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ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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with linear transformations Ti .

I Example: depth 3 (2 hidden layers).
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Example: Computing the Maximum of Two Numbers

max{x , y} = max{x − y , 0}+ y
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Example: Computing the Maximum of Four Numbers

x1

x2

x3

x4

m

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

I Inductively: Maximum of n numbers with depth dlog2(n)e+ 1.

Question: Is this best possible?
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Why is the maximum function so interesting?

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be represented by a ReLU NN if and only if f is
continuous and piecewise linear (CPWL).

Theorem (Wang, Sun (2005))

Any (CPWL) function f : Rn → R can be written as linear
combination of maxima of n + 1 linear terms.

⇒ Everything depends on the maximum function!
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What’s known?

I max{0, x1, x2} cannot be computed with 2 layers.
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I No function known that provably needs more than 3 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?
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In this talk:
Two possible approaches:

1. MIP-based proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

2. Using Newton polytopes of CPWL functions.

(for notational purposes: x0 := 0.)
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The Assumption

If ... there exists a 3-layer NN computing max{0, x1, x2, x3, x4},
Then ... also one with the following property:

The output of each neuron can only have breakpoints where the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2
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The Assumption Rephrased

If ... there exists a 3-layer NN computing max{0, x1, x2, x3, x4},
Then ... also one with the following property:

The output of each neuron is linear within each region of the
hyperplane arrangement given by

(5
2

)
= 10 hyperplanes:

xi = xj , 0 ≤ i < j ≤ 4.

I dual to a zonotope, combinatorially the 4-dim. permutahedron

I 5! = 120 regions, which are simplicial cones

I each cone spanned by 4 extreme rays

I 25 − 2 = 30 extreme rays in total

⇒ Vector space of possible CPWL functions is 30-dimensional!
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Basic Linear Algebra Shows ...

I ... after 1 hidden layer:
exactly 14 of 30 dimensions can be reached.

I ... after 2 hidden layers:
at least 29 of 30 dimensions can be reached.

max{0, x1, x2, x3, x4}
is not contained in the 29-dimensional subspace!
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Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

I 14 continuous variables (lin. combination of 1st-layer outputs)

I 30 binary variables (sign of input value at each extreme ray)

I 30 continuous variables (function values at each extreme ray)

I a few hundred constraints (e.g., to ensure assumption)

I objective orthogonal to 29-dim. subspace

⇒ Solver: Objective value zero

No!
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Newton Polytope of a Convex CPWL Function

I f (x) = max{aT1 x , . . . , aTk x}  P(f ) = conv{a1, . . . , ak}
I dual to underlying polyhedral complex of the CPWL function

Example for
max{0, x1, x2}:

Convex CPWL functions Newton Polytopes
(positive) scalar multiplication scaling

addition Minkowski sum
taking maximum taking joint convex hull

Problem: Not every CPWL function is convex ...
But: Can represent them as difference of two convex ones!
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Newton Polytopes and Neural Networks
[Zhang, Naitzat, Lim: Tropical Geometry of Deep Neural Networks. ICML 2018]
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Translating the Problem into the Polytope World

If ... there is a 3-layer NN computing f (x) = max{0, x1, x2, x3, x4},
Then ... there are polytopes Q,R ∈ P2 with Q + ∆4 = R.

Sketch of Proof.
From NN we get convex CPWL functions g and h with ...

I P(h),P(g) ∈ P2,

I f = g − h, and hence f + h = g ,

I P(f ) + P(h) = P(g).

The key is to ...

I Understand P2,

I Understand P1,

I Find characterizations for joint convex hulls of two zonotopes!
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Thanks!
Questions? Ideas?
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P2 = {P polytope | P finite Minkowski sum of polytopes in P1}

Are there polytopes Q,R ∈ P2 with Q + ∆4 = R?


