Normally inscribable polytopes

Raman Sanyal Goethe-Universität Frankfurt

joint work with Sebastian Manecke arXiv 2012.07724

Polytope $P \subset \mathbb{R}^d$ is the convex hull of finitely many points.

Polytope $P \subset \mathbb{R}^d$ is the convex hull of finitely many points.

P is inscribed if its vertices V(P) lie on a common sphere.

Polytope $P \subset \mathbb{R}^d$ is the convex hull of finitely many points.

P is inscribed if its vertices V(P) lie on a common sphere.

Question (Steiner 1832)

Can every 3-dimensional polytope be inscribed?

Polytope $P \subset \mathbb{R}^d$ is the convex hull of finitely many points.

P is inscribed if its vertices V(P) lie on a common sphere.

Question (Steiner 1832)

Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P' combinatorially equivalent to P.

Polytope $P \subset \mathbb{R}^d$ is the convex hull of finitely many points.

P is inscribed if its vertices V(P) lie on a common sphere.

Question (Steiner 1832)

Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P' combinatorially equivalent to P.

Obviously true for convex polygons (2-dimensional polytopes).

Orbit polytopes / discrete orbitopes

 $P = conv(G \cdot p), G \subset O(d)$ finite group

 $E.g.:\ Permutahedra$

Orbit polytopes / discrete orbitopes

 $P = conv(G \cdot p), G \subset O(d)$ finite group

E.g.: Permutahedra

Ideal hyperbolic polyhedra

hyperbolic space $B_d^{\circ} = \{x \in \mathbb{R}^d : ||x||_2 < 1\}$

hyperplanes: $H \cap B_d^{\circ}$, $H \subset \mathbb{R}^d$ is usual hyperplane

hyperbolic polytopes: usual polytopes $P \subseteq B_d$.

 $S^{d-1} = \partial B_d$ are points at infinity

ideal hyperbolic polyhedra have all vertices in infinity

Orbit polytopes / discrete orbitopes

 $P = conv(G \cdot p), G \subset O(d)$ finite group

E.g.: Permutahedra

Ideal hyperbolic polyhedra

hyperbolic space $B_d^{\circ} = \{x \in \mathbb{R}^d : ||x||_2 < 1\}$

hyperplanes: $H \cap B_d^{\circ}$, $H \subset \mathbb{R}^d$ is usual hyperplane hyperbolic polytopes: usual polytopes $P \subset B_d$.

 $S^{d-1} = \partial B_d$ are points at infinity

ideal hyperbolic polyhedra have all vertices in infinity

Delaunay subdivisions

subdivisions with empty circumsphere condition inscribed polytopes under stereographic projection

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.

Counter example: Stack faces of a tetrahedron.

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.

Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes = planar, 3-connected graphs

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.

Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes = planar, 3-connected graphs

Theorem (Rivin 1992)

Checking if a planar 3-connected graph can be realized as an inscribed polytope can be done in polynomial time.

No combinatorial model for 4-polytopes!

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^d$. Can P be deformed into an inscribed polytope without changing its combinatorics?

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^d$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)

For $d \ge 4$, the realization spaces of d-polytopes are universal.

 \longrightarrow wild topology; impossible to navigate.

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^d$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)

For $d \ge 4$, the realization spaces of d-polytopes are universal.

 \longrightarrow wild topology; impossible to navigate.

P is normally equivalent to P' ($P \simeq P'$) if P,P' combinatorially isomorphic and there is a continuous deformation keeps corresponding faces parallel.

- → McMullen's g-Theorem, nef cones, parametric LP, etc.
- \longrightarrow deformation space $\{P': P \simeq P'\}$ is (simply) connected

No combinatorial model for 4-polytopes!

Question

Given a polytope $P \subset \mathbb{R}^d$. Can P be deformed into an inscribed polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)

For $d \ge 4$, the realization spaces of d-polytopes are universal.

 \longrightarrow wild topology; impossible to navigate.

- \longrightarrow McMullen's g-Theorem, nef cones, parametric LP, etc.
- \longrightarrow deformation space $\{P': P \simeq P'\}$ is (simply) connected

When is P normally equivalent to an inscribed polytope P'?

 \longrightarrow call such P normally inscribable

Inscribed cone of $P \subset \mathbb{R}^d$

$$\mathcal{I}_+(P) \; := \; \{P' \subset \mathbb{R}^d \; \text{inscribed} : P' \simeq P\} \; / \; \text{translation}$$

Inscribed cone of $P \subset \mathbb{R}^d$

$$\mathcal{I}_+(P) \; := \; \{P' \subset \mathbb{R}^d \; \text{inscribed} : P' \simeq P\} \; / \; \text{translation}$$

Cone:
$$P' \in \mathcal{I}_+(P), \mu > 0 \implies \mu \cdot P' \in \mathcal{I}_+(P).$$

Inscribed cone of $P \subset \mathbb{R}^d$

$$\mathcal{I}_+(P) \; := \; \{P' \subset \mathbb{R}^d \; \text{inscribed} : P' \simeq P\} \; / \; \text{translation}$$

Cone:
$$P' \in \mathcal{I}_+(P), \mu > 0 \implies \mu \cdot P' \in \mathcal{I}_+(P).$$

Minkowski sum of polytopes $P,Q\subset\mathbb{R}^d$

$$P+Q = \{p+q : p \in P, q \in Q\}.$$

Inscribed cone of $P \subset \mathbb{R}^d$

$$\mathcal{I}_+(P) \ := \ \{P' \subset \mathbb{R}^d \ \mathsf{inscribed} : P' \simeq P\} \ / \ \mathsf{translation}$$

Cone: $P' \in \mathcal{I}_+(P), \mu > 0 \implies \mu \cdot P' \in \mathcal{I}_+(P).$

Minkowski sum of polytopes $P,Q\subset\mathbb{R}^d$

$$P + Q = \{p + q : p \in P, q \in Q\}.$$

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in \mathcal{I}_+(P).$$

Inscribed cone of $P \subset \mathbb{R}^d$

$$\mathcal{I}_+(P) := \{P' \subset \mathbb{R}^d \text{ inscribed} : P' \simeq P\} / \text{translation}$$

Cone: $P' \in \mathcal{I}_+(P), \mu > 0 \implies \mu \cdot P' \in \mathcal{I}_+(P).$

Minkowski sum of polytopes $P,Q\subset\mathbb{R}^d$

$$P+Q = \{p+q : p \in P, q \in Q\}.$$

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in\mathcal{I}_+(P).$$

 $\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in\mathcal{I}_+(P).$$

 $\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in\mathcal{I}_+(P).$$

 $\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary

Deciding if a rational polytope *P* is normally inscribable is polynomial time solvable.

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in\mathcal{I}_+(P).$$

 $\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary

Deciding if a rational polytope P is normally inscribable is polynomial time solvable.

Corollary

If P is normally inscribable and rational, then there is a rational $P' \in \mathcal{I}_+(P)$.

Theorem

Let $P \subset \mathbb{R}^d$ and $Q, Q' \in \mathcal{I}_+(P)$. Then

$$Q+Q'\in\mathcal{I}_+(P)$$
.

 $\mathcal{I}_{+}(P)$ is an open polyhedral cone of dimension $\leq d$.

Corollary

Deciding if a rational polytope P is normally inscribable is polynomial time solvable.

Corollary

If P is normally inscribable and rational, then there is a rational $P' \in \mathcal{I}_+(P)$.

Corollary

If P is normally inscribable with symmetry group G, then there is $P' \in \mathcal{I}_+(P)$ with symmetry group G.

Let $P, Q \subset \mathbb{R}^d$ be normally equivalent and inscribed to unit sphere.

For generic linear function $\ell(x)$, let $p \in P$, $q \in Q$ be maximizers.

Let $P, Q \subset \mathbb{R}^d$ be normally equivalent and inscribed to unit sphere.

For generic linear function $\ell(x)$, let $p \in P$, $q \in Q$ be maximizers.

Lemma

The angle between p and q is independent of ℓ .

Let $P, Q \subset \mathbb{R}^d$ be normally equivalent and inscribed to unit sphere.

For generic linear function $\ell(x)$, let $p \in P$, $q \in Q$ be maximizers.

Lemma

The angle between p and q is independent of ℓ .

Angle
$$\theta(P, Q) := \theta(p, q) \in [0, \pi)$$
.

Let $P,Q\subset\mathbb{R}^d$ be normally equivalent and inscribed to unit sphere.

For generic linear function $\ell(x)$, let $p \in P$, $q \in Q$ be maximizers.

Lemma

The angle between p and q is independent of ℓ .

Angle
$$\theta(P, Q) := \theta(p, q) \in [0, \pi)$$
.

Corollary

$$\frac{1}{\sqrt{2+2\cos\theta(P,Q)}}(P+Q)$$
 inscribed to unit sphere.

 $\longrightarrow \mathcal{I}_+(P)$ is a deformation space of ideal hyperbolic polytopes

Let $P, Q \subset \mathbb{R}^d$ be normally equivalent and inscribed to unit sphere.

For generic linear function $\ell(x)$, let $p \in P$, $q \in Q$ be maximizers.

Lemma

The angle between p and q is independent of ℓ .

Angle
$$\theta(P, Q) := \theta(p, q) \in [0, \pi)$$
.

Corollary

$$\frac{1}{\sqrt{2+2\cos\theta(P,Q)}}(P+Q)$$
 inscribed to unit sphere.

- $\longrightarrow \mathcal{I}_+(P)$ is a deformation space of ideal hyperbolic polytopes
- $\longrightarrow \mathcal{I}_+(P)$ is a deformation space of Delaunay subdivisions

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$N_{v} := \{c \in \mathbb{R}^{d} : \langle c, v \rangle \geq \langle c, u \rangle \quad \forall u \in V(P)\}.$$

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$N_v := \{c \in \mathbb{R}^d : \langle c, v \rangle \ge \langle c, u \rangle \quad \forall u \in V(P)\}.$$

Normal fan $\mathcal{N}(P) = \{N_v : v \in V(P)\}.$

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$N_v := \{c \in \mathbb{R}^d : \langle c, v \rangle \ge \langle c, u \rangle \quad \forall u \in V(P)\}.$$

Normal fan $\mathcal{N}(P) = \{N_v : v \in V(P)\}.$

Fact:

$$P \simeq P' \quad \Longleftrightarrow \quad \mathcal{N}(P) = \mathcal{N}(P')$$
.

Equivalence classes represented by complete, projective fans.

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$N_v := \{c \in \mathbb{R}^d : \langle c, v \rangle \ge \langle c, u \rangle \quad \forall u \in V(P)\}.$$

Normal fan $\mathcal{N}(P) = \{N_v : v \in V(P)\}.$

Fact:

$$P \simeq P' \quad \Longleftrightarrow \quad \mathcal{N}(P) = \mathcal{N}(P')$$
.

Equivalence classes represented by complete, projective fans.

$$\mathcal{T}_+(\mathcal{N}) \;:=\; \{P\subset \mathbb{R}^d: \mathcal{N}(P)=\mathcal{N}\}\;/\; \text{translation}$$

Inscribed cone of ${\cal N}$

$$\mathcal{I}_+(\mathcal{N}) \ := \ \{P \subset \mathbb{R}^d \ \text{inscribed} : \mathcal{N}(P) = \mathcal{N}\} \ / \ \text{translation}$$
 is a subcone of $\mathcal{T}_+(\mathcal{N})$.

Normal equivalence and normal fans

Normal cone of vertex $v \in V(P)$

$$N_v := \{c \in \mathbb{R}^d : \langle c, v \rangle \ge \langle c, u \rangle \quad \forall u \in V(P)\}.$$

Normal fan $\mathcal{N}(P) = \{N_v : v \in V(P)\}.$

Fact:

$$P \simeq P' \quad \Longleftrightarrow \quad \mathcal{N}(P) = \mathcal{N}(P')$$
.

Equivalence classes represented by complete, projective fans.

Type cone (or nef cone) of a fan ${\mathcal N}$

$$\mathcal{T}_+(\mathcal{N}) := \{P \subset \mathbb{R}^d : \mathcal{N}(P) = \mathcal{N}\} / \text{translation}$$

Inscribed cone of ${\mathcal N}$

$$\mathcal{I}_+(\mathcal{N}) \;:=\; \{P\subset\mathbb{R}^d \; \mathsf{inscribed} : \mathcal{N}(P) = \mathcal{N}\} \; / \; \mathsf{translation}$$

is a subcone of $\mathcal{T}_+(\mathcal{N})$.

 \mathcal{N} is inscribable if $\mathcal{I}_+(\mathcal{N}) \neq \varnothing$.

Hyperplanes $\{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \leq i < j \leq d$

Hyperplanes $\{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$ induces fan with cones

$$N_{\sigma} = \{x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\}$$

for any permutation $\sigma \in \mathfrak{S}_d$.

Hyperplanes $\{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$ induces fan with cones

$$N_{\sigma} = \{x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\}$$

for any permutation $\sigma \in \mathfrak{S}_d$.

Type/nef cone

$$\mathcal{T}_+(\mathcal{A}_{d-1}) := \{P : \mathcal{N}(P) = \mathcal{A}_{d-1}\} \ / \ \mathsf{translations}$$

is a $(2^d - d - 2)$ -dimensional cone (the submodular cone).

Hyperplanes $\{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$ induces fan with cones

$$N_{\sigma} = \{x_{\sigma(1)} \le x_{\sigma(2)} \le \cdots \le x_{\sigma(d)}\}\$$

for any permutation $\sigma \in \mathfrak{S}_d$.

Type/nef cone

$$\mathcal{T}_+(\mathcal{A}_{d-1}) := \{P : \mathcal{N}(P) = \mathcal{A}_{d-1}\} \ / \ \mathsf{translations}$$

is a $(2^d - d - 2)$ -dimensional cone (the submodular cone).

$$\mathcal{I}_{+}(\mathcal{A}_{d-1}) \cong \{x_1 < x_2 < \dots < x_d\}$$
 (linear order cone)

Permutahedron

$$p \mapsto \Pi(p) := conv\{(p_{\sigma(1)}, p_{\sigma(2)}, \dots, p_{\sigma(d)}) : \sigma\}$$

 \Rightarrow every inscribed permutahedron is \mathfrak{S}_d -symmetric.

Lemma

Let $Q \in \mathcal{I}_+(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Lemma

Let $Q \in \mathcal{I}_+(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Proof.

Normal cone $N_v = \{c : \langle e_i, c \rangle \leq 0 \text{ for } i = 1, \dots, k\}.$

Neighboring vertices are on the rays $\{v + \lambda_i e_i : \lambda_i \geq 0\}$.

If $z \in \mathbb{R}^d$ is the center of the inscribing sphere, then

$$\|\mathbf{v} + \lambda_i \mathbf{e}_i - \mathbf{z}\| = \|\mathbf{v} - \mathbf{z}\|.$$

At most one solution $\lambda_i > 0$.

Lemma

Let $Q \in \mathcal{I}_+(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Proof.

Normal cone $N_v = \{c : \langle e_i, c \rangle \leq 0 \text{ for } i = 1, \dots, k\}.$

Neighboring vertices are on the rays $\{v + \lambda_i e_i : \lambda_i \geq 0\}$.

If $z \in \mathbb{R}^d$ is the center of the inscribing sphere, then

$$\|\mathbf{v} + \lambda_i \mathbf{e}_i - \mathbf{z}\| = \|\mathbf{v} - \mathbf{z}\|.$$

Assume $Q \in \mathcal{I}_+(\mathcal{N})$ inscribed to unit sphere.

Corollary

Neighbors of v arise as reflections in walls of N_v .

Lemma

Let $Q \in \mathcal{I}_+(\mathcal{N})$. Then Q is uniquely determined by a single vertex.

Proof.

Normal cone $N_v = \{c : \langle e_i, c \rangle \leq 0 \text{ for } i = 1, \dots, k\}.$

Neighboring vertices are on the rays $\{v + \lambda_i e_i : \lambda_i \geq 0\}$.

If $z \in \mathbb{R}^d$ is the center of the inscribing sphere, then

$$\|\mathbf{v} + \lambda_i \mathbf{e}_i - \mathbf{z}\| = \|\mathbf{v} - \mathbf{z}\|.$$

Assume $Q \in \mathcal{I}_+(\mathcal{N})$ inscribed to unit sphere.

Corollary

Neighbors of v arise as reflections in walls of N_v .

Corollary

 $v \in \operatorname{int}(N_v)$ for every vertex $v \in V(Q)$.

 $\ensuremath{\mathcal{N}}$ general full-dimensional, strongly connected fan.

 ${\cal N}$ general full-dimensional, strongly connected fan.

Dual graph
$$G(\mathcal{N}) = (\mathcal{N}, E)$$

 $N, N' \in \mathcal{N}$ are adjacent if dim $N \cap N' = d - 1$.

If
$$NN' \in E$$
, then $\lim (N \cap N') = e^{\perp}$.

Associate $s_{NN'}: \mathbb{R}^d \to \mathbb{R}^d$ reflection in e^{\perp} .

 ${\cal N}$ general full-dimensional, strongly connected fan.

Dual graph
$$G(\mathcal{N}) = (\mathcal{N}, E)$$

$$N, N' \in \mathcal{N}$$
 are adjacent if dim $N \cap N' = d - 1$.

If $NN' \in E$, then $\lim(N \cap N') = e^{\perp}$.

Associate $s_{NN'}: \mathbb{R}^d \to \mathbb{R}^d$ reflection in e^{\perp} .

Any walk
$$W = N_0 N_1 \dots N_k$$
 in $G(\mathcal{N})$ yields transformation

$$t_W = s_{N_k N_{k-1}} \dots s_{N_2 N_1} s_{N_1 N_0}$$

 ${\cal N}$ general full-dimensional, strongly connected fan.

Dual graph $G(\mathcal{N}) = (\mathcal{N}, E)$

$$N, N' \in \mathcal{N}$$
 are adjacent if dim $N \cap N' = d - 1$.

If $NN' \in E$, then $\lim(N \cap N') = e^{\perp}$.

Associate $s_{NN'}: \mathbb{R}^d \to \mathbb{R}^d$ reflection in e^{\perp} .

Any walk $W = N_0 N_1 \dots N_k$ in $G(\mathcal{N})$ yields transformation

$$t_W = s_{N_k N_{k-1}} \dots s_{N_2 N_1} s_{N_1 N_0}$$

Fix base region N_0 .

 \mathcal{N} is virtually inscribable if there is $x_0 \in \mathbb{R}^d$ with $t_W(x_0) = x_0$ for any closed walk W based at N_0 .

 ${\cal N}$ general full-dimensional, strongly connected fan.

Dual graph
$$G(\mathcal{N}) = (\mathcal{N}, E)$$

$$N, N' \in \mathcal{N}$$
 are adjacent if dim $N \cap N' = d - 1$.

If $NN' \in E$, then $\lim(N \cap N') = e^{\perp}$.

Associate $s_{NN'}: \mathbb{R}^d \to \mathbb{R}^d$ reflection in e^{\perp} .

Any walk $W = N_0 N_1 \dots N_k$ in $G(\mathcal{N})$ yields transformation

$$t_W = s_{N_k N_{k-1}} \dots s_{N_2 N_1} s_{N_1 N_0}$$

Fix base region N_0 .

 \mathcal{N} is virtually inscribable if there is $x_0 \in \mathbb{R}^d$ with $t_W(x_0) = x_0$ for any closed walk W based at N_0 .

 \mathcal{N} is inscribable if additionally $t_W(x_0) \in \operatorname{int}(N_k)$ for all walks $W = N_0 N_1 \dots N_k$

Zonotope

$$Z = [-z_1, z_1] + [-z_2, z_2] + \cdots + [-z_k, z_k]$$

for some $z_1,\ldots,z_k\in\mathbb{R}^d\setminus\{0\}.$

Zonotope

$$Z = [-z_1, z_1] + [-z_2, z_2] + \cdots + [-z_k, z_k]$$

for some $z_1, \ldots, z_k \in \mathbb{R}^d \setminus \{0\}$.

Example: the standard permutahedron

$$\frac{1}{2} \sum_{1 \le i < j \le d} [e_i - e_j, e_j - e_i] = t + \Pi(1, 2, \dots, d)$$

Zonotope

$$Z = [-z_1, z_1] + [-z_2, z_2] + \cdots + [-z_k, z_k]$$

for some $z_1, \ldots, z_k \in \mathbb{R}^d \setminus \{0\}$.

Example: the standard permutahedron

$$\frac{1}{2} \sum_{1 \le i < j \le d} [e_i - e_j, e_j - e_i] = t + \Pi(1, 2, \dots, d)$$

Theorem (McMullen)

A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Zonotope

$$Z = [-z_1, z_1] + [-z_2, z_2] + \cdots + [-z_k, z_k]$$

for some $z_1, \ldots, z_k \in \mathbb{R}^d \setminus \{0\}$.

Example: the standard permutahedron

$$\frac{1}{2} \sum_{1 \le i < j \le d} [e_i - e_j, e_j - e_i] = t + \Pi(1, 2, \dots, d)$$

Theorem (McMullen)

A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Theorem

P is an inscribed zonotope if and only if all 2-faces are inscribed and centrally-symmetric.

Zonotope

$$Z = [-z_1, z_1] + [-z_2, z_2] + \cdots + [-z_k, z_k]$$

for some $z_1, \ldots, z_k \in \mathbb{R}^d \setminus \{0\}$.

Example: the standard permutahedron

$$\frac{1}{2} \sum_{1 \le i < j \le d} [e_i - e_j, e_j - e_i] = t + \Pi(1, 2, \dots, d)$$

Theorem (McMullen)

A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Theorem

P is an inscribed zonotope if and only if all 2-faces are inscribed and centrally-symmetric.

Exercise

Which zonotopes are inscribable?

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H}).$

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H})$.

Fix $L \subset \mathbb{R}^d$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})

localization
$$\mathcal{H}_L := \{ H \in \mathcal{H} : L \subseteq H \}$$

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H}).$

Fix $L \subset \mathbb{R}^d$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})

$$\text{localization } \mathcal{H}_L := \{H \in \mathcal{H} : L \subseteq H\}$$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_L (strongly) inscribable.

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H})$.

Fix $L \subset \mathbb{R}^d$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})

 $\mathsf{localization}\ \mathcal{H}_L := \{H \in \mathcal{H} : L \subseteq H\}$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_L (strongly) inscribable.

restriction $\mathcal{H}^L := \{H \cap L : H \in \mathcal{H} \setminus \mathcal{H}_L\}$. Hyperplane arrangement in L

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H}).$

Fix $L \subset \mathbb{R}^d$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})

localization $\mathcal{H}_L := \{ H \in \mathcal{H} : L \subseteq H \}$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_L (strongly) inscribable.

restriction $\mathcal{H}^L := \{H \cap L : H \in \mathcal{H} \setminus \mathcal{H}_L\}$. Hyperplane arrangement in L

Theorem

If Z inscribed, then orthogonal projection of Z onto L is inscribed.

$$Z = [-z_1, z_1] + [-z_2, z_2] + \dots + [-z_k, z_k]$$
 gives rise to hyperplane arrangement $\mathcal{H} = \{H_i = z_i^{\perp} : i = 1, \dots, k\}$

 ${\mathcal H}$ is strongly inscribable: inscribed zonotope $Z\in {\mathcal I}_+({\mathcal H})$.

Fix $L \subset \mathbb{R}^d$ intersection of some hyperplanes in \mathcal{H} (flat of \mathcal{H})

localization
$$\mathcal{H}_L := \{ H \in \mathcal{H} : L \subseteq H \}$$

Proposition

If \mathcal{H} (strongly) inscribable, then \mathcal{H}_L (strongly) inscribable.

restriction $\mathcal{H}^L := \{H \cap L : H \in \mathcal{H} \setminus \mathcal{H}_L\}$. Hyperplane arrangement in L

Theorem

If Z inscribed, then orthogonal projection of Z onto L is inscribed. If \mathcal{H} strongly inscribable, then \mathcal{H}^L strongly inscribable.

Zonotopes essentially the only polytopes with that property.

W finite reflection group,

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots,

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H} = \{z^{\perp} : z \in \Phi^+\}$.

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\{z^\perp:z\in\Phi^+\}.$

 \longrightarrow some examples: $A_n, B_n, D_n, F_4, E_6, E_7, E_8, H_3, H_4$

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\{z^\perp:z\in\Phi^+\}.$

 \longrightarrow some examples: $A_n, B_n, D_n, F_4, E_6, E_7, E_8, H_3, H_4$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\{z^\perp:z\in\Phi^+\}.$

 \longrightarrow some examples: $A_n, B_n, D_n, F_4, E_6, E_7, E_8, H_3, H_4$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.

Are there more irreducible arrangements? $(\mathcal{N}(Z \times Z') = \mathcal{N}(Z) \oplus \mathcal{N}(Z')$ is reducible.)

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\{z^\perp:z\in\Phi^+\}.$

 \longrightarrow some examples: $A_n, B_n, D_n, F_4, E_6, E_7, E_8, H_3, H_4$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.

Are there more irreducible arrangements? $(\Lambda((Z \times Z') - \Lambda((Z) \oplus \Lambda((Z')))) = \text{reducible}$

$$(\mathcal{N}(Z \times Z') = \mathcal{N}(Z) \oplus \mathcal{N}(Z')$$
 is reducible.)

Arrangement \mathcal{H} is simplicial if all regions linearly isomorphic to $\mathbb{R}^d_{\geq 0}$.

W finite reflection group, $\Phi^+ \subset \mathbb{R}^d$ positive roots, then

$$Z_W = \sum_{z \in \Phi^+} [-z, z]$$

is an inscribed zonotope for the reflection arrangement $\mathcal{H}=\{z^\perp:z\in\Phi^+\}.$

 \longrightarrow some examples: $A_n, B_n, D_n, F_4, E_6, E_7, E_8, H_3, H_4$

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.

Are there more irreducible arrangements? $(\Lambda((7 \times 7') - \Lambda((7) \oplus \Lambda((7')))) = \text{radius}(\Lambda((7) \oplus \Lambda((7))) = \text{radius}(\Lambda((7) \oplus \Lambda((7))))$

$$(\mathcal{N}(Z \times Z') = \mathcal{N}(Z) \oplus \mathcal{N}(Z')$$
 is reducible.)

Arrangement \mathcal{H} is simplicial if all regions linearly isomorphic to $\mathbb{R}^d_{\geq 0}$.

Theorem

If P is inscribed and $\mathcal{N}(P) = \mathcal{H}$ for some arrangement, then \mathcal{H} is simplicial.

→ simplicial arrangements are fascinating but rare!

Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and 90+5 sporadic irreducible, simplicial arrangements in 3-space.

Conjecture (Grünbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and 90+5 sporadic irreducible, simplicial arrangements in 3-space.

Corollary

There are precisely 17 (strongly) inscribable arrangements in this list.

Conjecture (Grünbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and 90+5 sporadic irreducible, simplicial arrangements in 3-space.

Corollary

There are precisely 17 (strongly) inscribable arrangements in this list. All come from restrictions of reflection arrangements.

Conjecture (Grünbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and 90+5 sporadic irreducible, simplicial arrangements in 3-space.

Corollary

There are precisely 17 (strongly) inscribable arrangements in this list. All come from restrictions of reflection arrangements.

Conjecture: Every inscribed 3-zonotope comes from a restriction.

How to interpret this?

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan ${\mathcal N}$ form monoid ${\mathcal T}_+$ under Minkowski addition

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan $\mathcal N$ form monoid $\mathcal T_+$ under Minkowski addition Grothendieck group: $\mathcal T:=(\mathcal T_+\times\mathcal T_+)/\sim$ is torsion-free group.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan $\mathcal N$ form monoid $\mathcal T_+$ under Minkowski addition Grothendieck group: $\mathcal T:=(\mathcal T_+\times\mathcal T_+)/\sim$ is torsion-free group.

 $\mathcal{T} \setminus \mathcal{T}_+$ are called virtual polytopes.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan $\mathcal N$ form monoid $\mathcal T_+$ under Minkowski addition Grothendieck group: $\mathcal T:=(\mathcal T_+\times\mathcal T_+)/\sim$ is torsion-free group.

 $\mathcal{T} \setminus \mathcal{T}_+$ are called virtual polytopes.

Virtual polytopes come with well-defined vertices.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan $\mathcal N$ form monoid $\mathcal T_+$ under Minkowski addition Grothendieck group: $\mathcal T:=(\mathcal T_+\times\mathcal T_+)/\sim$ is torsion-free group.

 $\mathcal{T} \setminus \mathcal{T}_+$ are called virtual polytopes.

Virtual polytopes come with well-defined vertices.

Proposition

Inscribed virtual polytopes $\mathcal{I} \subseteq \mathcal{T}$ form a subgroup.

How to interpret this?

If Q + R = P, then P - R = Q is the Minkowski difference of P and R. In general, P - R exists but is not always a *polytope*.

Polytopes with fixed fan $\mathcal N$ form monoid $\mathcal T_+$ under Minkowski addition Grothendieck group: $\mathcal T:=(\mathcal T_+\times\mathcal T_+)/\sim$ is torsion-free group.

 $\mathcal{T} \setminus \mathcal{T}_+$ are called virtual polytopes.

Virtual polytopes come with well-defined vertices.

Proposition

Inscribed virtual polytopes $\mathcal{I} \subseteq \mathcal{T}$ form a subgroup.

 $\mathcal{T} = \mathcal{T}_+ - \mathcal{T}_+$ but in general $\mathcal{I} \neq \mathcal{I}_+ - \mathcal{I}_+$.

Corollary

If \mathcal{N} is a 2-dim odd normal fan, then $\mathcal{I}(\mathcal{N}) \neq 0$.

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_0, q_1, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1} = q_0$. Its route $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n) \in \mathbb{P}^{d-1}$ with $\alpha_i := \mathbb{R}(q_{i+1} - q_i)$.

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_0, q_1, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1} = q_0$. Its route $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n) \in \mathbb{P}^{d-1}$ with $\alpha_i := \mathbb{R}(q_{i+1} - q_i)$.

More generally, routing scheme is abstract graph G=(V,E) and $\alpha: E \to \mathbb{P}^{d-1}$. A trajectory is a map $q: V \to S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_0, q_1, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1} = q_0$. Its route $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n) \in \mathbb{P}^{d-1}$ with $\alpha_i := \mathbb{R}(q_{i+1} - q_i)$.

More generally, routing scheme is abstract graph G=(V,E) and $\alpha: E \to \mathbb{P}^{d-1}$. A trajectory is a map $q: V \to S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

Proposition

Trajectories with fixed (G, α) is isomorphic to spherical subspaces of S^{d-1} .

How to interpret this?

Think of closed piecewise-linear trajectory of particle in a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points $q_0, q_1, \ldots, q_{n+1} \in S^{d-1}$ with $q_{n+1} = q_0$. Its route $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n) \in \mathbb{P}^{d-1}$ with $\alpha_i := \mathbb{R}(q_{i+1} - q_i)$.

More generally, routing scheme is abstract graph G=(V,E) and $\alpha: E \to \mathbb{P}^{d-1}$. A trajectory is a map $q: V \to S^{d-1}$ that yields a trajectory for every closed walk in G with fixed starting vertex.

Proposition

Trajectories with fixed (G, α) is isomorphic to spherical subspaces of S^{d-1} .

Every full-dimensional fan $\mathcal N$ determines a routing scheme $(\mathcal G,\alpha)$.

Theorem

Trajectories for (G, α) are precisely the inscribed virtual polytopes $P' \simeq P$. new connection: inscribed polytopes, PL functions, and particle trajectories!

Groupoid: Small category, every morphism invertible.

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e: \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e: \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

 $W = \langle s_e : e \in E \rangle \subset O(\mathbb{R}^d)$ (possibly infinite) reflection group.

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e : \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

 $W = \langle s_e : e \in E \rangle \subset O(\mathbb{R}^d)$ (possibly infinite) reflection group.

Fix $v_0 \in V$. Every walk $w = v_0 v_1 \dots v_k$ in G yields element

$$t_w = s_{v_k v_{k-1}} \dots s_{v_2 v_1} s_{v_1 v_0} \in W.$$

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e: \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

 $W = \langle s_e : e \in E \rangle \subset O(\mathbb{R}^d)$ (possibly infinite) reflection group.

Fix $v_0 \in V$. Every walk $w = v_0 v_1 \dots v_k$ in G yields element

$$t_w = s_{v_k v_{k-1}} \dots s_{v_2 v_1} s_{v_1 v_0} \in W.$$

connected groupoid is (non-canonically) determined by subgroup $\hom_R(v_0) = \{t_w : w \text{ closed walk}\} \subseteq W$, for some fixed v_0

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e: \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

 $W = \langle s_e : e \in E \rangle \subset O(\mathbb{R}^d)$ (possibly infinite) reflection group.

Fix $v_0 \in V$. Every walk $w = v_0 v_1 \dots v_k$ in G yields element

$$t_w = s_{v_k v_{k-1}} \dots s_{v_2 v_1} s_{v_1 v_0} \in W.$$

connected groupoid is (non-canonically) determined by subgroup $\hom_R(v_0) = \{t_w : w \text{ closed walk}\} \subseteq W$, for some fixed v_0

→ Discrete holonomy groups and groups of projectivities (Joswig 2002).

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, α) G = (V, E) connected graph, $\alpha : E \to \mathbb{P}^{d-1}$

 $s_e: \mathbb{R}^d \to \mathbb{R}^d$ reflection in hyperplane $\alpha(e)^{\perp}$.

 $W = \langle s_e : e \in E \rangle \subset O(\mathbb{R}^d)$ (possibly infinite) reflection group.

Fix $v_0 \in V$. Every walk $w = v_0 v_1 \dots v_k$ in G yields element

$$t_{w} = s_{v_{k}v_{k-1}} \dots s_{v_{2}v_{1}} s_{v_{1}v_{0}} \in W.$$

connected groupoid is (non-canonically) determined by subgroup $\hom_R(v_0) = \{t_w : w \text{ closed walk}\} \subseteq W$, for some fixed v_0

--- Discrete holonomy groups and groups of projectivities (Joswig 2002).

Proposition

If $\mathcal N$ is virtually inscribed, then $\hom_R(v_0)$ is generated by finitely many reflections.

Paper on the arXiv: 2012.07724

Inscribed normally equivalent polytopes

- ▶ rich structure $(\mathcal{I}_+(\mathcal{N})$ open cone)
- effectively computable

Strongly inscribable arrangements

- subclass of simplicial arrangements
- restrictions/localizations of reflection arrangements
- Conjecture: Not more!

Inscribable virtually polytopes

natural notion, group structure

Routed trajectories and reflection groupoids

interesting structures — deserve further study!

