Algebraic degrees of 3- dimensional polytopes Marta Panizzut - TU Berlin April 09, 2021 - (Folytop)ics jww Mara Belotti and Michoel Joswig

Introduction
Two polytopes are combinatorially equivalent it their faces lattices are isomorphic.
The realization space of a poly tope P is the set of all polytopes combinatorially equivalent to P.

In this talk:

- Pis a 3-dimensional poly tope.
- constrained realizations.

A bit of history
(Some) facts on 3-polytopes:

- Realization spaces are contractible.
- Realizations with rational vertices.
- Realizations with colges tangent to the sphere,
- and such that the origin 0 is the barycenter of the tangency points. Springborn ' 55

$$
(1,3) \neq(m, d>2)
$$

Koebe realizations
3-polytope P
Koebe realization of $P: Q$ is combinatorially equivalent to P. edges of Q are tangent to unit sphere S^{2}.
Contact points = tangency points
$L_{D} K-A-T$: unique repress modulo admissible prog. transf which fix S^{2}

Example : tetrahedron

Springloru realization

$$
\text { vertices }=\left(\begin{array}{cccc}
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Springborn realizations
Springborn realization of $P: Q$ is a Koebe realization and the barycenter of the contact pts is the origin.
$\triangle_{\Delta} S$: unique represent. moduls rotations and reflections

Example: octahedron

$$
\text { vertices }=\left(\begin{array}{ccc}
\pm \sqrt{2} & 0 & 0 \\
0 & \pm \sqrt{2} & 0 \\
0 & \pm \sqrt{2}
\end{array}\right)
$$

Koebe degree [Belotti-Joswig-P '21]
Koebe realization space of P :
Realization space of $P+$ tangency conditions
\rightarrow Lemma. Realizations with algebraic coordinates are dense.

Q $[Q]$ is the field extension of \mathbb{Q} given by vertices of Q.

$$
\underline{\text { Koebe degree } K(P)}:=\min _{\substack{\text { Q Kecee } \\ \text { restiztion of } P}}|Q[Q]: Q|
$$

Examples
Koebe degree $K(P):=\min _{\substack{\text { Q kobe } \\ \text { resization of } P}}|Q[Q]: Q|$
Tetrahedron: vertices $=\left(\begin{array}{cccc}-1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\end{array}\right) \quad K(P I=1$
$\begin{array}{ll}\text { Octahedron: vertices } & =\left(\begin{array}{ccc} \pm \sqrt{2} & 0 & 0 \\ 0 & \pm \sqrt{2} & 0 \\ 0 & 0 & \pm \sqrt{2}\end{array}\right) \quad K(P) \leq 2 \\ \text { cube } & =2 \\ K(P)\end{array}$
Cube $K(P)=2$
Proposition. Let P^{*} be the polar of P.
Then $K(P)=k\left(P^{*}\right)$.

Properties
Theorem. Let Pe a 3-polytope with a triangular face and $n=\#$ vertices. Then

$$
K(P) \leq 2^{2^{3 n}} \quad \text { TAD }
$$

Theorem. The Koebe degree of any stacked 3 -palytope is one.

Springborn degree [Belotti-Joswig-P '21] Springborn degree $\sigma(P):=\min _{\substack{\text { aspingern } \\ \text { realization }}}|Q(Q): Q|$
Proposition. Let Q be a Springborn realization of P. The algebraic degree of vol(Q) divides $\sigma(P)$.
Tetrahedron: vertices $=\left(\begin{array}{cccc}-1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\end{array}\right) \quad \sigma(P)=1$.

Bipyramids
Bk bipyramids over K-gon

$$
\begin{aligned}
& \frac{\cos (2 \pi / k)}{\cos (\pi / k)} \\
& \frac{\sin (2 \pi / k)}{\cos (\pi / k}
\end{aligned}
$$

Theorem. The Springborn and Koebe degrees of a 3 -polytope are not bounded by any constant.

Questions
Proposition. Let P be a 3-polytope with m edges.

$$
K(P) \leq \sigma(P) \leq \frac{(2 m+2)^{P}}{8} \cdot K(P)
$$

Question. Relationship between $k(P)$ and $\sigma(P)$.
Question. Can $K(P)$ be computed from the degree of the cross ratios of contact pts?
Question. Algebraic degrees of higher dimensional polytopes?

Thank you!!

