Congruence Normality of Simplicial Hyperplane Arrangements

Sophia Elia
Joint work with Michael Cuntz and Jean-Philippe Labbé
(POLYTOP)ICS
arXiv:2009.14152

April 9, 2021

Background

A (real, central) hyperplane H is a codimension-1 subspace in \mathbb{R}^{d} :

$$
H:=\left\{x \in \mathbb{R}^{d}: n \cdot x=0 \text { for some } n \in \mathbb{R}^{d}\right\} .
$$

A (finite, real, central) hyperplane arrangement \mathcal{A} is a finite non-empty set of hyperplanes.

Regions $=$ closures of connected components $\mathbb{R}^{d} \backslash \mathcal{A}$.

A region is simplicial if the normal vectors of its facet-defining hyperplanes are linearly independent.
Every region is simplicial $\Rightarrow \mathcal{A}$ is simplicial

The rank of $\mathcal{A}=\operatorname{dim}(\operatorname{span}(\{$ normals $\}))$.

Grünbaum's list: rank-3 simplicial arrangements 1971/2009

near-pencils

polygons \& symmetries

$2 n$-gons, symmetries, ∞

Grünbaum's list: rank-3 simplicial arrangements 1971/2009

90 Sporadic

$\mathcal{A}(19,1)$

$\mathcal{A}(24,2)$

$\mathcal{A}(37,2)$

Changes to the Catalogue of Rank 3 Simplicial Arrs.

- 5 new sporadic arrangements (Cuntz 2011, 2020)
- 37 hyperplanes still conjectured upper bound
- The list is complete for up to 27 hyperplanes (Cuntz 2011)
- 53 sporadic arrangements come from finite Weyl groupoids (Cuntz-Heckenberger 2009)

Cuntz-E-Labbé 2020: normals and invariants of the updated catalogue.

Goal: Add more structure to the catalogue
\rightarrow test arrangements for congruence normality in general

Posets from hyperplane arrangements

Choose a base region B, orient all normals away from it:

$$
\mathrm{n} \cdot \mathrm{v}_{B} \leq 0, \quad \mathrm{v}_{B} \in B
$$

The separating set $S(R)$ of a region R is the set of hyperplanes that separate it from B.

Poset of Regions

The poset of regions $P_{B}(\mathcal{A})$:

- elements: regions
- relations: $R_{1} \leq R_{2}$ if and only if $S\left(R_{1}\right) \subseteq S\left(R_{2}\right)$.

Congruence normality

What do we know about the poset of regions?

Theorem (Björner-Edelman-Ziegler 1990)
If \mathcal{A} is simplicial, then $P_{B}(\mathcal{A})$ is a lattice for all choices of base region.

Theorem (Caspard-Le Conte de Poly-Barbut-Morvan 2004)
Posets of regions of finite Coxeter arrangements are congruence normal.

Congruence normality

A subset S of (P, \leq) is convex if $x, y \in S$ and $x \leq z \leq y \Rightarrow z \in S$.

A lattice is congruence normal if it is obtainable from the one element lattice by a finite sequence of doublings of convex sets.

Motivation for studying congruence normality
lattice of regions A simplicial arrangement \& simple zonotope

Motivation for studying congruence normality

reworded Conjecture (Padrol-Pilaud-Ritter 2020)

If the poset of regions of a simplicial arrangement is congruence normal, then any lattice quotient is polytopal.

Classification of the Catalogue of Rank 3 Simplicial Arrs.

$P_{B}(\mathcal{A})$ always $\mathbf{C N}$	$P_{B}(\mathcal{A})$ sometimes $\mathbf{C N}$	$P_{B}(\mathcal{A})$ never $\mathbf{C N}$
Finite Weyl Groupoids	$\mathcal{F}_{2}(m)(m \geq 10)$	$\mathcal{A}(22,288)$
$\mathcal{F}_{2}(m)(m \leq 8)$	$\mathcal{F}_{3}(m)(m \geq 17)$	$\mathcal{A}(25,360)$
$\mathcal{F}_{3}(m)(m \leq 13)$	41 arrangements	$\mathcal{A}(35,680)$
$\mathcal{A}(15,120)$		
$\mathcal{A}(31,480)$		
55 arrangements	61 arrangements	3 arrangements

Checking if an Arrangement is Congruence Normal

Shards are pieces of hyperplanes used to understand lattice congruences.

Shards: Congruence Normality Criterion

Geometric criterion for creating directed graph on shards.

Theorem (Reading 2004)

A simplicial arrangement is congruence normal iff the directed graph on shards is acyclic.

Shards \rightarrow shard covectors

Let $\mathrm{N}=\left\{\mathrm{n}_{i}\right\}_{i \in[m]}=\operatorname{normals}(\mathcal{A})$.
A covector on N is a vector of signs $\left(c_{i}\right)_{i \in[m]} \in\{0,+,-\}^{m}$:

$$
c:=\left(\operatorname{sign}\left(\mathrm{x} \cdot \mathrm{n}_{i}+\mathrm{a}\right)\right)_{i \in[m]},
$$

where $x \in \mathbb{R}^{d}$ and $a \in \mathbb{R}$.

A restricted covector on $\mathrm{U} \subseteq \mathrm{N}$ has "*"s on all entries not in U .

Theorem (Cuntz-E-Labbé)

There is a bijection between shards and shard covectors.

Translation of Shard Cycle Criterion

Theorem (Reading 2004)

A simplicial arrangement is congruence normal iff the directed graph on shards is acyclic.

Theorem (Cuntz-E-Labbé)

Let Σ, Θ be shards on hyperplanes i, j respectively, let σ, θ be their shard covectors.

$$
\begin{aligned}
\qquad \rightarrow \Theta \text { if and only if } & \theta_{i} \in\{+,-\} \\
& \text { and } \\
& \exists \text { line covector } h: h \cap \sigma \cap \theta=h .
\end{aligned}
$$

Thank you for listening

