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Polytopes and inscribability

Polytope P C R is the convex hull of finitely many points.

P is inscribed if its vertices V(P) lie on a common sphere.

Question (Steiner 1832)

Can every 3-dimensional polytope be inscribed?

That is, for every 3-dimensional polytope P, is there an inscribed polytope P’
combinatorially equivalent to P.

Obviously true for convex polygons (2-dimensional polytopes).
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Why care about inscribed polytopes?

Orbit polytopes / discrete orbitopes
P = conv(G - p), G C O(d) finite group
E.g.: Permutahedra

Ideal hyperbolic polyhedra

hyperbolic space BS = {x € RY : ||x|» < 1}
hyperplanes: HN B3, H C R9 is usual hyperplane
hyperbolic polytopes: usual polytopes P C By.

S9=1 = 9By are points at infinity

ideal hyperbolic polyhedra have all vertices in infinity

Delaunay subdivisions

subdivisions with empty circumsphere condition

inscribed polytopes under stereographic projection
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Polytopes and inscribability

Theorem (Steinitz 1928)

Combinatorial necessary condition for non-inscribability.

Counter example: Stack faces of a tetrahedron.

Steinitz: Combinatorial types of 3-polytopes = planar, 3-connected graphs

Theorem (Rivin 1992)

Checking if a planar 3-connected graph can be realized as an inscribed polytope
can be done in polynomial time.
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Which polytopes are inscribable in dimensions > 47

No combinatorial model for 4-polytopes!
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Question

Given a polytope P C R?. Can P be deformed into an inscribed
polytope without changing its combinatorics?

Theorem (Mnév, Richter-Gebert)

For d > 4, the realization spaces of d-polytopes are universal.

— wild topology; impossible to navigate.

P is normally equivalent to P’ (P ~ P’) if P, P' combinatorially {
isomorphic and there is a continuous deformation keeps
corresponding faces parallel.

— McMullen’s g-Theorem, nef cones, parametric LP, etc.
— deformation space {P’: P ~ P’} is (simply) connected

Question
When is P normally equivalent to an inscribed polytope P’?
— call such P normally inscribable
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Z.(P) := {P' c R? inscribed : P’ ~ P} / translation
Cone: PPeZi(P),u>0 = pu-P €I, (P)
Minkowski sum of polytopes P, @ C R?

P+Q = {p+qg:peP,geQ}.

Theorem
Let P C RY and Q, Q' € Z.(P). Then

Q+Q eI, (P).
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Inscribed cones — first consequences

Theorem
Let PCR? and Q,Q" € Z.(P). Then

Q+ Q eI (P).

Z.(P) is an open polyhedral cone of dimension < d.

Corollary

Deciding if a rational polytope P is normally inscribable is polynomial time
solvable.

Corollary
If P is normally inscribable and rational, then there is a rational P' € T, (P).

Corollary

If P is normally inscribable with symmetry group G, then there is P’ € T, (P)
with symmetry group G.
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First implications
Let P, @ C RY be normally equivalent and inscribed to unit sphere.
For generic linear function £(x), let p € P, ¢ € @ be maximizers.

Lemma
The angle between p and q is independent of £.
Angle 6(P, Q) := 0(p, q) € [0, ).

Corollary )

2+ 2cosf(P, Q)

(P+ Q) inscribed to unit sphere.

— Z(P) is a deformation space of ideal hyperbolic polytopes

— Z.(P) is a deformation space of Delaunay subdivisions
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Normal equivalence and normal fans
Normal cone of vertex v € V(P)
N, = {ceR?: (c,v) > (c,u) Yue V(P)}

Normal fan N (P) = {N, : v € V(P)}.

Fact:
P~P <« N(P)=N(P).

Equivalence classes represented by complete, projective fans.

Type cone (or nef cone) of a fan A

T.(N) = {PCR?: N(P)=N?} / translation
Inscribed cone of A/
Z,(N) = {P c R inscribed : N(P) = N'} / translation

is a subcone of T, (N).
N is inscribable if Z, (N) # @.
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Example: Braid Arrangement A, 1 and Permutahedra

Hyperplanes {x € R : x; = x;} for 1 < i <j < d
induces fan with cones

T < Ty < T3
No = {xs(1) < Xo(2) < - < Xo(a)}

for any permutation o € &4.
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Example: Braid Arrangement A, 1 and Permutahedra

Hyperplanes {x € R : x; = x;} for 1 < i <j < d
induces fan with cones < < 3

No = {Xs1) S Xo2) <+ < Xo(a)}
for any permutation o € &4.
Type/nef cone
Ti(Ag—1) :={P: N(P) = Ag_1} / translations

is a (2¢ — d — 2)-dimensional cone (the submodular cone).
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Example: Braid Arrangement A, 1 and Permutahedra

Hyperplanes {x € R : x; = x;} for 1 < i <j < d
induces fan with cones

w1 <@y <y
No = {Xs1) S Xo2) <+ < Xo(a)}
for any permutation o € &4.
Type/nef cone
Ti(Ag—1) :={P: N(P) = Ag_1} / translations
is a (2¢ — d — 2)-dimensional cone (the submodular cone).
Ti(Ag—1) 2 {x1 < x2 < --+ < x4} (linear order cone)

Permutahedron
p = rl(p) = CO”V{(Pa(l)»Pa(Z)a R po(d)) : U}

= every inscribed permutahedron is G 4-symmetric.
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Local reflections

Lemma
Let Q € Z.(N). Then Q is uniquely determined by a single vertex.
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Local reflections

Lemma
Let Q € Z.(N). Then Q is uniquely determined by a single vertex.

Proof.
Normal cone N, = {c: (ej,c) <O0fori=1,..., k}.
Neighboring vertices are on the rays {v + A;e; : A; > 0}.

If z € RY is the center of the inscribing sphere, then

lv+Xe —z|| = ||v—z|.

At most one solution \; > 0.
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Local reflections

Lemma
Let Q € Z.(N). Then Q is uniquely determined by a single vertex.

Proof.

Normal cone N, = {c: (ej,c) <O0fori=1,..., k}.
Neighboring vertices are on the rays {v + A;e; : A; > 0}.
If z € RY is the center of the inscribing sphere, then

v+ Aigg—z|| = [lv—z].
At most one solution \; > 0.

Assume @ € Z,(N) inscribed to unit sphere.
Corollary

Neighbors of v arise as reflections in walls of N,,.

Corollary
v € int(N,) for every vertex v € V(Q).

Let's see this!
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Virtually inscribable fans
N general full-dimensional, strongly connected fan.
Dual graph G(N) = (N, E)
N, N € N are adjacent if dimN NN =d — 1.

If NN/ € E, then lin(N N N') = et &

Associate syns : RY — RY reflection in et.

Any walk W = NNy ... Ny in G(N) yields transformation

tw = SNgNi_; - - - SNo Ny SN No

Fix base region Nj.

N is virtually inscribable if there is xp € RY with tyy(xp) = xo for any closed
walk W based at Nj.

N is inscribable if additionally tw/(xo) € int(Ny) for all walks W = NoNjy ... Ny

12/ 20



Inscribed zonotopes
Zonotope
Z = [~a,z]+[-2z,2]+ -+ [~z z]

for some z, ...,z € RY\ {0}. -
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Inscribed zonotopes
Zonotope
Z = [~zi,z]+ [~z2,22] + - - - + [~ 2k, 2]

for some z, ...,z € RY\ {0}.

Example: the standard permutahedron

% Z [e,-—ej,ej—e,-] = t+ﬂ(172,...7d)
1<i<j<d
Theorem (McMullen)
A polytope P is a zonotope if and only if all 2-faces are centrally-symmetric.

Theorem

P is an inscribed zonotope if and only if all 2-faces are inscribed and
centrally-symmetric.

Exercise
Which zonotopes are inscribable?
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Zonotopes and hyperplane arrangements

Z =|-z1,z1]| + [-2, 2] + - - + [ 2k, zk] gives rise to
hyperplane arrangement H = {H; =z :i=1,... k}

‘H is strongly inscribable: inscribed zonotope Z € Z,(H).
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Zonotopes and hyperplane arrangements

Z =|-z1,z1]| + [-2, 2] + - - + [ 2k, zk] gives rise to

hyperplane arrangement H = {H; =z :i=1,... k}

‘H is strongly inscribable: inscribed zonotope Z € Z,(H).

Fix L C RY intersection of some hyperplanes in H (flat of H)
localization H; :={H € H: L C H}

Proposition

If H (strongly) inscribable, then H, (strongly) inscribable.

restriction H- := {HNL: H € H\ H.}. Hyperplane arrangement in L

Theorem
If Z inscribed, then orthogonal projection of Z onto L is inscribed.
If H strongly inscribable, then H" strongly inscribable.

Zonotopes essentially the only polytopes with that property.
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Constructing inscribed zonotopes

W finite reflection group, ®* C RY positive roots, then

Zyw = Z[—z,z]

zed+
is an inscribed zonotope for the reflection arrangement H = {z1 : z € &},
— some examples: A,, B,, Dy, F4, Eg, E7, Eg, H3, Hy

Corollary

Restrictions and localizations of reflection arrangements are strongly inscribable.

Are there more irreducible arrangements?

N(ZxZ")Y=N(Z)®d N(Z') is reducible.)

Arrangement H is simplicial if all regions linearly isomorphic to R%o-

Theorem
If P is inscribed and N'(P) = H for some arrangement, then H is simplicial.

— simplicial arrangements are fascinating but rare!
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Corollary

There are precisely 17 (strongly) inscribable arrangements in this list.
All come from restrictions of reflection arrangements.
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Simplicial arrangements are fascinating but rare!

Conjecture (Griinbaum, Cuntz)

Up to linear isomorphism, there are 2 infinite families and 90 + 5 sporadic
irreducible, simplicial arrangements in 3-space.

Corollary

There are precisely 17 (strongly) inscribable arrangements in this list.
All come from restrictions of reflection arrangements.

PDEDBSD
HIPIDY
OSI@

Conjecture: Every inscribed 3-zonotope comes from a restriction.
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Inscribed virtual polytopes

How to interpret this?

If @+ R= P, then P — R = Q is the Minkowski difference of P and R.

In general, P — R exists but is not always a polytope.

Polytopes with fixed fan A/ form monoid 7. under Minkowski addition
Grothendieck group: T := (T3 x T3)/ ~ is torsion-free group.

T\ T are called virtual polytopes.
Virtual polytopes come with well-defined vertices.

Proposition
Inscribed virtual polytopes T C T form a subgroup.
T =7T+—7T: butingeneral Z#7Z, —T7,.

Corollary
If N is a 2-dim odd normal fan, then Z(N') # 0.

17/ 20



Routed particle trajectories
How to interpret this?

Think of closed piecewise-linear trajectory of particle in
a ball bouncing off the boundary in a random direction.

18/ 20



Routed particle trajectories
How to interpret this?
Think of closed piecewise-linear trajectory of particle in

a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points go, g1, .., Gnr1 € S971 with gpi1 = go.
Its route @ = (g, 1, - - -, ) € P71 with a; := R(giy1 — q;).

18/ 20



Routed particle trajectories

How to interpret this?
Think of closed piecewise-linear trajectory of particle in
a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points go, g1, .., Gnr1 € S971 with gpi1 = go.
Its route @ = (g, 1, - - -, ) € P71 with a; := R(giy1 — q;).

More generally, routing scheme is abstract graph G = (V, E) and
a: E— P91 A trajectory is a map g : V — S9! that yields a trajectory for
every closed walk in G with fixed starting vertex.

18/ 20



Routed particle trajectories

How to interpret this?
Think of closed piecewise-linear trajectory of particle in
a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points go, g1, .., Gnr1 € S971 with gpi1 = go.
Its route @ = (g, 1, - - -, ) € P71 with a; := R(giy1 — q;).

More generally, routing scheme is abstract graph G = (V, E) and
a: E— P91 A trajectory is a map g : V — S9! that yields a trajectory for
every closed walk in G with fixed starting vertex.

Proposition
Trajectories with fixed (G, «) is isomorphic to spherical subspaces of S9!,

18/ 20



Routed particle trajectories

How to interpret this?
Think of closed piecewise-linear trajectory of particle in
a ball bouncing off the boundary in a random direction.

Trajectory is a sequence of points go, g1, .., Gnr1 € S971 with gpi1 = go.
Its route @ = (g, 1, - - -, ) € P71 with a; := R(giy1 — q;).

More generally, routing scheme is abstract graph G = (V, E) and

a: E— P91 A trajectory is a map g : V — S9! that yields a trajectory for
every closed walk in G with fixed starting vertex.

Proposition

Trajectories with fixed (G, «) is isomorphic to spherical subspaces of S9!,

Every full-dimensional fan A/ determines a routing scheme (G, ).

Theorem
Trajectories for (G, «) are precisely the inscribed virtual polytopes P’ ~ P.

new connection: inscribed polytopes, PL functions, and particle trajectories!
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Groupoid: Small category, every morphism invertible.

Reflection groupoid R associated to a routing scheme (G, «)
G = (V, E) connected graph, a: E — P91

se : R? — R reflection in hyperplane a(e)*.
W = (s : e € E) C O(RY) (possibly infinite) reflection group.
Fix vp € V. Every walk w = wyvy ... v, in G yields element

tw = Svvi_s - S Suw, € W.

connected groupoid is (non-canonically) determined by subgroup
homg(vp) = {tw : w closed walk} C W, for some fixed vy

— Discrete holonomy groups and groups of projectivities (Joswig 2002).

Proposition

If N is virtually inscribed, then homg(vy) is generated by finitely many
reflections.
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Paper on the arXiv: 2012.07724

Inscribed normally equivalent polytopes

» rich structure (Z (') open cone)
» effectively computable

Strongly inscribable arrangements

» subclass of simplicial arrangements
» restrictions/localizations of reflection arrangements
» Conjecture: Not more!

Inscribable virtually polytopes

» natural notion, group structure

Routed trajectories and reflection groupoids

» interesting structures — deserve further study!
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