of faces of \mathcal{A}.

$$
\text { face }=\text { face of a closed region of } \mathcal{A}
$$

Σ is a monoid: The product of two faces F and G, denoted $F G$, is the first face you encounter after moving a small positive distance from an interior point of F to an interior point of G. The central face O is the unit of this product.

Polytope algebra as a module

The Tits algebra $\mathbb{R} \Sigma$ is the monoid algebra of Σ.
Theorem (B- '20)
Let \mathfrak{p} be a zonotope of \mathcal{A}, then $\Pi(\mathfrak{p})$ is a right $\mathbb{R} \Sigma$-module:

$$
[\mathfrak{q}] \cdot F=[\text { face of } \mathfrak{q} \text { maximized in the direction of } F]
$$

and the action of each $F \in \Sigma$ is an algebra endomorphism.

- Each graded component $\Pi_{r}(\mathfrak{p})$ is a $\mathbb{R} \Sigma$-submodule.

Invariants

Simple modules over $\mathbb{R} \Sigma$ are well understood (Solomon '67, Bidigare '97):

- They are one-dimensional.
- There is one isomorphism class M_{X} for each flat $\mathrm{X} \in \mathcal{L}$.

But $\mathbb{R} \Sigma$ is not semisimple.
What simple modules appear in a composition series of $\Pi_{r}\left(\pi_{d}^{B}\right)$?

$$
0 \subset M_{1} \subset M_{2} \subset \cdots \subset M_{n}=\Pi_{r}\left(\pi_{d}^{B}\right)
$$

(The composition factors M_{i+1} / M_{i} are simple $\mathbb{R} \Sigma$-modules)
$\eta_{\mathrm{X}}\left(\Pi_{r}\left(\pi_{d}^{B}\right)\right)$ denotes the number of composition factors isomorphic to M_{X}.

Main result

Let $\mathfrak{S}_{d}^{ \pm}$be the Coxeter group of type B_{d} (signed permutations).

Theorem (B- '20)

For any flat $\mathrm{X} \in \mathcal{L}\left[\mathcal{B}_{d}\right]$ and $r=0,1, \ldots, d$,

$$
\eta_{\mathrm{X}}\left(\Pi_{r}\left(\pi_{d}^{B}\right)\right)=\#\left\{\tau \in \mathfrak{S}_{d}^{ \pm}: \operatorname{fix}(\tau)=\mathrm{X}, \operatorname{exc}(\tau)+\left\lfloor\frac{\operatorname{neg}(\tau)+1}{2}\right\rfloor=r\right\}
$$

Tools: McMullen 83', Brenti '94, Aguiar-Mahajan '17.

The module $\Pi_{1}\left(\pi_{d}^{B}\right)$

> Corollary (B- '20) $\begin{aligned} & \text { Any family of generators (via signed Minkowski sums) for generalized permutahe- } \\ & \text { dra of type B contains at least } 2^{d-1} \text { full-dimensional polytopes. }\end{aligned}$

14 full-dimensional type B shard polytopes in \mathbb{R}^{3} (Padrol-Pilaud-Ritter '20)

- From the previous theorem, $\eta_{\{0\}}\left(\Pi_{1}\left(\pi_{d}^{B}\right)\right)=2^{d-1}$.
- We employ Eulerian idempotents of $\mathbb{R} \Sigma\left[\mathcal{B}_{d}\right]$ (Saliola '06, Aguiar-Mahajan '17) to deduce that, if \mathfrak{q} is not full-dimensional, the projection of $\log [\mathfrak{q}]$ to certain $\eta_{\{\mathbf{0}\}}\left(\Pi_{1}\left(\pi_{d}^{B}\right)\right)$-dimensional subspace is zero.

GENERATORS FOR TYPE B GENERALIZED PERMUTAHEDRA

For nonempty $S \subseteq[\pm d]$ with $S \cap \bar{S}=\emptyset$ define

$$
\Delta_{S}=\operatorname{Conv}\left\{e_{j} \mid j \in S\right\} \quad \text { and } \quad \Delta_{S}^{0}=\operatorname{Conv}\left(\Delta_{S} \cup\{\mathbf{0}\}\right) \quad\left(e_{\bar{i}}=-e_{i}\right)
$$

Theorem (B-)
Any type B generalized permutahedron can be written uniquely as a signed Minkowski sum of the simplices

$$
\left\{\Delta_{S}, \Delta_{S}^{0}: \min \{|j|: j \in S\} \in S\right\}
$$

The proof uses a valuation $\Pi_{1}\left(\pi_{d}^{B}\right) \rightarrow \mathbb{R} \Sigma\left[\mathcal{B}_{d}\right]$.

THANK YOU!

arXiv:2009.05876

