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Polytopes and inscribability

Polytope P ⊂ Rd is the convex hull of finitely many points.

P is inscribed if its vertices V (P) lie on a common sphere.

Question (Steiner 1832)
Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P ′

combinatorially equivalent to P.

Obviously true for convex polygons (2-dimensional polytopes).
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Why care about inscribed polytopes?

Orbit polytopes / discrete orbitopes

P = conv(G · p), G ⊂ O(d) finite group

E.g.: Permutahedra

Ideal hyperbolic polyhedra

hyperbolic space B◦d = {x ∈ Rd : ‖x‖2 < 1}
hyperplanes: H ∩ B◦d , H ⊂ Rd is usual hyperplane

hyperbolic polytopes: usual polytopes P ⊆ Bd .

Sd−1 = ∂Bd are points at infinity

ideal hyperbolic polyhedra have all vertices in infinity

Delaunay subdivisions

subdivisions with empty circumsphere condition

inscribed polytopes under stereographic projection
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Polytopes and inscribability

Theorem (Steinitz 1928)
Combinatorial necessary condition for non-inscribability.

Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes = planar, 3-connected graphs

Theorem (Rivin 1992)
Checking if a planar 3-connected graph can be realized as an inscribed polytope
can be done in polynomial time.
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Which polytopes are inscribable in dimensions ≥ 4?

No combinatorial model for 4-polytopes!

Question
Given a polytope P ⊂ Rd . Can P be deformed into an inscribed
polytope without changing its combinatorics?

Theorem (Mnëv, Richter-Gebert)
For d ≥ 4, the realization spaces of d-polytopes are universal.

−→ wild topology; impossible to navigate.

P is normally equivalent to P ′ (P ' P ′) if P,P ′ combinatorially
isomorphic and there is a continuous deformation keeps
corresponding faces parallel.

−→ McMullen’s g -Theorem, nef cones, parametric LP, etc.
−→ deformation space {P ′ : P ' P ′} is (simply) connected

Question
When is P normally equivalent to an inscribed polytope P ′?
−→ call such P normally inscribable
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Inscribed cones

Inscribed cone of P ⊂ Rd

I+(P) := {P ′ ⊂ Rd inscribed : P ′ ' P} / translation

Cone: P ′ ∈ I+(P), µ > 0 =⇒ µ · P ′ ∈ I+(P).

Minkowski sum of polytopes P,Q ⊂ Rd

P + Q = {p + q : p ∈ P, q ∈ Q} .

Theorem
Let P ⊂ Rd and Q,Q ′ ∈ I+(P). Then

Q + Q ′ ∈ I+(P).

I+(P) is an open polyhedral cone of dimension ≤ d .
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Inscribed cones – first consequences

Theorem
Let P ⊂ Rd and Q,Q ′ ∈ I+(P). Then

Q + Q ′ ∈ I+(P).

I+(P) is an open polyhedral cone of dimension ≤ d .

Corollary
Deciding if a rational polytope P is normally inscribable is polynomial time
solvable.

Corollary
If P is normally inscribable and rational, then there is a rational P ′ ∈ I+(P).

Corollary
If P is normally inscribable with symmetry group G , then there is P ′ ∈ I+(P)
with symmetry group G .
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First implications

Let P,Q ⊂ Rd be normally equivalent and inscribed to unit sphere.

For generic linear function `(x), let p ∈ P, q ∈ Q be maximizers.

Lemma
The angle between p and q is independent of `.

Angle θ(P,Q) := θ(p, q) ∈ [0, π).

Corollary
1√

2 + 2 cos θ(P,Q)
(P + Q) inscribed to unit sphere.

−→ I+(P) is a deformation space of ideal hyperbolic polytopes

−→ I+(P) is a deformation space of Delaunay subdivisions
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Normal equivalence and normal fans

Normal cone of vertex v ∈ V (P)

Nv := {c ∈ Rd : 〈c , v〉 ≥ 〈c , u〉 ∀u ∈ V (P)}.

Normal fan N (P) = {Nv : v ∈ V (P)}.

Fact:
P ' P ′ ⇐⇒ N (P) = N (P ′) .

Equivalence classes represented by complete, projective fans.

Type cone (or nef cone) of a fan N

T+(N ) := {P ⊂ Rd : N (P) = N} / translation

Inscribed cone of N

I+(N ) := {P ⊂ Rd inscribed : N (P) = N} / translation

is a subcone of T+(N ).

N is inscribable if I+(N ) 6= ∅.
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Example: Braid Arrangement Ad−1 and Permutahedra

Hyperplanes {x ∈ Rd : xi = xj} for 1 ≤ i < j ≤ d

induces fan with cones

Nσ = {xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)}

for any permutation σ ∈ Sd .

Type/nef cone

T+(Ad−1) := {P : N (P) = Ad−1} / translations

is a (2d − d − 2)-dimensional cone (the submodular cone).

I+(Ad−1) ∼= {x1 < x2 < · · · < xd} (linear order cone)

Permutahedron

p 7→ Π(p) := conv{(pσ(1), pσ(2), . . . , pσ(d)) : σ}

⇒ every inscribed permutahedron is Sd -symmetric.
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Local reflections

Lemma
Let Q ∈ I+(N ). Then Q is uniquely determined by a single vertex.

Proof.
Normal cone Nv = {c : 〈ei , c〉 ≤ 0 for i = 1, . . . , k}.
Neighboring vertices are on the rays {v + λiei : λi ≥ 0}.
If z ∈ Rd is the center of the inscribing sphere, then

‖v + λiei − z‖ = ‖v − z‖ .

At most one solution λi > 0.

Assume Q ∈ I+(N ) inscribed to unit sphere.

Corollary
Neighbors of v arise as reflections in walls of Nv .

Corollary
v ∈ int(Nv ) for every vertex v ∈ V (Q).

Let’s see this!
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Virtually inscribable fans

N general full-dimensional, strongly connected fan.

Dual graph G (N ) = (N ,E )
N,N ′ ∈ N are adjacent if dimN ∩ N ′ = d − 1.

If NN ′ ∈ E , then lin(N ∩ N ′) = e⊥.

Associate sNN′ : Rd → Rd reflection in e⊥.

Any walk W = N0N1 . . .Nk in G (N ) yields transformation

tW = sNkNk−1
. . . sN2N1sN1N0

Fix base region N0.

N is virtually inscribable if there is x0 ∈ Rd with tW (x0) = x0 for any closed
walk W based at N0.

N is inscribable if additionally tW (x0) ∈ int(Nk) for all walks W = N0N1 . . .Nk
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Inscribed zonotopes

Zonotope

Z = [−z1, z1] + [−z2, z2] + · · ·+ [−zk , zk ]

for some z1, . . . , zk ∈ Rd \ {0}.

Example: the standard permutahedron

1
2

∑
1≤i<j≤d

[ei − ej , ej − ei ] = t + Π(1, 2, . . . , d)

Theorem (McMullen)
A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Theorem
P is an inscribed zonotope if and only if all 2-faces are inscribed and
centrally-symmetric.

Exercise
Which zonotopes are inscribable?
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Zonotopes and hyperplane arrangements

Z = [−z1, z1] + [−z2, z2] + · · ·+ [−zk , zk ] gives rise to

hyperplane arrangement H = {Hi = z⊥i : i = 1, . . . , k}

H is strongly inscribable: inscribed zonotope Z ∈ I+(H).

Fix L ⊂ Rd intersection of some hyperplanes in H (flat of H)

localization HL := {H ∈ H : L ⊆ H}

Proposition
If H (strongly) inscribable, then HL (strongly) inscribable.

restriction HL := {H ∩ L : H ∈ H \ HL}. Hyperplane arrangement in L

Theorem
If Z inscribed, then orthogonal projection of Z onto L is inscribed.
If H strongly inscribable, then HL strongly inscribable.

Zonotopes essentially the only polytopes with that property.
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Constructing inscribed zonotopes

W finite reflection group,

Φ+ ⊂ Rd positive roots, then

ZW =
∑
z∈Φ+

[−z , z ]

is an inscribed zonotope for the reflection arrangement H = {z⊥ : z ∈ Φ+}.

−→ some examples: An,Bn,Dn,F4,E6,E7,E8,H3,H4

Corollary
Restrictions and localizations of reflection arrangements are strongly inscribable.

Are there more irreducible arrangements?
(N (Z × Z ′) = N (Z )⊕N (Z ′) is reducible.)

Arrangement H is simplicial if all regions linearly isomorphic to Rd
≥0.

Theorem
If P is inscribed and N (P) = H for some arrangement, then H is simplicial.

−→ simplicial arrangements are fascinating but rare!
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Simplicial arrangements are fascinating but rare!

Conjecture (Grünbaum, Cuntz)
Up to linear isomorphism, there are 2 infinite families and 90 + 5 sporadic
irreducible, simplicial arrangements in 3-space.

Corollary
There are precisely 17 (strongly) inscribable arrangements in this list.
All come from restrictions of reflection arrangements.

Conjecture: Every inscribed 3-zonotope comes from a restriction.
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Inscribed virtual polytopes

How to interpret this?

If Q + R = P, then P − R = Q is the Minkowski difference of P and R.
In general, P − R exists but is not always a polytope.

Polytopes with fixed fan N form monoid T+ under Minkowski addition
Grothendieck group: T := (T+ × T+)/ ∼ is torsion-free group.

T \ T+ are called virtual polytopes.

Virtual polytopes come with well-defined vertices.

Proposition
Inscribed virtual polytopes I ⊆ T form a subgroup.

T = T+ − T+ but in general I 6= I+ − I+.

Corollary
If N is a 2-dim odd normal fan, then I(N ) 6= 0.
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If N is a 2-dim odd normal fan, then I(N ) 6= 0.
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Routed particle trajectories

How to interpret this?
Think of closed piecewise-linear trajectory of particle in
a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points q0, q1, . . . , qn+1 ∈ Sd−1 with qn+1 = q0.
Its route α = (α0, α1, . . . , αn) ∈ Pd−1 with αi := R(qi+1 − qi ).

More generally, routing scheme is abstract graph G = (V ,E ) and
α : E → Pd−1. A trajectory is a map q : V → Sd−1 that yields a trajectory for
every closed walk in G with fixed starting vertex.

Proposition
Trajectories with fixed (G , α) is isomorphic to spherical subspaces of Sd−1.

Every full-dimensional fan N determines a routing scheme (G , α).

Theorem
Trajectories for (G , α) are precisely the inscribed virtual polytopes P ′ ' P.

new connection: inscribed polytopes, PL functions, and particle trajectories!
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Routing schemes and reflection groupoids

Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G , α)
G = (V ,E ) connected graph, α : E → Pd−1

se : Rd → Rd reflection in hyperplane α(e)⊥.

W = 〈se : e ∈ E 〉 ⊂ O(Rd) (possibly infinite) reflection group.

Fix v0 ∈ V . Every walk w = v0v1 . . . vk in G yields element

tw = svkvk−1
. . . sv2v1sv1v0 ∈ W .

connected groupoid is (non-canonically) determined by subgroup
homR(v0) = {tw : w closed walk} ⊆W , for some fixed v0

−→ Discrete holonomy groups and groups of projectivities (Joswig 2002).

Proposition
If N is virtually inscribed, then homR(v0) is generated by finitely many
reflections.
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Paper on the arXiv: 2012.07724

Inscribed normally equivalent polytopes

I rich structure (I+(N ) open cone)

I effectively computable

Strongly inscribable arrangements

I subclass of simplicial arrangements

I restrictions/localizations of reflection arrangements

I Conjecture: Not more!

Inscribable virtually polytopes

I natural notion, group structure

Routed trajectories and reflection groupoids

I interesting structures — deserve further study!
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