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Subdividing Octahedra

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

The two nontrivial blade arrangements β1,3 (left) and β2,4 (right) on the
vertices e1 + e3 resp. e2 + e4 of the octahedron ∆2,4. These are related
by the flip β1,3 ↔ β2,4; the blade is simply translated across ∆2,4.
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Blades and their rays

e1 -e2

e2 -e3

e3 -e1

Rays (Black arrows) of blades are parallel to roots ei − ei+1. Left: the
blade ((1, 2, 3)). Right: the blade ((1, 2, 3, 4)). Red arrows indicate how
the blades ((1, 2, 3)) and respectively ((1, 3, 4)) embed into ((1, 2, 3, 4)).
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Itinerary

Motivation mixes combinatorial geometry and scattering
amplitudes.

What’s known/not known about the biadjoint scalar

m
(2)
n (α, β) and its positive part m

(2)
n ?

What’s in our toolbox to study the generalized biadjoint

scalar m
(k)
n (α, β) and its positive part m

(k)
n ?

Define the (dual) kinematic space, weighted blade
arrangements Z(k , n).

Theorem: the positive tropical Grassmannian Trop+G (k , n)
embeds canonically into Z(k , n); we characterize its image.

How does this help to understand the poles of m
(k)
n ?

Planar cross-ratios, weak separation and binary structures and
geometries.
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Questions For Today I: Combinatorial Geometries

Denote eJ =
∑

j∈J ej .
Hypersimplex: for each 1 ≤ k ≤ n − 1, a convex polytope
∆k,n = conv{ei1 + · · ·+ eik : I = {i1, . . . , ik} ⊂ {1, . . . , n}}.
What makes for a “good” decomposition
∆k,n = P1 ∪ · · · ∪ Pm into sub-polytopes Pi?
Some possible criteria:

1 No new vertices.
2 No new edges: edges(Pi ) ⊂ edges(∆k,n).
3 Regular, i.e. induced by projecting down the bends of a

continuous, piecewise-linear surface over ∆k,n.
4 Require internal facets to have the form

∑
j∈[a,b] xj = r where

[a, b] ⊂ {1, . . . , n} is a cyclic interval.

In our story of weighted blade arrangements, 1 and especially
3, 4 are baked in; only real choice lies in (2).
Not having to worry about facet normals can be a significant
advantage!
We’ll be taking arrangements of a certain cyclically skewed
tropical hyperplane, the blade ((1, 2, . . . , n))eJ on the vertices
eJ of ∆k,n. Nick Early Combinatorial Geometries and Scattering Amplitudes



Questions For Today II: Scattering Amplitudes

We explore the poles of certain homogeneous rational

functions m
(k)
n on the kinematic space K(k, n) ' R(nk)−n,

arising in the study of scattering amplitudes. Here (k , n) are
integers satisfying 2 ≤ k ≤ n − 2.

History: m
(2)
n first studied by Cachazo-He-Yuan [CHY2014],

using the so-called biadjoint scalar amplitude mn(α, β) when
α = β = (12 · · · n), cyclic orders.

Generalized to all k ≥ 3 by Cachazo-E-Guevara-Mizera
[CEGM2019].

We already know a lot about the m
(k)
n but many puzzles

remain!

Today we’ll see what weighted blade arrangements on the

hypersimplex ∆k,n have to say about the singularities of m
(k)
n .
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What we know about m
(2)
n

By now m
(k=2)
n is understood quite well. Here’s a summary:

1 m
(2)
n has

(
n
2

)
− n simple poles, of the form t−1

i,i+1,...,j where
ti,i+1,...,j =

∑
i≤a<b≤j sa,b. Here sa,b = sb,a with sa,a = 0 and∑n

b=1 sa,b = 0, are coordinate functions on K(2, n).

2 CHY noticed that the poles of m
(2)
n form a basis of linear

functions on K(2, n).

3 m
(2)
n has exactly Catalan-many Cn−2 = 2, 5, 14, . . . maximal

collections of compatible simple poles.
4 Mizera(2018) and Arkani-Hamed et al (2018) identified

singularities of m
(2)
n with the face poset of the dimension n − 3

associahedron.
5 Example:

m
(2)
4 =

1

t12
+

1

t23

m
(2)
5 =

1

t12t123
+

1

t12t34
+

1

t23t123
+

1

t23t234
+

1

t34t234
.

6 Rem. [E2018], m
(2)
n is dual to the facet deformation cone of

the dim = n − 3 associahedron (in the Loday representation).
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What we know about m
(k)
n I: Blades and Generalized

Feynman Diagrams

m
(k)
n was introduced by [CEGM]; m

(3)
n for n = 6, 7 computed

two ways:
1 Via the generalized biadjoint scalar m(k)(α, β) and certain

generalized scattering equations,
2 Using a certain polyhedral fan, the positive tropical

Grassmannian Trop+G (k , n).

But systematic tabulation of these poles in general is hard!
Many efforts to tackle this, including...

In 2019, [Borges-Cachazo], [Cachazo,Guevara,Umbert,Yong]:
certain metric tree arrangements define Generalized Feynman

Diagrams (GFD’s) for m
(3)
n (α, β) and m

(k)
n (α, β) resp.

In 2019/2020 [E]: (matroidal) weighted blade arrangements:
dual to GFD’s. Construct from blades a certain planar basis
of kinematic invariants that is essentially cyclically invariant.

In [Guevara, Yong]: poles, compatibility and certain soft and
hard limits for higher k .
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What we know about m
(k)
n II: related work

In [Arkani-Hamed,Lam,He]: showed that poles of m
(k)
n are

dual to rays of Trop+G (k , n).

Cluster algebra approach: [Drummond, Foster, Gurdogan,
Kalousios] and [Henke, Papathanasiou],

Amplituhedra and positroidal subdivisions: [Lukowski, Parisi,
Williams],

Positive tropical Grassmannian [Speyer,Williams].

Positive configuration spaces, binary geometries, planar
N = 4 SYM [Arkani-Hamed et al].
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Part 1: Blades Definition.

Definition [Ocneanu]. Fix an integer n ≥ 3. The naturally
ordered blade is the union of the boundaries of n polyhedral
cones:

β = ((1, 2, . . . , n)) =
n⋃

j=1

∂

∑
i 6=j

ti (ei − ei+1) : ti ≥ 0

 .

Other interpretations:

Proposition[E]. This is a tropical variety. It is also the n − 2
skeleton of the normal fan to the Weyl alcove
x1 ≤ · · · ≤ xn ≤ x1 + 1.

Equivalently, with hij = ei − ej , it’s the union of the
(n

2

)
simplicial cones

((1, 2, . . . , n)) =
⋃

1≤i<j≤n
cone+

〈
h12, . . . , ĥi ,i+1, . . . , ĥj ,j+1, . . . , hn1

〉
.
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Blades are tropical hypersurfaces

Let V n
0 ⊂ Rn be the hyperplane x1 + · · ·+ xn = 0.

Defn. Let h : V n
0 → R be the piece-wise linear function

h(x) = min{L1(x), . . . , Ln(x)}, where

Lj = xj+1 + 2xj+2 + · · · (n − 1)xj−1.

Prop.[E,Oct2019]. The blade ((1, 2, . . . , n)) equals the bend locus
of the function h(x). That is,

((1, 2, . . . , n)) = {x ∈ V n
0 : (Li (x) = Lj(x)) ≤ L`(x) for all ` 6= i , j} .
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Blades and their rays: a second look

e1 -e2

e2 -e3

e3 -e1

Rays (Black arrows) of blades are parallel to roots ei − ei+1. Left: the
blade ((1, 2, 3)). Right: the blade ((1, 2, 3, 4)). Red arrows indicate how
the blades ((1, 2, 3)) and respectively ((1, 3, 4)) embed into ((1, 2, 3, 4)).
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Generalizations: Higher Codimensions

In this talk we use top dimension blades to induce certain subdivisions of
hypersimplices; but this is not the whole story. Above: the blade
((1, 2, 3)) embedded in the hyperplane x4 = 0, depicted inside the root
solid: a neighborhood of a point in the type A3 root lattice. Clearly, the
tripod does not induce a subdivision of the ambient space!
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From blades on the Archetypal Octahedron to amplitudes

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

Dictionary: Blades [E2019] ⇔ (tree level) Feynman Diagrams. Left:
t-channel Right: s-channel. Not shown: u-channel.
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Associahedron, Root Polytopes, Generalizations

S. Mizera (2017), and Arkani-Hamed et al (2017) interpreted
mn(α, β) in terms of intersecting pairs of associahedra in the
moduli space of stable pointed curves M0,n.

Also, [E2018]:

1 m
(2)
n ((12 · · · n), (12 · · · n)) blows up exactly on the faces of a

particular generalized permutohedron, the dimension n − 3
associahedron A(s) in the Loday representation, with given
facet deformation parameters s.

2 m
(2)
n ((12 · · · n), (12 · · · n)) is dual to a certain triangulation of

the root polytope conv (0, {ei − ej : 1 ≤ i < j ≤ n − 1}).

Triangulating conv{0, h12, h13, h14, h23, h24, h34} where hij = ei − ej .
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Background physical motivation 1: the Biadjoint Scalar

One has a Lagrangian for the biadjoint scalar amplitude with given
flavor group U(N)× U(N),

LΦ3
= −1

2
∂µΦI ,Ĩ∂

µΦI ,Ĩ +
λ

3!
fI ,J,K f̃Ĩ ,J̃,K̃ΦI ,ĨΦJ,J̃ΦK ,K̃ ,

where the fI ,J,K , f̃Ĩ ,J̃,K̃ are structure constants for their respective

Lie algebras. The ΦI ,Ĩ are fields, i.e. certain functions on
Minkowski space R3,1.
Standard construction in physics: the biadjoint scalar amplitude
can be “color decomposed” as

Mn =
∑

α,β∈Sn/(Z/n)

tr(T Iα1T Iα2 · · ·T Iαn )tr(T Iβ1T Iβ2 · · ·T Iβn )mn(α, β),

where the T Ij are certain generators for the “flavor/color” group
U(N), and mn(α, β) is the double partial amplitude.

⇒ This talk: we study mn(α, β) (now denoted m
(2)
n ) and its

generalization m
(k)
n [CEGM2019].
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Physical motivation 2: CHY formulation

Cachazo-He-Yuan [CHY2013] introduced a compact formula
to compute scattering amplitudes for a wide variety of

Quantum Field Theories. In particular: m
(2)
n (α, β).

The CHY construction of m
(2)
n (α, β) involves a sum over the

critical points of a certain log potential function
S =

∑
log(∆i ,j)sij on G (2, n)/T and for this talk will remain

a black box.

Let {si ,j : i , j = 1, . . . , n} be variables subject to si ,i = 0,
si ,j = sj ,i and

∑
j 6=i si ,j = 0.

Example:

m4((1234), (1234)) =
1

s12
+

1

s23
,

while for n = 5 we have

m5((12345), (12345)) = 1
s12s123

+ 1
s12s34

+ 1
s23s123

+ 1
s23s234

+ 1
s34s234

m5((12345), (12435)) = − 1
s3,4s5,1

− 1
s1,2s3,4

.
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Physical motivation 3: Generalized Feynman Diagrams

Borges-Cachazo [BC2019] (for k = 3) and Cachazo et al
[CGUZ2019] (for k ≥ 4) formulated the Generalized Feynman

Diagram expansion for m
(k)
n (α, β) using collections and then

arrays of metric trees. Define

m
(k)
n =

∑
C∈max’l cones Trop+G(k,n)

PC(s)

QC(s)
,

where PJ and QJ are functions on the kinematic space,
constructed from rays of C.

Cachazo-E [CE2020] reformulated m
(k)
n as a single integral

(which has certain convergence requirements on (s)),

mTrop
(k)
n =

∫
R(k−1)×(n−k−1)

exp(−Fk,n)dx ,

where Fk,n is a certain continuous piece-wise linear function

on R(k−1)×(n−k−1). Over each linear domain, mTrop
(k)
n

evaluates to a single contribution PC
QC

.
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Rest of the talk: plan

From positive tropical Grassmannian Trop+G (k, n) to linear
functions on the Kinematic Space.

Define blades [A. Ocneanu] and their arrangements [E2019].

Prop. Blades induce certain very special matroid subdivisions,
called multi-splits. When do two (positroidal) multi-splits
have a common matroidal refinement?

Thm. Blade arrangements are matroidal ⇔ weak separation.

Thm. Blades induce a basis for the dual kinematic space
[E2020], used in collaboration with Cachazo, Guevara, Mizera
in scattering amplitudes [CEGM2019; CE2020].

Planar cross-ratios and binary-type equations on
configurations of n points in CPk−1.
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Kinematic space K(k , n)

Defn. The kinematic space Kk,n is the following codimension

n subspace of R(nk):

Kk,n =

{
(s) ∈ R(nk) :

∑
J:J3a

sJ = 0 for each a = 1, . . . , n

}
.
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Positive Tropical Plucker vectors

Defn. A vector π =
∑

J cJe
J ∈ R([n]

k ) is said to be a positive
tropical Plucker vector provided that

cL∪{a,c}+cL∪{b,d} = min(cL∪{a,b}+cL∪{c,d}, cL∪{a,d}+cL∪{b,c})

for any L ∪ {a, b, c , d} ∈
( [n]
k+2

)
with a < b < c < d cyclically.

Denote by Trop+G (k, n) the set of all positive tropical vectors.

Remark: The set of positive tropical Plucker vectors is
historically called the positive Dressian; however, recently
([Speyer,Williams2020] and [Arkani Hamed, Lam,
Spradlin2020]) showed that the positive Dressian is equal to
the so-called positive tropical Grassmannian.
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Dualizing the Positive Tropical Grassmannian
Trop+G (k , n)

Consider now the map into the dual kinematic space
(K(k , n))∗, ϕ : Trop+G (k , n)→ (K(k , n))∗, the space of
linear functions on the kinematic space.

ϕ(π) =
∑

{J}∈([n]
k )

πJsJ .

Note: can show that ker(ϕ) coincides with an n-dimensional

subspace of R(nk) that is sometimes called the lineality space.
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Dual Kinematics Image of Trop+G (2, n)

The following result was shown in [E2020] for all k , but let us first
formulate k = 2: the image in K(2, n)∗ has a simple
characterization: positive and noncrossing support in the planar
kinematic invariants ηi ,j .
Thm[E2020]. For η(c) =

∑
cJηJ define

supp(η(c)) = {{J} : cJ 6= 0}. Then,

ϕ(Trop+G (2, n)) = {η(c) : K(2, n)→ R : ci ,j ≥ 0, supp(η(c)) n.c.}

Examples. The following are images of ray generators in
Trop+G (2, n) for n = 4, 5 resp.

η24 =
1

4
(3s12 + 2s13 + s14 + s23 + 3s34)

= s34

η25 = s34 + s35 + s45

Moral: the coefficients of the sij ’s determine a height function up
to lineality!
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Part 2

Now we’ll develop the blade arrangement model to help us
understand the image of ϕ(Trop+G (k , n)), and by extension

the singularities of m
(k)
n .
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Blade arrangements: low-dimensional intuition

Two arrangements of the blade ((1, 2, 3)) on the vertices of a hexagon.
Blade arrangement on left induces the trivial subdivision. Blade
arrangement on right induces a 6-chamber subdivision.

These are projections of (matroidal) blade arrangements on ∆3,6.
The vertex sets are pairwise weakly separated vertices of ∆3,6.
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Matroid subdivisions

Definition. A matroid subdivision of a hypersimplex ∆k,n is a
decomposition P1 ∪ · · · ∪ Pm = ∆k,n into matroid polytopes
Pj , such that each pair {Pi ,Pj} intersects only on their
common face Pi ∩ Pj . This subdivision is matroidal if each Pi

is a matroid polytope: edge directions must be among the
roots ei − ej ...

A matroid subdivision is positroidal if no octahedral face of
∆k,n is cut with a hyperplane defined by an equation with
crossing indices, e.g. x1 + x3 = x2 + x4 = 1.
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Main constructions

Definition. A blade arrangement is a superposition of several
copies of the blade β = ((1, 2, . . . , n)), on the integer lattice
{x ∈ Zn :

∑n
i=1 xi = k} for some fixed integer k .

However, we shall always consider blade arrangements on the
vertices of hypersimplices ∆k,n = {x ∈ [0, 1]n :

∑n
i=1 xi = k}

with 1 ≤ k ≤ n − 1.

Definition [E2019]. A matroidal blade arrangement
βJ1 , . . . , βJm is an arrangement of the blade
β = ((1, 2, . . . , n)) on the vertices eJ1 , . . . , eJm of ∆k,n such
that every maximal cell is matroidal : i.e., all edges of each
maximal cell is in a root direction ei − ej .
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Review 1: Octahedral blade arrangements

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

The two nontrivial blade arrangements on the octahedron ∆2,4. Edges of
the octahedron are in the directions ei − ej . Same for the pairs of square
pyramids.
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Blade Arrangements in three coordinates: 1

(1,1,1)

(2,1,0) (2,0,1)

(1,2,0)

(0,2,1)
(0,1,2)

(2,0,1)

1-split, 2-split, 3-split of a hexagon: induced by pinning a single blade
((1, 2, 3)) to a vertex of a hexagon. Note: here, this once, we allow a
new internal vertex!
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Blade Arrangements: 2

Two arrangements of the blade ((1, 2, 3)) on the vertices of a hexagon.
Blade arrangement on left induces the trivial subdivision. Blade
arrangement on right induces a 6-chamber subdivision.
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Review 2: Non-matroidal subdivision of the octahedron

Three ways to split the octahedron into two half-pyramids,
along the three equatorial planes.

Any two at a time induces a triangulation of the octahedron
into four tetrahedra.

:

Example: the four tetrahedra now share an edge, the diagonal direction,
say e1 + e4− e2− e3 (equivalently, their vertex sets don’t define matroids).
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2-splits of ∆2,n, d-splits of ∆k ,n

Defn/Example. A 2-split (of ∆2,n) is a decomposition
Π1 ∪ Π2 = ∆2,n into matroid polytopes sharing a common
facet Π1 ∩ Π2.

For ∆2,n these look like
∑

j∈J xj = 1 with 2 ≤ |J| ≤ n − 2.
The common facet is a Cartesian product of simplices of
dimensions |J| − 1 and |Jc | − 1.

Joswig and Herrmann first systematically studied multi-splits;
see also [Schroeter2017].

Defn. A d-split (matroid) subdivision (of some ∆k,n) is a
coarsest subdivision, with d maximal cells, such that these
cells meet in a common cell of codimension d − 1.

When d is not given, simply use multi-split.
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Blades on a hexagon

Big picture (amplitudes): for m
(2)
n , poles are 2-splits of ∆2,n

and Feynman diagrams are superpositions of compatible
2-splits.

New for k ≥ 3 subdivisions: poles correspond to splittings of
∆k,n into more than 2 chambers!

[E,Oct2019] Introduced a new method to induce certain
multi-splits:

(1,1,1)

(2,1,0) (2,0,1)

(1,2,0)

(0,2,1)
(0,1,2)

(2,0,1)

1-split, 2-split, 3-split: induced by gluing a single blade ((1, 2, 3)) to a
vertex of a hexagon.
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Compatible 2-splits of ∆2,n

There’s a well-known compatibility rule for 2-splits of the
second hypersimplex ∆2,n...

Namely: Maximal cells of the subdivision of ∆2,n induced by
the pair of hyperplanes

∑
i∈J1

xi = 1 and
∑

i∈J2
xi = 1 are

matroid polytopes if and only if at least one intersection is
empty: J1 ∩ J2, J1 ∩ Jc2 , J

c
1 ∩ J2, J

c
1 ∩ Jc2 .

The compatibility rule for pairs of matroid subdivisions of ∆k,n

involves checking a condition on each octahedral face of ∆k,n.
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Blades induce positroidal multi-splits

An essential question: which matroid subdivisions are induced
by matroidal blade arrangements? Denote
ej1,...,jk = ej1 + · · ·+ ejk . Put βJ = ((1, 2, . . . , n))eJ for the
translation of the blade to the vertex eJ .

Theorem[E, Oct2019] The blade ((1, 2, . . . , n))eJ induces a
multi-split positroidal subdivision of ∆k,n, where the maximal
cells are nested matroids. The number of maximal cells in the
subdivision equals the number of cyclically consecutive
intervals in the labels in J.
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Weakly separated collections (Non-example)

Denote eJ =
∑

j∈J ej for J ⊆ [n] = {1, . . . , n}.
Definition. A pair eJ1 , eJ2 of vertices of ∆k,n is weakly
separated provided that eJ1 − eJ2 does not contain the pattern
ea − eb + ec − ed for a < b < c < d cyclically.

: {3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

The non-matroidal blade arrangement of both {β1,3, β2,4} subdivides the
octahedron into four tetrahedra (left). But their long edge direction
e13 − e24 = e1 − e2 + e3 − e4 fails weak separation ⇔ not matroidal.
Right: the two matroidal blade arrangements on the octahedron.
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Enumerating weakly separated collections

The table below ([E2019]) counts maximal weakly separated
collections to enumerate maximal matroidal blade arrangements on
∆k,n.

n \ k 2 3 4 5 6 7 8 9 10
4 2
5 5 5
6 14 34 14
7 42 259 259 42
8 132 2136 5470 2136 132
9 429 18600 122361 122361 18600 429

10 1430 168565 2889186 7589732 2889186 168565 1430
11 4862 1574298 71084299 71084299 1574298 4862
12 16796 15051702 15051702 16796
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Matroidal blade arrangements (unweighted)

Theorem[E]. An arrangement of the blade ((1, 2, . . . , n)) on
the vertices eJ1 , . . . , eJN ∈ ∆k,n induces a matroid subdivision
of ∆k,n if and only if the collection {J1, . . . , JN} is weakly
separated. Moreover, this subdivision is positroidal.
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Matroidal blade arrangement on ∆2,6

x 1
+

x 2
=

1
x
1

+
x
2

+
x
3

=
1

x1
+

x2
+

x3
+

x4
=

1

1

2

3

4

5

6

∆2,6 = {x ∈ [0, 1]6 : x1 + x2 + · · ·+ x6 = 2}

e1 + e2

e2 + e3

e3 + e4e4 + e5

e5 + e6

e6 + e1

⇓
Three 2-splits of ∆2,6:

(1) x1 + x2 = 1

(2) x1 + x2 + x3 = 1

(3) x1 + x2 + x3 + x6 = 1

The 2-splits are pairwise compatible!

Fact: these hyperplanes divide ∆2,6 into four maximal cells.

∆k,n = {x ∈ [0, 1]n :
∑n

j=1 xj = k}

These cells are polytopes s.t. their edges are parallel to roots ei − ej .
Such polytopes are called matroidal.

β26 ∼ ((12134561)), β36 ∼ ((12314561)), β35 ∼ ((12361451)).
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Matroidal Blade Arrangement on ∆3,7

{1, 2, 4}
{2, 4, 7} {1, 2, 3}

{1, 2, 7}

{2, 3, 4}

{2, 6, 7}

{3, 4, 7}

{4, 5, 7}

{4, 6, 7}

{1, 6, 7}

{5, 6, 7}

{3, 4, 5}

{4, 5, 6}

Matroidal blade arrangement on ∆3,7. Vertices are connected by roots
ei − ej .
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Weighted Blade Arrangements: Boundary Operator

Constructing (B(k , n), ∂). Boundary operator is inductive...

∂`(βJ) = β
(`)
J′ where J ′ = J \ {`′} where `′ is the cyclic

successor of ` in J. Put ∂ =
∑n

j=1 ∂j .

Frozen arrangements induce trivial subdivisions and are zero:
βi ,i+1,...,i+k−1 = 0.

Example: B(3, 6):

∂1(β145) = β
(1)
45 = 0, ∂2(β145) = β

(2)
15 , β6(β145) = β

(6)
45 = 0,

∂(β135) = β
(1)
35 + β

(2)
15 + β

(3)
15 + β

(4)
13 + β

(5)
13 + β

(6)
35 .

Example: B(4, 8):

∂24(β1356) = β
(24)
16 6= 0, ∂27(β1356) = β

(27)
56 = 0.
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Weighted Matroidal Blade Arrangements

Defn.[E2020]

A weighted blade arrangement β(c) =
∑
{i ,j} ωi ,jβi ,j with

coefficients ωi ,j ∈ R is said to be matroidal provided that all
ωi ,j ≥ 0, and the superposition of blades {βi ,j : ω{i ,j} 6= 0}
induces a matroid subdivision of ∆2,n.

A weighted blade arrangement β(c) =
∑

J ωJβJ with
coefficients ωJ ∈ R is matroidal provided that for each
L ∈

( [n]
k−2

)
, then ∂L(β(c)) is a matroidal weighted blade

arrangement on ∂L(∆2,n) ' ∆2,n−(k−2).

Denote by Z(k , n) the set of matroidal weighted blade
arrangements on ∆k,n.
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Example

Example:

β(c) = −β135 + β235 + β145 + β136

then
∂1(β(c)) = −β(1)

35 + β
(1)
35 + β

(1)
36 = β

(1)
36 .

Key point: negative weights cancel on the boundary!

In full,

∂(β(c)) = β
(1)
36 + β

(2)
35 + β

(3)
25 + β

(4)
15 + β

(5)
14 + β

(6)
13
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Positive Tropical Grassmannian

Recall: an element π =
∑

J cJe
J ∈ R([n]

k ) is said to be a
positive tropical Plucker vector provided that

cL∪{a,c}+cL∪{b,d} = min(cL∪{a,b}+cL∪{c,d}, cL∪{a,d}+cL∪{b,c})

for any L ∪ {a, b, c , d} ∈
( [n]
k+2

)
with a < b < c < d cyclically.

This set is called the positive Dressian.

Note. Recently ([Speyer,Williams2020], [Arkani Hamed, Lam,
Spradlin2020]) showed that the positive Dressian is equal to
the positive tropical Grassmannian.
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Wrap up: Embedding the Positive Tropical Grassmannian

Define
([n]
k

)nf
=
([n]
k

)
\ {{i , i + 1, . . . , i + k − 1} : i = 1, . . . , n},

the nonfrozen k-element subsets.

Theorem [E2020]. There is an embedding of the positive
tropical Grassmannian into the space of weighted matroidal
blade arrangements:

ϕ :
∑

J∈([n]
k )

cJe
J 7→

∑
J∈([n]

k )
nf

ωJβJ .

Formula for the ωJ is an alternating sign sum over the vertices
of a cube and is somewhat detailed for general (k,n); we give
base case and refer to [E Dec 2019].

We shall characterize the image.
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From Weighted Blade Arrangements to Trop+G(k,n)

Theorem [E2020]. There is an embedding of the positive tropical
Grassmannian into the space of weighted matroidal blade
arrangements:

ϕ :
∑

J∈([n]
k )

cJe
J 7→

∑
J∈([n]

k )
nf

ωJβJ .

Example:∑
{i ,j}∈([4]

2 )

cije
ij 7→ (−c13+c14+c23−c24)β13+(−c24+c12+c34−c13)β24.

Notice: both coefficients ω13, ω24 ≥ 0 but at least one of them is
zero

m

c13 + c24 = min(c12 + c34, c14 + c23)

These are the positive tropical Plucker relations!
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Example

1 Example: we look at two matroidal weighted blade
arrangements and then add them to get a third.

6∑
j=1

∂j(−β135 + β235 + β145 + β136)

= β
(1)
36 + β

(2)
35 + β

(3)
25 + β

(4)
15 + β

(5)
14 + β

(6)
13

6∑
j=1

∂j(β236) = β
(1)
36 + β

(2)
36 + β

(3)
26

2 Comparing boundaries term by term ⇒ that for all a, b ≥ 0,

aβ236 + b(−β135 + β235 + β145 + β136)

is a matroidal weighted blade arrangement.

3 In fact, not hard to identify this with (the image of) a
2-dimensional cone in Trop+G (3, 6).
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Generalized Feynman Diagrams

Generalized Feynman Diagrams. [Borges-Cachazo2019]

Calculated maximal cones [CGUZ 2019] (⇒ CEGM
amplitudes) for Trop+G (k , n) for
(k , n) ∈ {(3, 6), (3, 7), (3, 8), (3, 9), (4, 8), (3, 9)}.

1

2

3

5

6

4

1

2

3

5

4

1

2

3

4

7

6

7

3

4

1

5 6

7
2

3

4 5 6

7 1

2 4 5 6

7
1

2 3 5 6

7

∂1(C) ∂2(C) ∂3(C) ∂4(C)

∂5(C) ∂6(C) ∂7(C)

Example (above): GFD’s on faces xj = 1 of ∆3,7 by the matroidal blade
arrangement C = {β124, β247, β267, β347, β457, β467}.

∂1(C) = {β2,4, β4,7, β5,7}.
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Back to blades; towards the kinematic space

Let V n
0 ⊂ Rn be the hyperplane x1 + · · ·+ xn = 0.

Defn. Let h : V n
0 → R be the piece-wise linear function

h(x) = min{L1(x), . . . , Ln(x)}, where

Lj = xj+1 + 2xj+2 + · · · (n − 1)xj−1.

Prop.[E,Oct2019]. The blade ((1, 2, . . . , n)) equals the bend locus
of the function h(x). That is,

((1, 2, . . . , n)) = {x ∈ V n
0 : (Li (x) = Lj(x)) ≤ L`(x) for all ` 6= i , j} .
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Height functions and planar basis

Defn.[E,Dec 2019]. At each vertex eJ(=
∑

j∈J ej) ∈ ∆k,n, we’ll
glue a copy of ((1, 2, . . . , n)) and define a linear form on Kk,n: set

ρJ(x) = h(x − eJ), and ηJ = −1

n

∑
eI∈∆k,n

ρJ(eI )sI .

Thm. [E, 2020]. The set {ηJ : J is nonfrozen} is a basis1, the
planar basis, for the space of linear functions on the kinematic
space Kk,n.
These functions ηJ are highly combinatorially structured; we
discuss some aspects now...

1frozen elements are zero: ηi,i+1,...,i+(k−1) =0
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Planar kinematic invariants ηJ : basics

Warm up, k = 2. On the kinematic space K2,6

η24 =
1

4
(3s12 + 2s13 + s14 + s23 + 3s34)

≡ s34

η25 = s34 + s35 + s45

η23 =
1

4
(2s12 + s13 + 4s14 + 3s24 + 2s34)

≡ 0.

Of course this all works beautifully for k ≥ 3: e.g., (3,6):

η135 =
1

6
(3s123 + 2s124 + s125 + 6s126 + · · ·+ s356 + 6s456)

≡ s123 + s126 + s136 + s234 + s235 + s236.

This is one of the new poles (“R16,23,45”) in m(3)(I6, I6)!
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Inverse transformation

Nice “cubical” rule for expanding sJ as a sum of ηJ ’s (k = 2
case familiar):

s25 = −(η14 − η15 − η24 + η25).

There is a generalization to k ≥ 3:

−s235 = η235 − η234 − η135 + η134

−s246 = η246 − η146 − η236 + η136 − η245 + η145 + η235 − η135.
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Planar basis: explicit inversion formula

Prop. [E,Dec2019] Given a nonfrozen vertex eJ ∈ ∆k,n s.t. J
has t(≥ 2) cyclic intervals, with cyclic initial points say
j1, . . . , jt , consider the t-dimensional cube

CJ =
{
JL = {j1 − `1, . . . , jt − `t} : L = (`1, . . . , `t) ∈ {0, 1}t

}
.

Then the following “cubical” relation among linear functionals

holds identically on R(nk), as well as on the subspace Kk,n:∑
L∈CJ

(−1)L·LηJL = −sJ ,

where L · L is the number of 1’s in the 0/1 vector L.
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Complementary Story: Rational Functions on Projective
Space

For any 1 < i < j ≤ n, define a linear function δi ,j =
∑j−2

t=i−1 xt on
Cn−2. Put δ1,j = 1.
Define rational functions ui ,j whenever i , j are not cyclically
adjacent in {1, . . . , n}:

ui ,n =
δi+1,n

δi ,n
, otherwise ui ,j =

δi+1,jδi ,j+1

δi ,jδi+1,j+1
.

Example, n = 5.

u2,4 =
δ3,4δ2,5

δ2,4δ3,5
=

x2(x1 + x2 + x3)

(x1 + x2)(x2 + x3)
, u2,5 =

δ3,5

δ2,5
=

x2 + x3

x1 + x2 + x3
.

(1) Note: ui ,j are well-defined on CPn−3.
(2) We’ll see that these are specializations of certain cross-ratios
defined on the Riemann sphere.
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Binary structures for the functions ui ,j

We have the binary property, well-known (in case k = 2):

Prop. If some ui ,j(g) = 0, then uk,`(g) = 1 whenever the pair
{{i , j}, {k, `}} is crossing. E.g. n = 4: u1,3 + u2,4 = 1.

The binary property follows from a known stronger binary
identity :

ui ,j = 1−
∏

((i ,j),(k,`)) crossing

uk,` (1)

Example (1) n = 4:

u13 = 1− u24 where u13 =
x1

x1 + x2
, u24 =

x2

x1 + x2
.

Example (2) n = 6:

u24 = 1− u13u35u36.

Nick Early Combinatorial Geometries and Scattering Amplitudes



Planar Cross-ratios on projective configurations in CPk−1

Claim: there exists a system of projective invariants on
G (k , n)/(C∗)n satisfying the binary property, but where the binary
identities are rational.
Let J ∈

([n]
k

)nf
. Define cubes in ∆k,n by

U(J) = {eJ} ∪ {eJ + ej+1 − ej : (j , j + 1) ∈ J × Jc} ,

D(J) = {eJ} ∪ {eJ + ej−1 − ej : (j − 1, j) ∈ Jc × J} .

wJ =
∏

M∈U(J)

p
k−#(M∩J)+1
M ,

where pJ is the minor with column set J of a given k × n matrix.
Here indices on eJ are cyclic with period n. For 3 and n = 6, one
has e.g.

w136 =
p146p236

p136p246
, w135 =

p136p145p235p246

p135p146p236p245
.

Nick Early Combinatorial Geometries and Scattering Amplitudes



Binary Property

Thm. [E2021: In Prep]. If we have wI = 0, then wJ = 1 for

any J ∈
([n]
k

)
such that (I , J) is not weakly separated.

Proof is inductive on k , starting from k = 2, and uses a

certain change of basis of R(nk) coming from blade
arrangements, inspired by work on amplitudes [E2019].

Example. (k , n) = (2, 5). Claim: w24 = 0⇒ w13 = 0.
Cancellations and a Plucker identity give

w1,3 + w2,4w2,5 =
p23p14

p13p24
+

(
p34p25

p24p35

)(
p35p21

p25p31

)
(2)

=
p23p14 + p12p34

p13p24
= 1. (3)

Example. Claim: w135 = 0⇒ w246 = 1. Can show that

w246 =
1− w135w235w136w356

1− w135w235w136w236
.
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Connection to uij ’s: cross-ratios on point configurations in

CP1

Start with the map Cn−2 ↪→ G (2, n)/(C∗)n,

(x1, x2, . . . , xn) 7→ g =

(
1 0 x1 x1 + x2 x1 + x2 + x3

0 1 1 1 1
· · ·
)
.

Clearly this induces an embedding CPn−3 ↪→ G (2, n)/(C∗)n.
Claim: the rational functions ui ,j factor through G (2, n)/(C∗)n, so
that

wi ,j = ui ,j .

For example (noting signs cancel),

w24 =
p34p25

p24p35
=

x2(x1 + x2 + x3)

(x1 + x2)(x2 + x3)
= u24.

Small Question: is there a similarly nice binary story for G(k, n)/(C∗)n? Yes! See [E2021 in prep].
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Blades, Planar Kinematic Invariants and Cross-Ratios

Kinematic space:

K2,n =
{

(si ,j) ∈ R(n2) :
∑

j 6=i si ,j = 0 i = 1, . . . , n
}

Construction of [E2019], specialized to k = 2.
Denote Lj(x) = xj+1 + 2xj+2 + · · ·+ (n − 1)xj−1.
Define

ηi ,j := −1

n

∑
1≤a<b≤n

min{Lt(ea + eb − ei − ej) : t = 1, . . . , n}sa,b

Claim. We have∑
1≤i<j≤n

log(det(gi , gj))si ,j =
∑

(a,b)∈([n]
2 )\{(i ,i+1)}

log(ua,b)ηa,b

Proof. First part, use −si ,j = ηi ,j − ηi−1,j − ηi ,j−1 + ηi−1,j−1.
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The End

Thank you!
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Blade Arrangements in Four Coordinates

Four blades arranged in a dilated tetrahedron (truncated to improve
clarity). Important: every octahedron is subdivided at most once!
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m(3)(I6, I6) in the planar basis

In the planar basis, m(3)(I6, I6) has the expression

m(3)(I6, I6) =
1

η125η134η135η145
+

1

η124η125η134η145

+
1

η136η145η146 (−η135 + η136 + η145 + η235)

+
η136 + η145 + η235

η135η136η145η235 (−η135 + η136 + η145 + η235)
+ 44 more.
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