Stable set polytopes in differential algebra

Combinatorial differential algebra of x^{p}. arXiv:2102.03182 Joint work with Anna-Laura Sattelberger

Rida Ait El Manssour (MPI MiS Leipzig)

Differential Algebra

Let $\mathbb{C}\left[x^{(\infty)}, \partial_{t}\right]=\mathbb{C}\left[x, x^{\prime}, x^{(2)}, \cdots\right]$ and $I_{p, n}:=\left\langle x^{p}, x^{(n+1)}\right\rangle^{(\infty)}$. $\left(\partial_{t}\left(I_{p, n}\right) \subseteq I_{p, n}\right)$.

$\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, n}\right)$

$n=0 ; \quad \operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, 0}\right)=p$
$n=1 ; \quad \operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, 1}\right)=\frac{p^{2}}{2}+\frac{p}{2}$
$n=6 ; \operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, 6}\right)=\frac{17}{315} p^{7}+\frac{17}{90} p^{6}+\frac{53}{180} p^{5}+\frac{19}{72} p^{4}+\frac{13}{90} p^{3}+\frac{17}{360} p^{2}+\frac{1}{140} p$.

Question

For fixed n, Is $\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, n}\right)$ a polynomial in p of degree $n+1$?

Jet scheme

Let $X=\operatorname{Spec}(k[x] / l)$, an m-jet on X is a k-algebra homomorphism

$$
\varphi: k[x] / I \rightarrow k[t] /\left(t^{m+1}\right) .
$$

Let f_{1}, \ldots, f_{k} generators of $/$

$$
x \longmapsto x_{0}+x_{1} t+\ldots+x_{m} t^{m}
$$

$f_{i}\left(x_{0}+x_{1} t+\ldots+x_{m} t^{m}\right)=0$

$$
f_{i}^{0}+f_{i}^{1} t+\ldots+f_{i}^{m} t^{m}=0
$$

The m-jet scheme of X is defined by the ideal generated by f_{i}^{k}.

Jet scheme of x^{p}

Let $X=\operatorname{Spec}\left(\mathbb{C}[x] /\left\langle x^{p}\right\rangle\right)$ and let $R_{n}=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

$$
f_{p, n}=\left(x_{0}+x_{1} t+\cdots+x_{n} t^{n}\right)^{p} .
$$

Let $C_{p, n}$ the ideal generated by the coefficients of $f_{p, n}$. Then we have

$$
R_{n} / C_{p, n} \xrightarrow{\cong} \mathbb{C}\left[x^{(\infty)}\right] / I_{p, n}, \quad x_{k} \mapsto \frac{1}{k!} x^{(k)} .
$$

This map sends the coefficient of t^{k} in $f_{p, n}$ to $\left(x^{p}\right)^{(k)}$.

Zobnin's Theorem

Let us consider the reverse lexicographic ordering \prec on $\mathbb{C}\left[x^{(\infty)}\right]$, the leading monomial of $\left(x^{p}\right)^{(k)}$ is of the form $\left(x^{(j)}\right)^{a}\left(x^{(j+1)}\right)^{p-a}$.
$n=4, p=3:\left(x^{3}\right)^{(4)}=3 x^{\prime 2} x^{\prime \prime}+3 x x^{\prime \prime 2}+6 x x^{\prime} x^{(3)}+3 x^{2} x^{(4)}$

Theorem (Zobnin [3])

The family $\left\{\left(x^{p}\right)^{(k)}\right\}_{k}$ is a Gröbner basis of the differential ideal $\left\langle x^{p}\right\rangle^{(\infty)}$ in the ring $\mathbb{C}\left[x^{(\infty)}\right]$ w.r.t reverse lexicographic ordering.

Conclusion:
$\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, n}\right)=$
$\#\left\{\left(u_{0}, \ldots, u_{n}\right) \in(\mathbb{N})^{n+1} \mid u_{i}+u_{i+1} \leq p-1\right.$ for all $\left.0 \leq i \leq n-1\right\}$

Stable set polytope and perfect graph

Definition

Let $G=(V, E)$, we say G is perfect if for every subgraph, the chromatic number equals the clique number of that subgraph.
A subset $S \subseteq V$ of vertices is called stable if no two elements of S are adjacent.

The stable set polytope of G is the $|V|$-dimensional polytope

$$
\operatorname{Stab}(G):=\operatorname{conv}\left\{\chi^{S} \in \mathbb{R}^{V} \mid S \subseteq V \text { stable }\right\}
$$

where the incidence vectors $\chi^{S}=\left(\chi_{v}^{S}\right)_{v \in V} \in \mathbb{R}^{V}$ are defined as

$$
\chi_{v}^{S}:= \begin{cases}1 & \text { if } v \in S \\ 0 & \text { else }\end{cases}
$$

Fractional stable set polytope

The fractional stable set polytope of G is defined as
$\operatorname{QStab}(G):=\left\{x \in \mathbb{R}^{v} \mid 0 \leq x(v) \forall v \in V, \sum_{v \in Q} x(v) \leq 1\right.$ for all cliques Q of $\left.G\right\}$.

Theorem ([2])

A graph G is perfect if and only if $\operatorname{Stab}(G)=Q \operatorname{Stab}(G)$.
Let $G=\left(\{0,1, \ldots, n\},\{[i, i+1]\}_{i=0, \ldots, n-1}\right)$. We have
$\operatorname{QStab}(G)=\left\{\left(u_{0}, \ldots, u_{n}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{n+1} \mid u_{i}+u_{i+1} \leq 1\right.$ for all $\left.0 \leq i \leq n-1\right\}$
Since G is perfect, $\operatorname{QStab}(G)$ is a lattice polytope whose vertices are binary vectors with no consecutive 1 s .

Ehrhart polynomial

Theorem (Ehrhart polynomial)

Let P be a d-dimensional lattice polytope with integer vertices, denote by $L_{P}(t):=\#\left(t P \cap \mathbb{Z}^{n}\right)$. Then $L_{P}(t)$ is a polynomial in t of degree d.

Theorem ([1])

$\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty)}\right] / I_{p, n}\right)$ is the Ehrhart polynomial of $\operatorname{QStab}(G)$ computed at $p-1$.

Two-dimensional case

Consider $\mathbb{C}\left[x^{(\infty, \infty)} ; \partial_{t}, \partial_{s}\right]$ and $I_{p,(m, n)}=\left\langle x^{p}, x^{(m+1,0)}, x^{(0, n+1)}\right\rangle^{(\infty, \infty)}$. Denote by $R_{m, n}$ the polynomial ring in the $(m+1)(n+1)$ many variables $\left\{x_{k, \ell}\right\}_{0 \leq k \leq m, 0 \leq \ell \leq n}$ and let $f_{p,(m, n)}$ be as follow

$$
f_{p,(m, n)}:=\left(\sum_{k=0}^{m} \sum_{\ell=0}^{n} x_{k, \ell} t^{k} s^{\ell}\right)^{p} \in R_{m, n}[s, t] .
$$

Let $C_{p,(m, n)} \triangleleft R_{m, n}$ denote the ideal generated by the the coefficients of $f_{p,(m, n)}$. Then

$$
R_{m, n} / C_{p,(m, n)} \xrightarrow{\cong} \mathbb{C}\left[x^{(\infty, \infty)}\right] / /_{p,(m, n)}, \quad x_{k, \ell} \mapsto \frac{1}{k!\ell!} \cdot x^{(k, \ell)} .
$$

$m=n=2$

There are 64 regular unimodular triangulations of the 2×2-square in total, four of which give rise to a Gröbner basis.

$n=2, m$ arbitrary

Consider the reverse lexicographic ordering on $R_{m, 2}$ where the variables are ordered as $x_{00} \prec x_{01} \prec x_{02} \prec x_{10} \prec x_{11} \cdots$.

Theorem ([1])

The leading monomial of $\left(x^{p}\right)^{(k, \ell)}$ is supported on the triangles of $T_{m, 2}$ below. Moreover the family $\left\{\left(x^{p}\right)^{(k, \ell)}\right\}_{k \leq m p, \ell \leq 2 p}$ is a Gröbner basis of $I_{p,(m, 2)}$.

$\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty, \infty)}\right] / I_{p,(m, 2)}\right)$

$\operatorname{QStab}\left(T_{m, 2}\right)=\left\{\left(u_{00}, \ldots, u_{m 2}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{3(m+1)} \mid u_{k_{1}, l_{1}}+u_{k_{2}, l_{2}}+u_{k_{3}, l_{3}} \leq 1\right.$ for all indices s.t. $\left\{\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right),\left(k_{3}, l_{3}\right)\right\}$ is a triangle of $\left.T_{m, 2}\right\}$

Theorem ([1])

$\operatorname{dim}\left(\mathbb{C}\left[x^{(\infty, \infty)}\right] / I_{p,(m, 2)}\right)$ is the Ehrhart polynomial of $\operatorname{QStab}\left(T_{m, 2}\right)$ computed at $p-1$.

Proposition ([1])

For all $n \geq 3,\left\{\left(x^{p}\right)^{(k, \ell)}\right\}_{k, \ell}$ is NOT a Gröbner basis of $I_{p,(m, n)}$.

围 R．Ait El Manssour and A．－L．Sattelberger．
Combinatorial differential algebra of $x^{p}, 2021$.
堛 V．Chvátal．
On certain polytopes associated with graphs． J．Combin．Theory Ser．B，18：138－154， 1975.

圊 A．I．Zobnin．
One－element differential standard bases with respect to inverse lexicographical orderings．
J．Math．Sci．（N．Y．），163（5）：523－533， 2009.

