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Introduction
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Two common ways of defining polytopes

Let V ⊆ RD be a d-dimensional real vector space or affine space.
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Two common ways of defining polytopes

Let V ⊆ RD be a d-dimensional real vector space or affine space.

A polytope P ⊂ V can be defined as

(1) convex hull of finitely many points in V

• minimal choice of points: vertices of P .

(2) the solution of a finite system of linear inequalities.

• minimal choice of inequalities: one for each facet of P.

Remark: Both definitions give a geometric embedding of a polytope.
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Face poset

Definition. The (truncated) face poset of a polytope P , denoted F(P ), is the poset of

(nonempty) faces of P ordered by inclusion.

Example.
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u
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Face poset

Definition. The (truncated) face poset of a polytope P , denoted F(P ), is the poset of

(nonempty) faces of P ordered by inclusion.

Example.

o

v

u
a

b
c

P : F(P ) :

u vo

a b c

P

Remark. The face poset F(P ) captures combinatorial properties of the polytope P

without specifiying its geometric properties.
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Realization problem

Given a “nice” poset F , the following is a classical question to ask:

Does there exist a polytope P such that F ∼= F(P )?

If the answer is yes, we say F is realizable, and such a polytope P a realization of

F .
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Story: Realization of Kapranov’s poset

(1) Kapranov:

• defined a poset KΠd which is a hybrid between the face poset of the permuto-

hedron and the associahedron. (This was motivated by MacLane’s coherence

theorem for associativities and commutativies in monoidal categories.)

• showed thatKΠd is the face poset of a CW-ball.

• asked whetherKΠd can be realizable as a polytope. Such a polytope is called a

permuto-associahedron.
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Story: Realization of Kapranov’s poset

(1) Kapranov:

• defined a poset KΠd which is a hybrid between the face poset of the permuto-

hedron and the associahedron. (This was motivated by MacLane’s coherence

theorem for associativities and commutativies in monoidal categories.)

• showed thatKΠd is the face poset of a CW-ball.

• asked whetherKΠd can be realizable as a polytope. Such a polytope is called a

permuto-associahedron.

(2) Reiner and Ziegler:

• provided a realization forKΠd,

• as well as extended the results to permuto-associahedra of types B and D.

(3) We constructed nested permutohedra in our early work, and noticed its connection

to the permuto-associahedron which leads to our realization.
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General strategy

Question:

How to construct a polytope with a given face poset

or more generally satisfying certain combinatorial properties?

Our strategy for construction:

(1) Construct candidates for the vertex set and the normal fan of the poly-

tope.

(2) Verify that they “match”.
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Normal cones and Normal fan

Definition. Given any face F of P ⊂ V , the normal cone of P at F , denoted by σF ,

is the collection of linear functionalsw ∈ V ∗ such thatw attains maximum value at F

over all points in P.

The normal fan of P , denoted by N (P ), is the collection of all normal cones of P

as we range over all nonempty faces of P .
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Fact 2: F ⊆ G if and only if σG ⊆ σF or equivalently, σG is a face of σF .
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Normal cones and Normal fan

Definition. Given any face F of P ⊂ V , the normal cone of P at F , denoted by σF ,

is the collection of linear functionalsw ∈ V ∗ such thatw attains maximum value at F

over all points in P.

The normal fan of P , denoted by N (P ), is the collection of all normal cones of P

as we range over all nonempty faces of P .

Example.

o

v
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a

b
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P : N (P ) :
σP

σc

σa

σb

σo
σu

σv

Fact 2: F ⊆ G if and only if σG ⊆ σF or equivalently, σG is a face of σF .

Therefore, F(P ) ∼= F∗(N (P ))
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P N (P )

F(P ) F

P N

Warning:

A fanN is not determined by its one-dimensional cones.

However, it is determined by its top dimensional cones.
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P N (P )

F(P ) F

P N

Warning:

A fanN is not determined by its one-dimensional cones.

However, it is determined by its top dimensional cones.

Note: The top dimensional cones in a normal fan are the normal cones
at vertices, which are minimal elements of the face poset.
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Our strategy

Goal:
Construct a polytope P with a given face poset F

or more generally satisfying certain combinatorial properties.
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Our strategy

Goal:
Construct a polytope P with a given face poset F

or more generally satisfying certain combinatorial properties.

(1) Construct candidates for the vertex set and the normal fan of the polytope:

(a) Construct a vertex vi for each minimal element i of F .
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Our strategy

Goal:
Construct a polytope P with a given face poset F

or more generally satisfying certain combinatorial properties.

(1) Construct candidates for the vertex set and the normal fan of the polytope:

(a) Construct a vertex vi for each minimal element i of F .

(b) Construct a top dimensional cone σi for each minimal element i of F .

• LetN be the fan induced by {σi}. Then we should have F = F∗(N ).

(2) Verify that they “match”: For each i, any linear functionalw ∈ σ◦i maximizes at vi

over all vertices.

Then P := conv{vi} is a desired polytope.

Remark. In addition to knowing its vertex set, normal fan, we can quickly obtain its

inequality description.
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PART II:

Permutohedra, Associahedra and

Permuto-Associahedra
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Usual permutohedra

Definition. Given a strictly increasing sequence α = (α1, α2, · · · , αd+1) ∈ Rd+1,

for any π ∈ Sd+1, we use the following notation:

vαπ :=
(
απ(1), απ(2), · · · , απ(d+1)

)
.

Then we define the usual permutohedron

Perm(α) := conv (vαπ : π ∈ Sd+1).
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Usual permutohedra

Definition. Given a strictly increasing sequence α = (α1, α2, · · · , αd+1) ∈ Rd+1,

for any π ∈ Sd+1, we use the following notation:

vαπ :=
(
απ(1), απ(2), · · · , απ(d+1)

)
.

Then we define the usual permutohedron

Perm(α) := conv (vαπ : π ∈ Sd+1).

• Ifα = (1, 2, . . . , d, d+ 1), we obtain the regular permutohedron Πd.
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Example. Π2 and Π3:
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Example. Π2 and Π3:
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Poset of ordered partitions

Definition. An ordered (set) partition of [d+ 1] is an ordered tuple S = (S1, · · · , Sk)
where S1, . . . , Sk are k disjoint sets whose union is [d+ 1].

Let Od+1 be the set of all ordered partitions of [d+ 1] ordered by refinement.
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Let Od+1 be the set of all ordered partitions of [d+ 1] ordered by refinement.

Example.

O3 :

(1, 2, 3) (2, 1, 3) (2, 3, 1) (3, 2, 1) (3, 1, 2) (1, 3, 2)

(12, 3) (2, 13) (23, 1) (3, 12) (13, 2) (1, 23)

(123)
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Poset of ordered partitions

Definition. An ordered (set) partition of [d+ 1] is an ordered tuple S = (S1, · · · , Sk)
where S1, . . . , Sk are k disjoint sets whose union is [d+ 1].

Let Od+1 be the set of all ordered partitions of [d+ 1] ordered by refinement.

Example.

O3 :

(1, 2, 3) (2, 1, 3) (2, 3, 1) (3, 2, 1) (3, 1, 2) (1, 3, 2)

(12, 3) (2, 13) (23, 1) (3, 12) (13, 2) (1, 23)

(123)

It is well-known that F(Perm(α)) = Od+1
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Associahedra

Definition. Let Kd be the set of all “valid” bracketings B on (1 ∗ 2 ∗ · · · ∗ (d+ 2))

with an ordering that B1 ≤ B2 if B2 is obtained from B1 by removing some brackets.
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Definition. Let Kd be the set of all “valid” bracketings B on (1 ∗ 2 ∗ · · · ∗ (d+ 2))

with an ordering that B1 ≤ B2 if B2 is obtained from B1 by removing some brackets.

Example.

K2 :

(((1 ∗ 2) ∗ 3) ∗ 4) ((1 ∗ (2 ∗ 3)) ∗ 4) (1 ∗ ((2 ∗ 3) ∗ 4)) (1 ∗ (2 ∗ (3 ∗ 4))) ((1 ∗ 2) ∗ (3 ∗ 4))

((1 ∗ 2 ∗ 3) ∗ 4) (1 ∗ (2 ∗ 3) ∗ 4) (1 ∗ (2 ∗ 3 ∗ 4)) (1 ∗ 2 ∗ (3 ∗ 4)) ((1 ∗ 2) ∗ 3 ∗ 4)

(1 ∗ 2 ∗ 3 ∗ 4)
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Associahedra

Definition. Let Kd be the set of all “valid” bracketings B on (1 ∗ 2 ∗ · · · ∗ (d+ 2))

with an ordering that B1 ≤ B2 if B2 is obtained from B1 by removing some brackets.

Example.

K2 :

(((1 ∗ 2) ∗ 3) ∗ 4) ((1 ∗ (2 ∗ 3)) ∗ 4) (1 ∗ ((2 ∗ 3) ∗ 4)) (1 ∗ (2 ∗ (3 ∗ 4))) ((1 ∗ 2) ∗ (3 ∗ 4))

((1 ∗ 2 ∗ 3) ∗ 4) (1 ∗ (2 ∗ 3) ∗ 4) (1 ∗ (2 ∗ 3 ∗ 4)) (1 ∗ 2 ∗ (3 ∗ 4)) ((1 ∗ 2) ∗ 3 ∗ 4)

(1 ∗ 2 ∗ 3 ∗ 4)

Definition. A d-dimensional associahedron is a polytope whose face lattice is Kd.
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Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important

for this talk:
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Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important

for this talk:

Loday associates a vector to each minimal element of Kd, and define LodayAsso(d)

to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Loday also showed that this associahedron is a deformation of the regular permuto-

hedron Πd ⊂ Rd+1.

(2,3,1)

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,3,2)

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,4,1)

moving facets
−−−−−−−−−−−−−→

Note: Constructions of associahedra by Shnider-Sternberg, Postnikov, Rote-Santos-

Streinu, Hohlweg-Lange, and Buchstaber are all very related to Loday’s realization.
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Kapranov’s poset
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Kapranov’s poset

The posetKΠd is defined as follows:

à Elements: Ordered partitions of [d+ 1] with bracketings, e.g,

(15 ∗ 237 ∗ ((4 ∗ 69) ∗ 8))

is one element for d = 8.

à Covering relation:

i. removing one bracket (other than the most outside one); or

ii. removing one most inner bracket and merge the blocks inside into one block.

Example. Below is one maximal chain inKΠ3:

((3 ∗ 4) ∗ (2 ∗ 1)) ≺· ((3 ∗ 4) ∗ 12) ≺· (3 ∗ 4 ∗ 12) ≺· 1234
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Kapranov’s poset

The posetKΠd is defined as follows:

à Elements: Ordered partitions of [d+ 1] with bracketings, e.g,

(15 ∗ 237 ∗ ((4 ∗ 69) ∗ 8))

is one element for d = 8.

à Covering relation:

i. removing one bracket (other than the most outside one); or

ii. removing one most inner bracket and merge the blocks inside into one block.

Example. Below is one maximal chain inKΠ3:

((3 ∗ 4) ∗ (2 ∗ 1)) ≺· ((3 ∗ 4) ∗ 12) ≺· (3 ∗ 4 ∗ 12) ≺· 1234

Observation. KΠd is graded of rank d.
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Permuto-Associahedra

Definition. A d-dimensional permuto-associahedron is a polytope whose face lattice is

KΠd.
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Permuto-Associahedra

Definition. A d-dimensional permuto-associahedron is a polytope whose face lattice is

KΠd.

Example. Kapranov showed in his original paper that permuto-associahedra can be

realized for dimension 2 and 3.
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Permuto-Associahedra

Definition. A d-dimensional permuto-associahedron is a polytope whose face lattice is

KΠd.

Example. Kapranov showed in his original paper that permuto-associahedra can be

realized for dimension 2 and 3.

The 2nd picture suggests: put a small (d − 1)-dimensional associahedron at each

vertex of a d-dimensional permutohedron.
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Failed constructions

Permute a generic pentagon. Generally you get 8 edges (instead of 6) coming out

of each pentagon.
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Failed constructions

This polytope has the correct face-vector but the wrong combinatorics.
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Reiner-Ziegler’s construction

Gelfand, Kapranov, and Zelevinsky constructed an associahedron as the secondary

polytope of a convex (d+ 3)-gon Q.
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Reiner-Ziegler’s construction

Gelfand, Kapranov, and Zelevinsky constructed an associahedron as the secondary

polytope of a convex (d+ 3)-gon Q.

Permute a projected GTZ associahedron constructed from a cyclic polygon.
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PART III:

Our Construction

• Nested permutohedra

• Permuto-associahedra
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Our strategy

Goal:
Construct a polytope P with a given face poset F

or more generally satisfying certain combinatorial properties.

(1) Construction:

(a) Construct vertex set candidate {vi},

(b) Construct candidates for top dimensional cones {σi}.

(2) Verify that {vi} and {σi} “match”.

Then conclude P := conv{vi} is a desired polytope where

• {vi} is its vertex set and

• {σi} are the top dimensional cones in its normal fan.

We can also obtain an inequality description for P .
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Usual nested permutohedra

Definition (Informal). Replace each vertex of a usual permutohedron Perm(α) by a

smaller dimension permutohedron Perm(β) (in the correct orientation). We obtain the

usual nested permutohedron Perm(α,β).

One requirement: Entries inα is suffciently larger than entries in β
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Vertex set candidate for Usual N.P.

Recall that {vαπ : π ∈ Sd+1} is the vertex set of Perm(α), where

vαπ :=
(
απ(1), απ(2), · · · , απ(d+1)

)
=

d+1∑
i=1

αieπ−1(i).
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Vertex set candidate for Usual N.P.

Recall that {vαπ : π ∈ Sd+1} is the vertex set of Perm(α), where

vαπ :=
(
απ(1), απ(2), · · · , απ(d+1)

)
=

d+1∑
i=1

αieπ−1(i).

For any (π, τ) ∈ Sd+1 ×Sd, we define

v(α,β)
π,τ :=

d+1∑
i=1

αieπ−1(i)︸ ︷︷ ︸
vαπ

+
d∑
i=1

βif
π
τ−1(i)︸ ︷︷ ︸

vβτ in correct orientation

,

where for any permutation π ∈ Sd+1,

fπi := eπ−1(i+1) − eπ−1(i), ∀1 ≤ i ≤ d.
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Top dimensional cones for Usual N.P.

Recall that the normal cone of Perm(α) at vαπ is:

σ(π) := {w ∈ V ∗ : wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(d+1)}.

is a cone determined by ordering of coordinates associated with the permutation π ∈
Sd+1.
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Top dimensional cones for Usual N.P.

Recall that the normal cone of Perm(α) at vαπ is:

σ(π) := {w ∈ V ∗ : wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(d+1)}.

is a cone determined by ordering of coordinates associated with the permutation π ∈
Sd+1.

For (π, τ) ∈ Sd+1×Sd, we define σ(π, τ) to be the subcone of σ(π) determined

by first differences of coordinates associated with the permutation τ,
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Top dimensional cones for Usual N.P.

Recall that the normal cone of Perm(α) at vαπ is:

σ(π) := {w ∈ V ∗ : wπ−1(1) ≤ wπ−1(2) ≤ · · · ≤ wπ−1(d+1)}.

is a cone determined by ordering of coordinates associated with the permutation π ∈
Sd+1.

For (π, τ) ∈ Sd+1×Sd, we define σ(π, τ) to be the subcone of σ(π) determined

by first differences of coordinates associated with the permutation τ,

that is,

σ(π, τ) :=

w ∈ V
∗ : ︸ ︷︷ ︸

∆1

wπ−1(1) ≤
∆2︷ ︸︸ ︷

wπ−1(2) ≤ wπ−1(3) ≤ · · · ≤ wπ−1(d) ≤ wπ−1(d+1)︸ ︷︷ ︸
∆d

∆τ−1(1) ≤ ∆τ−1(2) ≤ · · · ≤ ∆τ−1(d)

 .
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We verify that
{
v

(α,β)
π,τ

}
and {σπ,τ} “match”. Hence:

Perm(α,β) := conv
(
v(α,β)
π,τ : (π, τ) ∈ Sd+1 ×Sd

)
is the usual nested permutohedron we look for.
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Question:

Recall that Loday’s associahedron is a deformation of a regular permutohedron.

Can we give a realization of permuto-associahedron as a deformation of a usual

nested permutohedron?
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Question:

Recall that Loday’s associahedron is a deformation of a regular permutohedron.

Can we give a realization of permuto-associahedron as a deformation of a usual

nested permutohedron?

Answer: Yes!
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Details of our construction

(1) Loday’s associahedron actually is a removohedron.

(2,3,1)

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,3,2)

removing facets
−−−−−−−−−−−−−−−→

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,4,1)
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Details of our construction

(1) Loday’s associahedron actually is a removohedron.

(2,3,1)

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,3,2)

removing facets
−−−−−−−−−−−−−−−→

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,4,1)

We generalize Loday’s construction and define LodayAsso(β), which can be ob-

tained from Perm(β) by removing facets.
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Details of our construction

(1) Loday’s associahedron actually is a removohedron.

(2,3,1)

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,3,2)

removing facets
−−−−−−−−−−−−−−−→

(3,2,1) (3,1,2)

(2,1,3)

(1,2,3)(1,4,1)

We generalize Loday’s construction and define LodayAsso(β), which can be ob-

tained from Perm(β) by removing facets.

The construction of LodayAsso(β) was constructed using our general strategy.

Hence, we have constructed (i) its vertex set {vβT}, and

(ii) its top dimensional normal cones {σT}, which induces its normal fan. We call it the

Loday fan.
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Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron Perm(α) by a smaller

dimension permutohedron LodayAsso(β) (in the correct orientation). We obtain the

permuto-associahedron PermAsso(α,β).
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Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron Perm(α) by a smaller

dimension permutohedron LodayAsso(β) (in the correct orientation). We obtain the

permuto-associahedron PermAsso(α,β).
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Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron Perm(α) by a smaller

dimension permutohedron LodayAsso(β) (in the correct orientation). We obtain the

permuto-associahedron PermAsso(α,β).

We already have figured out what the correction oriention is in our construction for

nested permutohedron.
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Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron Perm(α) by a smaller

dimension permutohedron LodayAsso(β) (in the correct orientation). We obtain the

permuto-associahedron PermAsso(α,β).

We already have figured out what the correction oriention is in our construction for

nested permutohedron.

Using this together with the information we know about LodayAsso(β), we are able

to construct PermAsso(α,β) using our general strategy again.
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Another Construction

Permute a 2-dimensional removohedron, but not Loday’s associahedron.
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Another Construction

Permute a 2-dimensional removohedron, but not Loday’s associahedron.

This does not give a realization of Kapranov’s poset.
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Another Construction

Permute a 2-dimensional removohedron, but not Loday’s associahedron.

This does not give a realization of Kapranov’s poset.

However, it is a simple permuto-associahedron considered by Baralic-Ivanovic-Petric.
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THANK YOU!
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