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Braid fan and permutahedra

Definition
A fan is a collection of polyhedral cones, whose faces are in the
collection, such that the intersection of any two cones is still a cone
in the collection.
The normal outer cone of a face of a polytope is the cone spanned
by the normal vectors of the facets containing it.
The normal outer fan of a polytope is the collection of its faces
outer cones. It is a fan. We say that the polytope realizes the fan.

0
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Braid fan and permutahedra

Definition
The braid fan Bn of size n ∈ N is the fan induced by the
hyperplanes xi = xj for 1 ≤ i < j ≤ n of Rn intersected with

Hn =
{∑

i∈[n] xi =
(n+1

2

)}
.
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Braid fan and permutahedra

Usefull trick : for n = 4, we intersect the fan with a unit sphere,
that we stereographically project on the plane.
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Braid fan and permutahedra

Definition
The permutahedron is defined as the convex hull of the points
{(σi )i∈[n] |σ ∈ Sn}. It is contained in Hn, and the braid fan is its
outer normal fan.
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Braid fan Permutahedron Combinatorics
chamber vertex permutation

ray facet ordered bipartition
k-dimensional n − k − 1-dimensional ordered partition in

cone face k + 1 parts
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Wall-crossing inequalities

Question
Given a polytopal fan, what are all the polytopes that realize it ?

Definition (McMullen 1973)

The type cone TC(F) of a fan F with rays set R is the cone of
points h ∈ RR such that the polytope defined by the half-spaces
〈x , r〉 ≤ hr for r ∈ R has F as outer normal fan.
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Wall-crossing inequalities

Proposition (Chapoton, Fomin, Zelevinsky 2002)

If F is a simplicial (essential, complete) fan, a vector h is in TC(F)
if and only if it satisfies the wall-crossing inequalities for all pairs of
adjacent chambers.

Consider two adjacent chambers of F with sets of rays R and R ′

such that R \ {r} = R ′ \ {r ′}.
r

r ′

There is a unique relationship∑
s∈R∪R′ αR,R′(s) · s = 0,

with αR,R′(r) + αR,R′(r ′) = 2.

The associated wall-crossing inequality is∑
s∈R∪R′ αR,R′(s) · hs > 0
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Wall-crossing inequalities

Proposition
In the case of the braid fan, the relations between rays are given by:
∀I , J ⊆ [n], r(I ) + r(J) = r(I ∪ J) + r(I ∩ J).
Thus, TC(Bn) is the set of functions h : 2[n] → R≥0 such that:{

h(∅) = h([n]) = 0,
h(I ) + h(J) > h(I ∪ J) + h(I ∩ J)

These are called submodular inequalities.
Facets of TC(F) are given by submodular inequalities where
|I \ J| = |J \ I | = 1.

2

23 3

13

112

h1 + h3 > h13.
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Wall-crossing inequalities

Figure: Section of the type cone of the braid fan of size 3 corresponding
to the collection of all deformed permutahedra up to rescaling. (Padrol,
Pilaud, Ritter)
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Permutrees

δ =
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Permutrees

Fix a decoration δ ∈ { , , , }n, for instance .
To every δ-permutree, associate its linear extensions.

123 321

231 132 and 312

213

This yields an equivalence relation on permutations of size n, i.e.
chambers of the braid fan of size n.
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Permutrees

Now glue together all chambers of the braid fan of a same class :

Definition (Pilaud, Pons 2018)

This is the δ-permutree fan.
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Permutrees

And a bigger example :
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Polytopes

Proposition (Pilaud, Pons 2018)

All δ-permutree fans are polytopal.

Sketch of proof:
Let Iδ be the set of rays of the δ-permutree fan.
Call δ-permutreehedron the polytope obtained from inequalities of
the permutahedron corresponding to rays in Iδ :

Pδ =
⋂
I∈Iδ

{
x ∈ Rn

∣∣∣∣∣∑
i∈I

xi ≥
(
|I |+2
2

)}
∩Hn.

Check the wall-crossing inequalities. �
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Polytopes
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Polytopes

Definition
We built the δ-permutreehedron by selecting a subset of the
hyperplanes of the facet description of the permutahedron.
Such polytopes are removahedra.
Their fans are removahedral.

Proposition (A., Pilaud, Ritter 2021+)

The permutree fans are removahedral for any realization of the
braid fan.

Proposition (A., Pilaud, Ritter 2021+)

The only quotient fans of the braid fan that are removahedral are
the permutree fans.
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Finding the rays

Proposition (A., Pilaud, Ritter 2021+)

Given a decoration δ, we call δ+ (resp. δ−) the indices of and
(resp. and ) in δ. The following are equivalent:
The ray r(I ) for I ⊆ [n] is a ray of the δ-permutree fan.
The bipartition I ,c I is an edge cut of a δ-permutree.
For all a < b < c , if a, c ∈ I then b 6∈ δ− \ I , and if a, c 6∈ I ,
then b 6∈ δ+ ∩ I .

Example: I = 134, n = 5.

I

cI

or
oror
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Finding the rays

Back to our example...

δ = ,
Iδ = {4, 234, 2, 13, 23, 123, 1, 13,

3, 134, 34}.
ρ(δ) := |Iδ| = 11
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Finding the type cone facets

Proposition (A., Pilaud, Ritter 2021+)

Given a decoration δ, we have a simple way to find the pairs of rays
defining a facet of the type cone of the δ-permutree fan.

(
The rays I and J define a facet of the
type cone of the δ-permutree fan if
and only if, up to swapping I and J:

i := max(I \ J) < min(J \ I ) =: j
I \ J = {i} or δi =
J \ I = {j} or δj =
]i , j [∩δ− ⊆ I ∩ J and ]i , j [∩δ+ ∩ I ∩ J = ∅

)
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Finding the type cone facets

Back to our example...

δ = ,
Pairs of rays defining a facet of TC(δ):
{{1, 2}, {1, 3}, {12, 13},
{12, 23}, {12, 234}, {123, 134},
{123, 234}, {13, 23}, {13, 34},
{134, 234}, {2, 3}, {23, 34},
{3, 4}}.
φ(δ) := #{facets of TC(δ)} = 12
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Making the type cones explicit

Proposition (A., Pilaud, Ritter 2021+)

We can deduce counting formulas for the numbers of rays ρ(δ), and
facets of the type cone φ(δ).

ρ(δ) = n − 1 +
∑

1≤i<j≤n
∀i<k<j ,δk 6=

2|{i<k<j | δk= }|,

φ(δ) =
∑

1≤i<j≤n
∀i<k<j ,δk 6=

Ω(δ1 . . . δi )
δi= · 2|{i<k<j | δk= }| · Ω(δn . . . δj+1)δj= .

Corollary (A., Pilaud, Ritter 2021+)

The type cone TC(δ) is simplicial if and only if δk 6= for
k ∈]1, n[.
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Making the type cones explicit

Proposition (Padrol, Palu, Pilaud, Plamondon 2019)

Let F be a simplicial fan with N rays whose type cone is simplicial.
Let K be the (N − n)× N matrix whose rows are the inner normal
vectors of the facets of TC(F).
Then the polytope Q(u) := {s ∈ RN

≥0 |Kz = u} is a realization of
F for any u ∈ RN−n

>0 .
Moreover, all realizations of F are of this form.

Corollary (A., Pilaud, Ritter 2021+)

As soon as ∀k ∈]1, n[, δk 6= , we can give an explicit description
of TC(δ).
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Making the type cones explicit

Let δ ∈ { , , }n, with δ1 = δn = .
F = {1 ≤ i < j ≤ n | ∀i < k < j , δk 6= }.
R = {0, 1} × [n]2 × {0, 1}.
∀(i , j) ∈ F, ε ∈ {+,−}:

pεi ,j =

{
min({j} ∪ (]i , j [∩δε))− 1 if i ∈ δε,
i − 1 if i 6∈ δε.

qεi ,j =

{
max({i} ∪ (]i , j [∩δε))− 1 if j ∈ δε,
j + 1 if i 6∈ δε.

∀u ∈ RF
>0,Qδ(u) is defined by:z ∈ RR
≥0

∣∣∣∣∣∣∣∣∣
z(l,p,q,r) = 0 if (p, q) 6∈ F, z(l,p,q,r) = z(l′,p,q,r ′) if p + 1 6= q,
and ∀(i , j) ∈ F, z(1,p+

i,j ,q
−
i,j ,0)

+ z(0,p−i,j ,q
+
i,j ,1)

−z(i 6∈δ−,p−i,j+1,q
−
i−1,j ,j 6∈δ−)

−z(i∈δ+,p+
i,j+1,q

+
i−1,j ,j∈δ+)

= u(i,j)


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Perspectives: type cones of other quotient fans

Doriann Albertin Type cones of permutree fans 26 / 27



Braid fan and submodular inequalities Permutreehedra and removahedra Type cones of permutree fans

Thank you!
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