Normally inscribable polytopes

Raman Sanyal
Goethe-Universität Frankfurt

joint work with Sebastian Manecke arXiv 2012.07724

Polytopes and inscribability

Polytope $P \subset \mathbb{R}^{d}$ is the convex hull of finitely many points.

Polytopes and inscribability

Polytope $P \subset \mathbb{R}^{d}$ is the convex hull of finitely many points.

P is inscribed if its vertices $V(P)$ lie on a common sphere.

Polytopes and inscribability

Polytope $P \subset \mathbb{R}^{d}$ is the convex hull of finitely many points.

P is inscribed if its vertices $V(P)$ lie on a common sphere.
Question (Steiner 1832)
Can every 3-dimensional polytope be inscribed?

Polytopes and inscribability

Polytope $P \subset \mathbb{R}^{d}$ is the convex hull of finitely many points.

P is inscribed if its vertices $V(P)$ lie on a common sphere.
Question (Steiner 1832)
Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P^{\prime} combinatorially equivalent to P.

Polytopes and inscribability

Polytope $P \subset \mathbb{R}^{d}$ is the convex hull of finitely many points.

P is inscribed if its vertices $V(P)$ lie on a common sphere.
Question (Steiner 1832)
Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P^{\prime} combinatorially equivalent to P.

Obviously true for convex polygons (2-dimensional polytopes).

Why care about inscribed polytopes?

Why care about inscribed polytopes?

Orbit polytopes / discrete orbitopes
$P=\operatorname{conv}(G \cdot p), G \subset O(d)$ finite group
E.g.: Permutahedra

Why care about inscribed polytopes?

Orbit polytopes / discrete orbitopes
$P=\operatorname{conv}(G \cdot p), G \subset O(d)$ finite group
E.g.: Permutahedra

Ideal hyperbolic polyhedra
hyperbolic space $B_{d}^{\circ}=\left\{x \in \mathbb{R}^{d}:\|x\|_{2}<1\right\}$ hyperplanes: $H \cap B_{d}^{\circ}, H \subset \mathbb{R}^{d}$ is usual hyperplane hyperbolic polytopes: usual polytopes $P \subseteq B_{d}$.
$S^{d-1}=\partial B_{d}$ are points at infinity
ideal hyperbolic polyhedra have all vertices in infinity

Why care about inscribed polytopes?

Orbit polytopes / discrete orbitopes
$P=\operatorname{conv}(G \cdot p), G \subset O(d)$ finite group

E.g.: Permutahedra

Ideal hyperbolic polyhedra
hyperbolic space $B_{d}^{\circ}=\left\{x \in \mathbb{R}^{d}:\|x\|_{2}<1\right\}$ hyperplanes: $H \cap B_{d}^{\circ}, H \subset \mathbb{R}^{d}$ is usual hyperplane hyperbolic polytopes: usual polytopes $P \subseteq B_{d}$.
$S^{d-1}=\partial B_{d}$ are points at infinity
ideal hyperbolic polyhedra have all vertices in infinity

Delaunay subdivisions

subdivisions with empty circumsphere condition
inscribed polytopes under stereographic projection

Polytopes and inscribability

Theorem (Steinitz 1928)
Combinatorial necessary condition for non-inscribability.

Polytopes and inscribability

Theorem (Steinitz 1928)
Combinatorial necessary condition for non-inscribability.
Counter example: Stack faces of a tetrahedron.

Polytopes and inscribability

Theorem (Steinitz 1928)
Combinatorial necessary condition for non-inscribability.
Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes = planar, 3-connected graphs

Polytopes and inscribability

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.
Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes $=$ planar, 3-connected graphs
Theorem (Rivin 1992)
Checking if a planar 3-connected graph can be realized as an inscribed polytope can be done in polynomial time.

Which polytopes are inscribable in dimensions ≥ 4 ?

Which polytopes are inscribable in dimensions ≥ 4 ?

No combinatorial model for 4-polytopes!

Which polytopes are inscribable in dimensions ≥ 4 ?

No combinatorial model for 4-polytopes!
Question
Given a polytope $P \subset \mathbb{R}^{d}$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Which polytopes are inscribable in dimensions ≥ 4 ?

No combinatorial model for 4-polytopes!
Question
Given a polytope $P \subset \mathbb{R}^{d}$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)
For $d \geq 4$, the realization spaces of d-polytopes are universal.
\longrightarrow wild topology; impossible to navigate.

Which polytopes are inscribable in dimensions ≥ 4 ?

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^{d}$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)
For $d \geq 4$, the realization spaces of d-polytopes are universal.
\longrightarrow wild topology; impossible to navigate.
P is normally equivalent to $P^{\prime}\left(P \simeq P^{\prime}\right)$ if P, P^{\prime} combinatorially isomorphic and there is a continuous deformation keeps corresponding faces parallel.

\longrightarrow McMullen's g-Theorem, nef cones, parametric LP, etc.
\longrightarrow deformation space $\left\{P^{\prime}: P \simeq P^{\prime}\right\}$ is (simply) connected

Which polytopes are inscribable in dimensions ≥ 4 ?

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^{d}$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)
For $d \geq 4$, the realization spaces of d-polytopes are universal.
\longrightarrow wild topology; impossible to navigate.
P is normally equivalent to $P^{\prime}\left(P \simeq P^{\prime}\right)$ if P, P^{\prime} combinatorially isomorphic and there is a continuous deformation keeps corresponding faces parallel.

\longrightarrow McMullen's g-Theorem, nef cones, parametric LP, etc.
\longrightarrow deformation space $\left\{P^{\prime}: P \simeq P^{\prime}\right\}$ is (simply) connected
Question
When is P normally equivalent to an inscribed polytope P^{\prime} ?
\longrightarrow call such P normally inscribable

Inscribed cones

Inscribed cone of $P \subset \mathbb{R}^{d}$

$$
\mathcal{I}_{+}(P):=\left\{P^{\prime} \subset \mathbb{R}^{d} \text { inscribed }: P^{\prime} \simeq P\right\} / \text { translation }
$$

Inscribed cones

Inscribed cone of $P \subset \mathbb{R}^{d}$

$$
\mathcal{I}_{+}(P):=\left\{P^{\prime} \subset \mathbb{R}^{d} \text { inscribed }: P^{\prime} \simeq P\right\} / \text { translation }
$$

Cone: $P^{\prime} \in \mathcal{I}_{+}(P), \mu>0 \quad \Longrightarrow \quad \mu \cdot P^{\prime} \in \mathcal{I}_{+}(P)$.

Inscribed cones

Inscribed cone of $P \subset \mathbb{R}^{d}$

$$
\mathcal{I}_{+}(P):=\left\{P^{\prime} \subset \mathbb{R}^{d} \text { inscribed }: P^{\prime} \simeq P\right\} / \text { translation }
$$

Cone: $P^{\prime} \in \mathcal{I}_{+}(P), \mu>0 \quad \Longrightarrow \quad \mu \cdot P^{\prime} \in \mathcal{I}_{+}(P)$.
Minkowski sum of polytopes $P, Q \subset \mathbb{R}^{d}$

$$
P+Q=\{p+q: p \in P, q \in Q\} .
$$

Inscribed cones

Inscribed cone of $P \subset \mathbb{R}^{d}$

$$
\mathcal{I}_{+}(P):=\left\{P^{\prime} \subset \mathbb{R}^{d} \text { inscribed }: P^{\prime} \simeq P\right\} / \text { translation }
$$

Cone: $P^{\prime} \in \mathcal{I}_{+}(P), \mu>0 \quad \Longrightarrow \quad \mu \cdot P^{\prime} \in \mathcal{I}_{+}(P)$.
Minkowski sum of polytopes $P, Q \subset \mathbb{R}^{d}$

$$
P+Q=\{p+q: p \in P, q \in Q\} .
$$

Theorem
Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P)
$$

Inscribed cones

Inscribed cone of $P \subset \mathbb{R}^{d}$

$$
\mathcal{I}_{+}(P):=\left\{P^{\prime} \subset \mathbb{R}^{d} \text { inscribed }: P^{\prime} \simeq P\right\} / \text { translation }
$$

Cone: $P^{\prime} \in \mathcal{I}_{+}(P), \mu>0 \quad \Longrightarrow \quad \mu \cdot P^{\prime} \in \mathcal{I}_{+}(P)$.
Minkowski sum of polytopes $P, Q \subset \mathbb{R}^{d}$

$$
P+Q=\{p+q: p \in P, q \in Q\} .
$$

Theorem

Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P)
$$

$\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Inscribed cones - first consequences

Theorem
Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P) .
$$

$\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Inscribed cones - first consequences

Theorem
Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P) .
$$

$\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary
Deciding if a rational polytope P is normally inscribable is polynomial time solvable.

Inscribed cones - first consequences

Theorem
Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P)
$$

$\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary
Deciding if a rational polytope P is normally inscribable is polynomial time solvable.

Corollary
If P is normally inscribable and rational, then there is a rational $P^{\prime} \in \mathcal{I}_{+}(P)$.

Inscribed cones - first consequences

Theorem
Let $P \subset \mathbb{R}^{d}$ and $Q, Q^{\prime} \in \mathcal{I}_{+}(P)$. Then

$$
Q+Q^{\prime} \in \mathcal{I}_{+}(P)
$$

$\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary
Deciding if a rational polytope P is normally inscribable is polynomial time solvable.

Corollary
If P is normally inscribable and rational, then there is a rational $P^{\prime} \in \mathcal{I}_{+}(P)$.

Corollary
If P is normally inscribable with symmetry group G, then there is $P^{\prime} \in \mathcal{I}_{+}(P)$ with symmetry group G.

First implications

Let $P, Q \subset \mathbb{R}^{d}$ be normally equivalent and inscribed to unit sphere.
For generic linear function $\ell(x)$, let $p \in P, q \in Q$ be maximizers.

First implications

Let $P, Q \subset \mathbb{R}^{d}$ be normally equivalent and inscribed to unit sphere.
For generic linear function $\ell(x)$, let $p \in P, q \in Q$ be maximizers.
Lemma
The angle between p and q is independent of ℓ.

First implications

Let $P, Q \subset \mathbb{R}^{d}$ be normally equivalent and inscribed to unit sphere.
For generic linear function $\ell(x)$, let $p \in P, q \in Q$ be maximizers.
Lemma
The angle between p and q is independent of ℓ.
Angle $\theta(P, Q):=\theta(p, q) \in[0, \pi)$.

First implications

Let $P, Q \subset \mathbb{R}^{d}$ be normally equivalent and inscribed to unit sphere.
For generic linear function $\ell(x)$, let $p \in P, q \in Q$ be maximizers.
Lemma
The angle between p and q is independent of ℓ.
Angle $\theta(P, Q):=\theta(p, q) \in[0, \pi)$.
Corollary

$$
\frac{1}{\sqrt{2+2 \cos \theta(P, Q)}}(P+Q) \quad \text { inscribed to unit sphere. }
$$

$\longrightarrow \mathcal{I}_{+}(P)$ is a deformation space of ideal hyperbolic polytopes

First implications

Let $P, Q \subset \mathbb{R}^{d}$ be normally equivalent and inscribed to unit sphere.
For generic linear function $\ell(x)$, let $p \in P, q \in Q$ be maximizers.
Lemma
The angle between p and q is independent of ℓ.
Angle $\theta(P, Q):=\theta(p, q) \in[0, \pi)$.
Corollary

$$
\frac{1}{\sqrt{2+2 \cos \theta(P, Q)}}(P+Q) \quad \text { inscribed to unit sphere. }
$$

$\longrightarrow \mathcal{I}_{+}(P)$ is a deformation space of ideal hyperbolic polytopes
$\longrightarrow \mathcal{I}_{+}(P)$ is a deformation space of Delaunay subdivisions

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$
N_{v}:=\left\{c \in \mathbb{R}^{d}:\langle c, v\rangle \geq\langle c, u\rangle \quad \forall u \in V(P)\right\} .
$$

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$
N_{v}:=\left\{c \in \mathbb{R}^{d}:\langle c, v\rangle \geq\langle c, u\rangle \quad \forall u \in V(P)\right\} .
$$

Normal fan $\mathcal{N}(P)=\left\{N_{v}: v \in V(P)\right\}$.

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$
N_{v}:=\left\{c \in \mathbb{R}^{d}:\langle c, v\rangle \geq\langle c, u\rangle \quad \forall u \in V(P)\right\} .
$$

Normal fan $\mathcal{N}(P)=\left\{N_{v}: v \in V(P)\right\}$.
Fact:

$$
P \simeq P^{\prime} \quad \Longleftrightarrow \quad \mathcal{N}(P)=\mathcal{N}\left(P^{\prime}\right)
$$

Equivalence classes represented by complete, projective fans.

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$
N_{v}:=\left\{c \in \mathbb{R}^{d}:\langle c, v\rangle \geq\langle c, u\rangle \quad \forall u \in V(P)\right\} .
$$

Normal fan $\mathcal{N}(P)=\left\{N_{v}: v \in V(P)\right\}$.
Fact:

$$
P \simeq P^{\prime} \quad \Longleftrightarrow \quad \mathcal{N}(P)=\mathcal{N}\left(P^{\prime}\right)
$$

Equivalence classes represented by complete, projective fans.
Type cone (or nef cone) of a fan \mathcal{N}

$$
\mathcal{T}_{+}(\mathcal{N}):=\left\{P \subset \mathbb{R}^{d}: \mathcal{N}(P)=\mathcal{N}\right\} / \text { translation }
$$

Inscribed cone of \mathcal{N}
$\mathcal{I}_{+}(\mathcal{N}):=\left\{P \subset \mathbb{R}^{d}\right.$ inscribed $\left.: \mathcal{N}(P)=\mathcal{N}\right\} /$ translation is a subcone of $\mathcal{T}_{+}(\mathcal{N})$.

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$
N_{v}:=\left\{c \in \mathbb{R}^{d}:\langle c, v\rangle \geq\langle c, u\rangle \quad \forall u \in V(P)\right\} .
$$

Normal fan $\mathcal{N}(P)=\left\{N_{v}: v \in V(P)\right\}$.
Fact:

$$
P \simeq P^{\prime} \quad \Longleftrightarrow \quad \mathcal{N}(P)=\mathcal{N}\left(P^{\prime}\right)
$$

Equivalence classes represented by complete, projective fans.
Type cone (or nef cone) of a fan \mathcal{N}

$$
\mathcal{T}_{+}(\mathcal{N}):=\left\{P \subset \mathbb{R}^{d}: \mathcal{N}(P)=\mathcal{N}\right\} / \text { translation }
$$

Inscribed cone of \mathcal{N}
$\mathcal{I}_{+}(\mathcal{N}):=\left\{P \subset \mathbb{R}^{d}\right.$ inscribed $\left.: \mathcal{N}(P)=\mathcal{N}\right\} /$ translation is a subcone of $\mathcal{T}_{+}(\mathcal{N})$.
\mathcal{N} is inscribable if $\mathcal{I}_{+}(\mathcal{N}) \neq \varnothing$.

Example: Braid Arrangement \mathcal{A}_{d-1} and Permutahedra

Hyperplanes $\left\{x \in \mathbb{R}^{d}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq d$

Example: Braid Arrangement \mathcal{A}_{d-1} and Permutahedra

Hyperplanes $\left\{x \in \mathbb{R}^{d}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq d$ induces fan with cones

$$
N_{\sigma}=\left\{x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\right\}
$$

for any permutation $\sigma \in \mathfrak{S}_{d}$.

Example: Braid Arrangement \mathcal{A}_{d-1} and Permutahedra

Hyperplanes $\left\{x \in \mathbb{R}^{d}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq d$ induces fan with cones

$$
N_{\sigma}=\left\{x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\right\}
$$

for any permutation $\sigma \in \mathfrak{S}_{d}$.
Type/nef cone

$$
\mathcal{T}_{+}\left(\mathcal{A}_{d-1}\right):=\left\{P: \mathcal{N}(P)=\mathcal{A}_{d-1}\right\} / \text { translations }
$$

is a ($2^{d}-d-2$)-dimensional cone (the submodular cone).

Example: Braid Arrangement \mathcal{A}_{d-1} and Permutahedra

Hyperplanes $\left\{x \in \mathbb{R}^{d}: x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq d$ induces fan with cones

$$
N_{\sigma}=\left\{x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\right\}
$$

for any permutation $\sigma \in \mathfrak{S}_{d}$.
Type/nef cone

$$
\mathcal{T}_{+}\left(\mathcal{A}_{d-1}\right):=\left\{P: \mathcal{N}(P)=\mathcal{A}_{d-1}\right\} / \text { translations }
$$

is a ($2^{d}-d-2$)-dimensional cone (the submodular cone).
$\mathcal{I}_{+}\left(\mathcal{A}_{d-1}\right) \cong\left\{x_{1}<x_{2}<\cdots<x_{d}\right\}$ (linear order cone)
Permutahedron

$$
p \mapsto \Pi(p):=\operatorname{conv}\left\{\left(p_{\sigma(1)}, p_{\sigma(2)}, \ldots, p_{\sigma(d)}\right): \sigma\right\}
$$

\Rightarrow every inscribed permutahedron is \mathfrak{S}_{d}-symmetric.

Local reflections

Lemma
Let $Q \in \mathcal{I}_{+}(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Local reflections

Lemma
Let $Q \in \mathcal{I}_{+}(\mathcal{N})$. Then Q is uniquely determined by a single vertex.
Proof.
Normal cone $N_{v}=\left\{c:\left\langle e_{i}, c\right\rangle \leq 0\right.$ for $\left.i=1, \ldots, k\right\}$. Neighboring vertices are on the rays $\left\{v+\lambda_{i} e_{i}: \lambda_{i} \geq 0\right\}$. If $z \in \mathbb{R}^{d}$ is the center of the inscribing sphere, then

$$
\left\|v+\lambda_{i} e_{i}-z\right\|=\|v-z\| .
$$

At most one solution $\lambda_{i}>0$.

Local reflections

Lemma
Let $Q \in \mathcal{I}_{+}(\mathcal{N})$. Then Q is uniquely determined by a single vertex.
Proof.
Normal cone $N_{v}=\left\{c:\left\langle e_{i}, c\right\rangle \leq 0\right.$ for $\left.i=1, \ldots, k\right\}$. Neighboring vertices are on the rays $\left\{v+\lambda_{i} e_{i}: \lambda_{i} \geq 0\right\}$. If $z \in \mathbb{R}^{d}$ is the center of the inscribing sphere, then

$$
\left\|v+\lambda_{i} e_{i}-z\right\|=\|v-z\| .
$$

At most one solution $\lambda_{i}>0$.
Assume $Q \in \mathcal{I}_{+}(\mathcal{N})$ inscribed to unit sphere.
Corollary
Neighbors of v arise as reflections in walls of N_{v}.

Local reflections

Lemma

Let $Q \in \mathcal{I}_{+}(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Proof.

Normal cone $N_{v}=\left\{c:\left\langle e_{i}, c\right\rangle \leq 0\right.$ for $\left.i=1, \ldots, k\right\}$. Neighboring vertices are on the rays $\left\{v+\lambda_{i} e_{i}: \lambda_{i} \geq 0\right\}$. If $z \in \mathbb{R}^{d}$ is the center of the inscribing sphere, then

$$
\left\|v+\lambda_{i} e_{i}-z\right\|=\|v-z\| .
$$

At most one solution $\lambda_{i}>0$.
Assume $Q \in \mathcal{I}_{+}(\mathcal{N})$ inscribed to unit sphere.
Corollary
Neighbors of v arise as reflections in walls of N_{v}.
Corollary
$v \in \operatorname{int}\left(N_{v}\right)$ for every vertex $v \in V(Q)$.

Let's see this!

Virtually inscribable fans

\mathcal{N} general full-dimensional, strongly connected fan.

Virtually inscribable fans

\mathcal{N} general full-dimensional, strongly connected fan.
Dual graph $G(\mathcal{N})=(\mathcal{N}, E)$
$N, N^{\prime} \in \mathcal{N}$ are adjacent if $\operatorname{dim} N \cap N^{\prime}=d-1$.
If $N N^{\prime} \in E$, then $\operatorname{lin}\left(N \cap N^{\prime}\right)=e^{\perp}$.
Associate $s_{N N^{\prime}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in e^{\perp}.

Virtually inscribable fans

\mathcal{N} general full-dimensional, strongly connected fan.
Dual graph $G(\mathcal{N})=(\mathcal{N}, E)$
$N, N^{\prime} \in \mathcal{N}$ are adjacent if $\operatorname{dim} N \cap N^{\prime}=d-1$.
If $N N^{\prime} \in E$, then $\operatorname{lin}\left(N \cap N^{\prime}\right)=e^{\perp}$.
Associate $s_{N N^{\prime}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in e^{\perp}.

Any walk $W=N_{0} N_{1} \ldots N_{k}$ in $G(\mathcal{N})$ yields transformation

$$
t_{W}=s_{N_{k} N_{k-1}} \ldots s_{N_{2} N_{1}} s_{N_{1} N_{0}}
$$

Virtually inscribable fans

\mathcal{N} general full-dimensional, strongly connected fan.
Dual graph $G(\mathcal{N})=(\mathcal{N}, E)$
$N, N^{\prime} \in \mathcal{N}$ are adjacent if $\operatorname{dim} N \cap N^{\prime}=d-1$.
If $N N^{\prime} \in E$, then $\operatorname{lin}\left(N \cap N^{\prime}\right)=e^{\perp}$.
Associate $s_{N N^{\prime}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in e^{\perp}.

Any walk $W=N_{0} N_{1} \ldots N_{k}$ in $G(\mathcal{N})$ yields transformation

$$
t_{W}=s_{N_{k} N_{k-1}} \ldots s_{N_{2} N_{1}} s_{N_{1} N_{0}}
$$

Fix base region N_{0}.
\mathcal{N} is virtually inscribable if there is $x_{0} \in \mathbb{R}^{d}$ with $t_{W}\left(x_{0}\right)=x_{0}$ for any closed walk W based at N_{0}.

Virtually inscribable fans

\mathcal{N} general full-dimensional, strongly connected fan.
Dual graph $G(\mathcal{N})=(\mathcal{N}, E)$
$N, N^{\prime} \in \mathcal{N}$ are adjacent if $\operatorname{dim} N \cap N^{\prime}=d-1$.
If $N N^{\prime} \in E$, then $\operatorname{lin}\left(N \cap N^{\prime}\right)=e^{\perp}$.
Associate $s_{N N^{\prime}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in e^{\perp}.

Any walk $W=N_{0} N_{1} \ldots N_{k}$ in $G(\mathcal{N})$ yields transformation

$$
t_{W}=s_{N_{k} N_{k-1}} \ldots s_{N_{2} N_{1}} s_{N_{1} N_{0}}
$$

Fix base region N_{0}.
\mathcal{N} is virtually inscribable if there is $x_{0} \in \mathbb{R}^{d}$ with $t_{W}\left(x_{0}\right)=x_{0}$ for any closed walk W based at N_{0}.
\mathcal{N} is inscribable if additionally $t_{W}\left(x_{0}\right) \in \operatorname{int}\left(N_{k}\right)$ for all walks $W=N_{0} N_{1} \ldots N_{k}$

Inscribed zonotopes

Zonotope

$$
Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]
$$

for some $z_{1}, \ldots, z_{k} \in \mathbb{R}^{d} \backslash\{0\}$.

Inscribed zonotopes

Zonotope

$$
Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]
$$

for some $z_{1}, \ldots, z_{k} \in \mathbb{R}^{d} \backslash\{0\}$.

Example: the standard permutahedron

$$
\frac{1}{2} \sum_{1 \leq i<j \leq d}\left[e_{i}-e_{j}, e_{j}-e_{i}\right]=t+\Pi(1,2, \ldots, d)
$$

Inscribed zonotopes

Zonotope

$$
Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]
$$

for some $z_{1}, \ldots, z_{k} \in \mathbb{R}^{d} \backslash\{0\}$.

Example: the standard permutahedron

$$
\frac{1}{2} \sum_{1 \leq i<j \leq d}\left[e_{i}-e_{j}, e_{j}-e_{i}\right]=t+\Pi(1,2, \ldots, d)
$$

Theorem (McMullen)
A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Inscribed zonotopes

Zonotope

$$
Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]
$$

for some $z_{1}, \ldots, z_{k} \in \mathbb{R}^{d} \backslash\{0\}$.

Example: the standard permutahedron

$$
\frac{1}{2} \sum_{1 \leq i<j \leq d}\left[e_{i}-e_{j}, e_{j}-e_{i}\right]=t+\Pi(1,2, \ldots, d)
$$

Theorem (McMullen)

A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.
Theorem
P is an inscribed zonotope if and only if all 2-faces are inscribed and centrally-symmetric.

Inscribed zonotopes

Zonotope

$$
Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]
$$

for some $z_{1}, \ldots, z_{k} \in \mathbb{R}^{d} \backslash\{0\}$.

Example: the standard permutahedron

$$
\frac{1}{2} \sum_{1 \leq i<j \leq d}\left[e_{i}-e_{j}, e_{j}-e_{i}\right]=t+\Pi(1,2, \ldots, d)
$$

Theorem (McMullen)

A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.
Theorem
P is an inscribed zonotope if and only if all 2-faces are inscribed and centrally-symmetric.

Exercise

Which zonotopes are inscribable?

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Fix $L \subset \mathbb{R}^{d}$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H}) localization $\mathcal{H}_{L}:=\{H \in \mathcal{H}: L \subseteq H\}$

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Fix $L \subset \mathbb{R}^{d}$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H}) localization $\mathcal{H}_{L}:=\{H \in \mathcal{H}: L \subseteq H\}$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_{L} (strongly) inscribable.

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Fix $L \subset \mathbb{R}^{d}$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})
localization $\mathcal{H}_{L}:=\{H \in \mathcal{H}: L \subseteq H\}$
Proposition
If \mathcal{H} (strongly) inscribable, then \mathcal{H}_{L} (strongly) inscribable.
restriction $\mathcal{H}^{L}:=\left\{H \cap L: H \in \mathcal{H} \backslash \mathcal{H}_{L}\right\}$. Hyperplane arrangement in L

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Fix $L \subset \mathbb{R}^{d}$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})
localization $\mathcal{H}_{L}:=\{H \in \mathcal{H}: L \subseteq H\}$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_{L} (strongly) inscribable.
restriction $\mathcal{H}^{L}:=\left\{H \cap L: H \in \mathcal{H} \backslash \mathcal{H}_{L}\right\}$. Hyperplane arrangement in L
Theorem
If Z inscribed, then orthogonal projection of Z onto L is inscribed.

Zonotopes and hyperplane arrangements

$Z=\left[-z_{1}, z_{1}\right]+\left[-z_{2}, z_{2}\right]+\cdots+\left[-z_{k}, z_{k}\right]$ gives rise to hyperplane arrangement $\mathcal{H}=\left\{H_{i}=z_{i}^{\perp}: i=1, \ldots, k\right\}$
\mathcal{H} is strongly inscribable: inscribed zonotope $Z \in \mathcal{I}_{+}(\mathcal{H})$.

Fix $L \subset \mathbb{R}^{d}$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})
localization $\mathcal{H}_{L}:=\{H \in \mathcal{H}: L \subseteq H\}$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_{L} (strongly) inscribable.
restriction $\mathcal{H}^{L}:=\left\{H \cap L: H \in \mathcal{H} \backslash \mathcal{H}_{L}\right\}$. Hyperplane arrangement in L
Theorem
If Z inscribed, then orthogonal projection of Z onto L is inscribed. If \mathcal{H} strongly inscribable, then \mathcal{H}^{L} strongly inscribable.

Zonotopes essentially the only polytopes with that property.

Constructing inscribed zonotopes

W finite reflection group,

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots,

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.
\longrightarrow some examples: $A_{n}, B_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}, H_{3}, H_{4}$

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.
\longrightarrow some examples: $A_{n}, B_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}, H_{3}, H_{4}$
Corollary
Restrictions and localizations of reflection arrangements are strongly inscribable.

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.
\longrightarrow some examples: $A_{n}, B_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}, H_{3}, H_{4}$
Corollary
Restrictions and localizations of reflection arrangements are strongly inscribable.
Are there more irreducible arrangements? $\left(\mathcal{N}\left(Z \times Z^{\prime}\right)=\mathcal{N}(Z) \oplus \mathcal{N}\left(Z^{\prime}\right)\right.$ is reducible. $)$

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.
\longrightarrow some examples: $A_{n}, B_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}, H_{3}, H_{4}$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.
Are there more irreducible arrangements? $\left(\mathcal{N}\left(Z \times Z^{\prime}\right)=\mathcal{N}(Z) \oplus \mathcal{N}\left(Z^{\prime}\right)\right.$ is reducible. $)$

Arrangement \mathcal{H} is simplicial if all regions linearly isomorphic to $\mathbb{R}_{\geq 0}^{d}$.

Constructing inscribed zonotopes

W finite reflection group, $\Phi^{+} \subset \mathbb{R}^{d}$ positive roots, then

$$
Z_{W}=\sum_{z \in \Phi^{+}}[-z, z]
$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\left\{z^{\perp}: z \in \Phi^{+}\right\}$.
\longrightarrow some examples: $A_{n}, B_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}, H_{3}, H_{4}$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.
Are there more irreducible arrangements? $\left(\mathcal{N}\left(Z \times Z^{\prime}\right)=\mathcal{N}(Z) \oplus \mathcal{N}\left(Z^{\prime}\right)\right.$ is reducible. $)$

Arrangement \mathcal{H} is simplicial if all regions linearly isomorphic to $\mathbb{R}_{\geq 0}^{d}$.
Theorem
If P is inscribed and $\mathcal{N}(P)=\mathcal{H}$ for some arrangement, then \mathcal{H} is simplicial.
\longrightarrow simplicial arrangements are fascinating but rare!

Simplicial arrangements are fascinating but rare!

Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)
Up to linear isomorphism, there are 2 infinite families and $90+5$ sporadic irreducible, simplicial arrangements in 3 -space.

Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and $90+5$ sporadic irreducible, simplicial arrangements in 3 -space.

Corollary
There are precisely 17 (strongly) inscribable arrangements in this list.

Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)
Up to linear isomorphism, there are 2 infinite families and $90+5$ sporadic irreducible, simplicial arrangements in 3 -space.

Corollary
There are precisely 17 (strongly) inscribable arrangements in this list. All come from restrictions of reflection arrangements.

Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)
Up to linear isomorphism, there are 2 infinite families and $90+5$ sporadic irreducible, simplicial arrangements in 3 -space.

Corollary
There are precisely 17 (strongly) inscribable arrangements in this list. All come from restrictions of reflection arrangements.

Conjecture: Every inscribed 3-zonotope comes from a restriction.

Inscribed virtual polytopes

How to interpret this?

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition Grothendieck group: $\mathcal{T}:=\left(\mathcal{T}_{+} \times \mathcal{T}_{+}\right) / \sim$ is torsion-free group.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition Grothendieck group: $\mathcal{T}:=\left(\mathcal{T}_{+} \times \mathcal{T}_{+}\right) / \sim$ is torsion-free group.
$\mathcal{T} \backslash \mathcal{T}_{+}$are called virtual polytopes.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition Grothendieck group: $\mathcal{T}:=\left(\mathcal{T}_{+} \times \mathcal{T}_{+}\right) / \sim$ is torsion-free group.
$\mathcal{T} \backslash \mathcal{T}_{+}$are called virtual polytopes.
Virtual polytopes come with well-defined vertices.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition Grothendieck group: $\mathcal{T}:=\left(\mathcal{T}_{+} \times \mathcal{T}_{+}\right) / \sim$ is torsion-free group.
$\mathcal{T} \backslash \mathcal{T}_{+}$are called virtual polytopes.
Virtual polytopes come with well-defined vertices.
Proposition
Inscribed virtual polytopes $\mathcal{I} \subseteq \mathcal{T}$ form a subgroup.

Inscribed virtual polytopes

How to interpret this?

If $Q+R=P$, then $P-R=Q$ is the Minkowski difference of P and R. In general, $P-R$ exists but is not always a polytope.

Polytopes with fixed fan \mathcal{N} form monoid \mathcal{T}_{+}under Minkowski addition Grothendieck group: $\mathcal{T}:=\left(\mathcal{T}_{+} \times \mathcal{T}_{+}\right) / \sim$ is torsion-free group.
$\mathcal{T} \backslash \mathcal{T}_{+}$are called virtual polytopes.
Virtual polytopes come with well-defined vertices.
Proposition
Inscribed virtual polytopes $\mathcal{I} \subseteq \mathcal{T}$ form a subgroup.
$\mathcal{T}=\mathcal{T}_{+}-\mathcal{T}_{+}$but in general $\mathcal{I} \neq \mathcal{I}_{+}-\mathcal{I}_{+}$.
Corollary
If \mathcal{N} is a 2-dim odd normal fan, then $\mathcal{I}(\mathcal{N}) \neq 0$.

Routed particle trajectories

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Routed particle trajectories

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_{0}, q_{1}, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1}=q_{0}$. Its route $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{P}^{d-1}$ with $\alpha_{i}:=\mathbb{R}\left(q_{i+1}-q_{i}\right)$.

Routed particle trajectories

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_{0}, q_{1}, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1}=q_{0}$. Its route $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{P}^{d-1}$ with $\alpha_{i}:=\mathbb{R}\left(q_{i+1}-q_{i}\right)$.

More generally, routing scheme is abstract graph $G=(V, E)$ and $\alpha: E \rightarrow \mathbb{P}^{d-1}$. A trajectory is a map $q: V \rightarrow S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

Routed particle trajectories

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_{0}, q_{1}, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1}=q_{0}$. Its route $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{P}^{d-1}$ with $\alpha_{i}:=\mathbb{R}\left(q_{i+1}-q_{i}\right)$.
More generally, routing scheme is abstract graph $G=(V, E)$ and $\alpha: E \rightarrow \mathbb{P}^{d-1}$. A trajectory is a map $q: V \rightarrow S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

Proposition

Trajectories with fixed (G, α) is isomorphic to spherical subspaces of S^{d-1}.

Routed particle trajectories

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_{0}, q_{1}, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1}=q_{0}$. Its route $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{P}^{d-1}$ with $\alpha_{i}:=\mathbb{R}\left(q_{i+1}-q_{i}\right)$.
More generally, routing scheme is abstract graph $G=(V, E)$ and $\alpha: E \rightarrow \mathbb{P}^{d-1}$. A trajectory is a map $q: V \rightarrow S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

Proposition

Trajectories with fixed (G, α) is isomorphic to spherical subspaces of S^{d-1}.
Every full-dimensional fan \mathcal{N} determines a routing scheme (G, α).
Theorem
Trajectories for (G, α) are precisely the inscribed virtual polytopes $P^{\prime} \simeq P$. new connection: inscribed polytopes, PL functions, and particle trajectories!

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.
$W=\left\langle s_{e}: e \in E\right\rangle \subset O\left(\mathbb{R}^{d}\right)$ (possibly infinite) reflection group.

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.
$W=\left\langle s_{e}: e \in E\right\rangle \subset O\left(\mathbb{R}^{d}\right)$ (possibly infinite) reflection group.
Fix $v_{0} \in V$. Every walk $w=v_{0} v_{1} \ldots v_{k}$ in G yields element

$$
t_{w}=s_{v_{k} v_{k-1}} \ldots s_{v_{2} v_{1}} s_{v_{1} v_{0}} \in W
$$

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.
$W=\left\langle s_{e}: e \in E\right\rangle \subset O\left(\mathbb{R}^{d}\right)$ (possibly infinite) reflection group.
Fix $v_{0} \in V$. Every walk $w=v_{0} v_{1} \ldots v_{k}$ in G yields element

$$
t_{w}=s_{v_{k} v_{k-1}} \ldots s_{v_{2} v_{1}} s_{v_{1} v_{0}} \in W .
$$

connected groupoid is (non-canonically) determined by subgroup $\operatorname{hom}_{R}\left(v_{0}\right)=\left\{t_{w}: w\right.$ closed walk $\} \subseteq W$, for some fixed v_{0}

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.
$W=\left\langle s_{e}: e \in E\right\rangle \subset O\left(\mathbb{R}^{d}\right)$ (possibly infinite) reflection group.
Fix $v_{0} \in V$. Every walk $w=v_{0} v_{1} \ldots v_{k}$ in G yields element

$$
t_{w}=s_{v_{k} v_{k-1}} \ldots s_{v_{2} v_{1}} s_{v_{1} v_{0}} \in W .
$$

connected groupoid is (non-canonically) determined by subgroup $\operatorname{hom}_{R}\left(v_{0}\right)=\left\{t_{w}: w\right.$ closed walk $\} \subseteq W$, for some fixed v_{0}
\longrightarrow Discrete holonomy groups and groups of projectivities (Joswig 2002).

Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.
Reflection groupoid R associated to a routing scheme (G, α) $G=(V, E)$ connected graph, $\alpha: E \rightarrow \mathbb{P}^{d-1}$
$s_{e}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ reflection in hyperplane $\alpha(e)^{\perp}$.
$W=\left\langle s_{e}: e \in E\right\rangle \subset O\left(\mathbb{R}^{d}\right)$ (possibly infinite) reflection group.
Fix $v_{0} \in V$. Every walk $w=v_{0} v_{1} \ldots v_{k}$ in G yields element

$$
t_{w}=s_{v_{k} v_{k-1}} \ldots s_{v_{2} v_{1}} s_{v_{1} v_{0}} \in W .
$$

connected groupoid is (non-canonically) determined by subgroup $\operatorname{hom}_{R}\left(v_{0}\right)=\left\{t_{w}: w\right.$ closed walk $\} \subseteq W$, for some fixed v_{0}
\longrightarrow Discrete holonomy groups and groups of projectivities (Joswig 2002).

Proposition

If \mathcal{N} is virtually inscribed, then $\operatorname{hom}_{R}\left(v_{0}\right)$ is generated by finitely many reflections.

Paper on the arXiv: 2012.07724

Inscribed normally equivalent polytopes

- rich structure $\left(\mathcal{I}_{+}(\mathcal{N})\right.$ open cone $)$
- effectively computable

Strongly inscribable arrangements

- subclass of simplicial arrangements
- restrictions/localizations of reflection arrangements
- Conjecture: Not more!

Inscribable virtually polytopes

- natural notion, group structure

Routed trajectories and reflection groupoids

- interesting structures - deserve further study!

