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Background

A (real, central) hyperplane H is a codimension-1 subspace in Rd
:

H := {x 2 Rd
: n · x = 0 for some n 2 Rd}.

A (finite, real, central) hyperplane arrangement A is a finite non-empty

set of hyperplanes.

Regions = closures of connected components Rd \A.

A region is simplicial if the normal vectors of its facet-defining

hyperplanes are linearly independent.

Every region is simplicial ) A is simplicial

The rank of A = dim(span({normals})).
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Grünbaum’s list: rank-3 simplicial arrangements 1971/2009

near-pencils polygons & symmetries

1

2n-gons, symmetries, 1
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Changes to the Catalogue of Rank 3 Simplicial Arrs.

• 5 new sporadic arrangements (Cuntz 2011, 2020)

• 37 hyperplanes still conjectured upper bound

• The list is complete for up to 27 hyperplanes (Cuntz 2011)

• 53 sporadic arrangements come from finite Weyl groupoids

(Cuntz–Heckenberger 2009)

Cuntz–E–Labbé 2020: normals and invariants of the updated catalogue.

Goal: Add more structure to the catalogue

! test arrangements for congruence normality in general
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Posets from hyperplane arrangements

Choose a base region B , orient all normals away from it:

n · vB  0, vB 2 B

The separating set S(R) of a region R is the set of hyperplanes that

separate it from B .
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Poset of Regions

The poset of regions PB(A):

• elements: regions

• relations: R1  R2 if and only if S(R1) ✓ S(R2).
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Congruence normality

What do we know about the poset of regions?

Theorem (Björner–Edelman–Ziegler 1990)

If A is simplicial, then PB(A) is a lattice for all choices of base region.

Theorem (Caspard–Le Conte de Poly-Barbut–Morvan 2004)

Posets of regions of finite Coxeter arrangements are congruence normal.
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Congruence normality

A subset S of (P ,) is convex if x , y 2 S and x  z  y ) z 2 S .

A lattice is congruence normal if it is obtainable from the one element

lattice by a finite sequence of doublings of convex sets.
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Motivation for studying congruence normality

reworded Conjecture (Padrol–Pilaud–Ritter 2020)

If the poset of regions of a simplicial arrangement is congruence normal,

then any lattice quotient is polytopal.
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Classification of the Catalogue of Rank 3 Simplicial Arrs.

PB(A) always CN PB(A) sometimes CN PB(A) never CN

Finite Weyl Groupoids F2(m) (m � 10) A(22, 288)

F2(m) (m  8) F3(m) (m � 17) A(25, 360)

F3(m) (m  13) 41 arrangements A(35, 680)

A(15, 120)

A(31, 480)

55 arrangements 61 arrangements 3 arrangements
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Checking if an Arrangement is Congruence Normal

Shards are pieces of hyperplanes used to understand lattice congruences.
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Shards: Congruence Normality Criterion

Geometric criterion for creating directed graph on shards.

Theorem (Reading 2004)

A simplicial arrangement is congruence normal i↵ the directed graph on

shards is acyclic.
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Shards ! shard covectors

Let N = {ni}i2[m] = normals(A).

A covector on N is a vector of signs (ci )i2[m] 2 {0,+,�}m:

c := (sign(x · ni + a))i2[m],

where x 2 Rd
and a 2 R.

A restricted covector on U ✓ N has “*”s on all entries not in U.

Theorem (Cuntz–E–Labbé)

There is a bijection between shards and shard covectors.
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Translation of Shard Cycle Criterion

Theorem (Reading 2004)

A simplicial arrangement is congruence normal i↵ the directed graph on

shards is acyclic.

Theorem (Cuntz–E–Labbé)

Let ⌃,⇥ be shards on hyperplanes i , j respectively, let �, ✓ be their

shard covectors.

⌃ ! ⇥ if and only if

✓i 2 {+,�}
and

9 line covector h : h \ � \ ✓ = h.
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Thank you for listening
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