Domes over Curves

Igor Pak, UCLA
(joint work with Alexey Glazyrin, UTRGV)
(Polytop)ics: Recent advances on polytopes, April 7, 2021

Integral curves

A PL-curve $\gamma \subset \mathbb{R}^{3}$ is called integral if comprised of unit length intervals.
A dome is a 2-dim PL-surface $S \subset \mathbb{R}^{3}$ comprised of unit equilateral triangles.
Integral curve γ can be domed if there is a dome S s.t. $\partial S=\gamma$.

Problem [Kenyon, c. 2005]: Can every closed integral curve be domed?

Examples: Domes over square, pentagon, regular 10-gon and 12-gon.

Other domes

Louvre pyramid, glass rooftop, Buckminster Fuller's real dome and his sketch of the Dome over Manhattan (1960).

Bonus questions:

Are the second and third domes polyhedral?
Is the boundary curve ∂S a regular polygon?
Is it even planar?

Positive results:

Theorem 1 [Glazyrin-P., 2020+]
For every integral curve $\gamma \subset \mathbb{R}^{3}$ and $\varepsilon>0$, there is an integral curve $\gamma^{\prime} \subset \mathbb{R}^{3}$, such that $|\gamma|=\left|\gamma^{\prime}\right|, \quad\left|\gamma, \gamma^{\prime}\right|_{F}<\varepsilon$ and the curve γ^{\prime} can be domed.

Here $\left|\gamma, \gamma^{\prime}\right|_{F}$ is the Fréchet distance $\left|\gamma, \gamma^{\prime}\right|_{F}=\max _{1 \leq i \leq n}\left|v_{i}, v_{i}^{\prime}\right|$.

Theorem 2 [Glazyrin-P., 2020+]
Every regular integral n-gon in the plane can be domed.

Open: Can all planar unit rhombi $\rho(a, b)$ be domed?
Can all integral triangles $\Delta=(p, q, r), p, q, r \in \mathbb{N}$ be domed?

More conjectures and open problems later in the talk.

Prior work: polyhedra with regular faces

Star pyramid, small stellated dodecahedron, heptagrammic cuploid, and dodecahedral torus.

Johnson solids: Johnson (1966), Zalgaller (1969)
Square surfaces: Dolbilin-Shtanko-Shtogrin (1997)
Pentagonal surfaces: Alevy (2018+)

Steinhaus problem (Scottish book, 1957)

(1) Does there exist a closed tetrahedral chain?
$\longleftarrow \quad$ Coxeter helix
(2) Are the end-triangles dense in the space of all triangles?

Part (1) was resolved negatively by Świerczkowski (1959)
Part (2) was partially resolved by Elgersma-Wagon (2015) and Stewart (2019)
Idea: The group of face reflections is isomorphic to $\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ which is dense in $O(3, \mathbb{R})$

A length-36 fake tetratorus with a final gap of about 0.0005 cm .
Note: $0.0005 \mathrm{~cm}=5000 \mathrm{~nm}$.

Integral triangles

Conjecture 1. An isosceles triangle $\Delta=(2,2,1)$ cannot be domed.
Proposition: Conjecture 1 false \Rightarrow every triangle $\Delta=(p, q, r)$ can be domed.

Conjecture 2. Every non-degenerate closed dome is rigid.
Proposition: Conjecture 1 is false \Rightarrow Conjecture 2 is false.

Space colorings

$\Gamma \leftarrow$ unit distance graph of \mathbb{R}^{3}
Conjecture 3: Let $\rho=[u v w x] \subset \mathbb{R}^{3}$ be a rhombus with edge lengths 2 and diagonal 1 .
Then \exists coloring $\chi: \Gamma \rightarrow\{1,2,3\}$ with no rainbow (1-2-3) triangles, s.t.
$\chi(u)=\chi(v)=1, \chi(w)=2, \chi(x)=3$.

Proposition: Conjecture $3 \Rightarrow$ Conjecture 1.
Proof: Dome over $\Delta=(2,2,1) \Rightarrow$ dome S over ρ.
Sperner's Lemma for (general) 2-manifolds applied to $S \cup \rho \Rightarrow \#$ of 1-2-3 Δ is even $\leftarrow[$ Musin, 2015]
Since ρ has one 1-2-3 Δ, dome S also has at least one 1-2-3 Δ, a contradiction.

How to prove positive results?

Rhombus Lemma

Fix $a \notin \bar{Q}$. The set of b for which rhombus $\rho(a, b)$ which can be domed is dense in $\left(0, \sqrt{4-a^{2}}\right)$.

Domes over regular polygons

Construction sketch:

Tilt blue triangles by $\angle \theta$. Make near-planar rhombi until the center is overshot.
Use continuity to find θ for which the tip of the slice is on the vertical axis.

Domes over generic integral curves

Definition: Integral curve is $\left[v_{1} \ldots v_{n}\right]$ is generic if all small diagonals $\left|v_{i} v_{i+2}\right| \notin \bar{Q}$, and the same holds after all finite flips sequences

Step 1: Generic integral curves \longrightarrow Generic near-planar integral curves
Idea: Use 2-flips to triangles $v_{i-1} v_{i} v_{i+1} \rightarrow v_{i-1} v_{i}^{\prime} v_{i+1}$ until curve is near-planar.

Domes over generic integral curves (continued)

Step 2: Generic near-planar integral curves \longrightarrow Generic compact near-planar integral curves
Idea: Use 2-flips to obtain the desired permutation of unit vectors $\overrightarrow{v_{i} v_{i+1}}$. Now apply

Steinitz Lemma: Let $u_{1}, \ldots, u_{n} \in \mathbb{R}^{2}$ be unit vectors, $u_{1}+\ldots+u_{n}=0$.
Then there exists $\sigma \in S_{n}$, s.t. $\left|u_{\sigma(1)}+\ldots+u_{\sigma(k)}\right| \leq \sqrt{\frac{5}{4}}$, for all $1 \leq k \leq n$.
[Steinitz, 1913] \rightarrow general dimensions, \quad [Bergström, 1931] \rightarrow optimal constant $\sqrt{\frac{5}{4}}$

Step 3: Break the curve into unit rhombi and pentagons.

Domes over generic integral curves (continued)

Step 4: Use an ad hoc construction for pentagons.

Step 5: Fix combinatorial data and undo the construction using the Rhombus Lemma.

Negative results:

Theorem 3 [Glazyrin-P., 2020+]
Let $\rho(a, b) \subset \mathbb{R}^{3}$ be a unit rhombus with diagonals $a, b>0$. Suppose $\rho(a, b)$ can be domed. Then there is a nonzero polynomial $P \in \mathbb{Q}[x, y]$, such that $P\left(a^{2}, b^{2}\right)=0$.

Theorem 4 [Glazyrin-P., 2020+]
Let $\rho(a, b) \subset \mathbb{R}^{3}$ be a unit rhombus with diagonals $a, b>0$.
If $a \notin \overline{\mathbb{Q}}$ and $a / b \in \overline{\mathbb{Q}}$, then $\rho(a, b)$ cannot be domed.

Examples:

$\rho\left(\frac{1}{\pi}, \frac{e^{\pi}}{\sqrt{97}}\right) \leftarrow$ Thm 3,
$\rho\left(\frac{1}{\pi}, \frac{1}{\pi}\right)$ and $\rho\left(\frac{e}{\sqrt{17}}, \frac{e}{\sqrt{19}}\right) \leftarrow$ Thm 4.

Doubly periodic surfaces

$K \leftarrow$ pure simplicial 2-dim complex homeomorphic to \mathbb{R}^{2}, with a free action of $\mathbb{Z} \oplus \mathbb{Z}=\langle a, b\rangle$ $\theta: K \rightarrow \mathbb{R}^{3} \leftarrow$ linear mapping of K, and equivariant w.r.t. $\mathbb{Z} \oplus \mathbb{Z}$, s.t. $a \curvearrowright \alpha, b \curvearrowright \beta$ (K, θ) is called a doubly periodic triangular surface $\mathcal{G}(K) \leftarrow$ set of Gram matrices of (α, β), over all (K, θ)

Theorem [A. Gaifullin - S. Gaifullin, 2014]
There is a one-dimensional real affine algebraic subvariety of \mathbb{R}^{3} containing $\mathcal{G}(K)$.
In particular, the entries of each Gram matrix G from $\mathcal{G}(K)$

$$
\left\{\begin{array}{l}
P\left(g_{11}, g_{12}, g_{22}\right)=0 \\
Q\left(g_{11}, g_{12}, g_{22}\right)=0
\end{array} \quad \text { for some } P, Q \in \mathbb{Z}[x, y, z]\right.
$$

Special case of Theorem 3

Proposition

Let S be a dome over a rhombus $\gamma=\rho(a, b)$ homeomorphic to a disc.
Then there is a nonzero polynomial $F \in \mathbb{Q}[x, y]$, s.t. $F\left(a^{2}, b^{2}\right)=0$.
Proof: Attach copies of γ and $-\gamma$ as in Figure. Since α and β are orthogonal, the Gram matrix is diagonal. By G-G Theorem, we have $F \leftarrow P$ or $F \leftarrow Q$.

G-G Theorem does not generalize

Theorem [A. Gaifullin - S. Gaifullin, 2014] Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem [Glazyrin-P., 2020+, formerly G-G Open Problem]
There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Moral: Need a better technical result.

Ingredients of the proof of theorems 3 and 4

- heavy use of theory of places
- elementary but lengthy and tedious inductive topological argument

Cf. [Conelly-Sabitov-Walz, 1997], [Connelly, 2009], [Gaifullin-Gaifullin, 2014]

Case 1 of the induction step.

More conjectures and open problems

Conjecture 4:

The set of a, s.t. planar rhombus $\rho\left(a, \sqrt{4-a^{2}}\right)$ can be domed, is countable.

Conjecture 5:

There are unit triangles $\Delta_{1}, \Delta_{2} \subset \mathbb{R}^{3}$, such that $\Delta_{1} \cup \Delta_{2}$ cannot be domed.

Conjecture 6 ["cobordism for domes"]:
For every integral curve $\gamma \in \mathbb{R}^{3}$, there is a unit rhombus ρ, and a dome over $\gamma \cup \rho$.

Thank you!

