Permuto-associahedra as deformations of nested permotohedra

Fu Liu
University of California, Davis

(Polytop)ics: Recent advances on polytopes

MPI for Mathematics in the Sciences

April 8, 2021

This is joint work with Federico Castillo.

Outline

- Introduction
 - The realization problem
 - General strategy
- Permutohedra, associahedra and permuto-associahedra
- Our construction
 - Nested permutohedra
 - Permuto-associahedra

PART I:

Introduction

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

A *polytope* $P \subset V$ can be defined as

(1) $\operatorname{\textbf{convex}}$ $\operatorname{\textbf{hull}}$ of finitely many points in V

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

A *polytope* $P \subset V$ can be defined as

- (1) **convex hull** of finitely many points in V
 - minimal choice of points: vertices of *P*.

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

A *polytope* $P \subset V$ can be defined as

- (1) **convex hull** of finitely many points in V
 - minimal choice of points: vertices of *P*.
- (2) the solution of a finite system of linear inequalities.

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

A *polytope* $P \subset V$ can be defined as

- (1) **convex hull** of finitely many points in V
 - minimal choice of points: vertices of *P*.
- (2) the solution of a finite system of linear inequalities.
 - ullet minimal choice of inequalities: one for each facet of P.

Two common ways of defining polytopes

Let $V \subseteq \mathbb{R}^D$ be a d-dimensional real vector space or affine space.

A *polytope* $P \subset V$ can be defined as

- (1) convex hull of finitely many points in ${\cal V}$
 - minimal choice of points: vertices of *P*.
- (2) the solution of a finite system of linear inequalities.
 - minimal choice of inequalities: one for each facet of *P*.

Remark: Both definitions give a geometric embedding of a polytope.

Face poset

Definition. The *(truncated) face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of (nonempty) faces of P ordered by inclusion.

Face poset

Definition. The *(truncated) face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of (nonempty) faces of P ordered by inclusion.

Face poset

Definition. The *(truncated) face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of (nonempty) faces of P ordered by inclusion.

Face poset

Definition. The *(truncated) face poset* of a polytope P, denoted $\mathcal{F}(P)$, is the poset of (nonempty) faces of P ordered by inclusion.

Example.

$$P: \begin{array}{c} v \\ b \\ c \\ a \end{array} \qquad \begin{array}{c} F(P): \\ a \\ v \end{array} \qquad \begin{array}{c} P \\ b \\ v \end{array}$$

Remark. The face poset $\mathcal{F}(P)$ captures combinatorial properties of the polytope P without specifiying its geometric properties.

Realization problem

Given a "nice" poset \mathcal{F} , the following is a classical question to ask:

Does there exist a polytope P such that $\mathcal{F} \cong \mathcal{F}(P)$?

If the answer is yes, we say \mathcal{F} is *realizable*, and such a polytope P a *realization* of \mathcal{F} .

Story: Realization of Kapranov's poset

(1) Kapranov:

- defined a poset $\mathcal{K}\Pi_d$ which is a hybrid between the face poset of the permutohedron and the associahedron. (This was motivated by MacLane's coherence theorem for associativities and commutativies in monoidal categories.)
- showed that $\mathcal{K}\Pi_d$ is the face poset of a CW-ball.
- asked whether $\mathcal{K}\Pi_d$ can be realizable as a polytope. Such a polytope is called a *permuto-associahedron*.

Story: Realization of Kapranov's poset

(1) Kapranov:

- defined a poset $\mathcal{K}\Pi_d$ which is a hybrid between the face poset of the permuto-hedron and the associahedron. (This was motivated by MacLane's coherence theorem for associativities and commutativies in monoidal categories.)
- showed that $\mathcal{K}\Pi_d$ is the face poset of a CW-ball.
- asked whether $\mathcal{K}\Pi_d$ can be realizable as a polytope. Such a polytope is called a *permuto-associahedron*.

(2) Reiner and Ziegler:

- provided a realization for $\mathcal{K}\Pi_d$,
- ullet as well as extended the results to permuto-associahedra of types B and D.

Story: Realization of Kapranov's poset

(1) Kapranov:

- defined a poset $\mathcal{K}\Pi_d$ which is a hybrid between the face poset of the permutohedron and the associahedron. (This was motivated by MacLane's coherence theorem for associativities and commutativies in monoidal categories.)
- showed that $\mathcal{K}\Pi_d$ is the face poset of a CW-ball.
- asked whether $\mathcal{K}\Pi_d$ can be realizable as a polytope. Such a polytope is called a *permuto-associahedron*.
- (2) Reiner and Ziegler:
 - provided a realization for $\mathcal{K}\Pi_d$,
 - ullet as well as extended the results to permuto-associahedra of types B and D.
- (3) We constructed nested permutohedra in our early work, and noticed its connection to the permuto-associahedron which leads to our realization.

General strategy

Question:

How to construct a polytope with a given face poset or more generally satisfying certain combinatorial properties?

Our strategy for construction:

- (1) Construct candidates for the vertex set and the normal fan of the polytope.
- (2) Verify that they "match".

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 1: The normal fan $\mathcal{N}(P)$ captures some geometric properties of the polytope P.

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 1: The normal fan $\mathcal{N}(P)$ captures some geometric properties of the polytope P. E.g., if F is a *facet*, then σ_F is the cone spanned by its outer normal.

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 1: The normal fan $\mathcal{N}(P)$ captures some geometric properties of the polytope P. E.g., if F is a *facet*, then σ_F is the cone spanned by its outer normal.

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 2:

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 2: $F \subseteq G$ if and only if $\sigma_G \subseteq \sigma_F$ or equivalently, σ_G is a *face* of σ_F .

Normal cones and Normal fan

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F, denoted by σ_F , is the collection of linear functionals $\boldsymbol{w} \in V^*$ such that \boldsymbol{w} attains maximum value at F over all points in P.

The *normal fan* of P, denoted by $\mathcal{N}(P)$, is the collection of all normal cones of P as we range over all nonempty faces of P.

Fact 2: $F \subseteq G$ if and only if $\sigma_G \subseteq \sigma_F$ or equivalently, σ_G is a *face* of σ_F .

Therefore,
$$\mathcal{F}(P)\cong\mathcal{F}^*(\mathcal{N}(P))$$

P

 $\mathcal{N}(P)$

 $\mathcal{F}(P)$

F

Warning:

A fan \mathcal{N} is **not** determined by its one-dimensional cones. However, it is **determined** by its **top** dimensional cones.

Warning:

A fan \mathcal{N} is **not** determined by its one-dimensional cones.

However, it is **determined** by its **top** dimensional cones.

Note: The **top** dimensional cones in a normal fan are the normal cones at **vertices**, which are minimal elements of the face poset.

Our strategy

Goal:

Construct a polytope P with a given face poset \mathcal{F} or more generally satisfying certain combinatorial properties.

Our strategy

Goal:

Construct a polytope P with a given face poset \mathcal{F} or more generally satisfying certain combinatorial properties.

(1) Construct candidates for the vertex set and the normal fan of the polytope:

Our strategy

Goal:

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .

Our strategy

Goal:

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .
 - (b) Construct a top dimensional cone σ_i for each minimal element i of \mathcal{F} .

Our strategy

Goal:

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .
 - (b) Construct a top dimensional cone σ_i for each minimal element i of \mathcal{F} .
 - Let $\mathcal N$ be the fan induced by $\{\sigma_i\}$. Then we should have $\mathcal F=\mathcal F^*(\mathcal N)$.

Our strategy

Goal:

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .
 - (b) Construct a top dimensional cone σ_i for each minimal element i of \mathcal{F} .
 - Let $\mathcal N$ be the fan induced by $\{\sigma_i\}$. Then we should have $\mathcal F=\mathcal F^*(\mathcal N)$.
- (2) Verify that they "match": For each i, any linear functional $\mathbf{w} \in \sigma_i^{\circ}$ maximizes at v_i over all vertices.

Our strategy

Goal:

Construct a polytope P with a given face poset \mathcal{F} or more generally satisfying certain combinatorial properties.

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .
 - (b) Construct a top dimensional cone σ_i for each minimal element i of \mathcal{F} .
 - Let $\mathcal N$ be the fan induced by $\{\sigma_i\}$. Then we should have $\mathcal F=\mathcal F^*(\mathcal N)$.
- (2) Verify that they "match": For each i, any linear functional $\mathbf{w} \in \sigma_i^{\circ}$ maximizes at v_i over all vertices.

Then $P := \operatorname{conv}\{v_i\}$ is a desired polytope.

Our strategy

Goal:

Construct a polytope P with a given face poset \mathcal{F} or more generally satisfying certain combinatorial properties.

- (1) Construct candidates for the vertex set and the normal fan of the polytope:
 - (a) Construct a vertex v_i for each minimal element i of \mathcal{F} .
 - (b) Construct a top dimensional cone σ_i for each minimal element i of \mathcal{F} .
 - ullet Let ${\mathcal N}$ be the fan induced by $\{\sigma_i\}$. Then we should have ${\mathcal F}={\mathcal F}^*({\mathcal N})$.
- (2) Verify that they "match": For each i, any linear functional $\mathbf{w} \in \sigma_i^{\circ}$ maximizes at v_i over all vertices.

Then $P := \operatorname{conv}\{v_i\}$ is a desired polytope.

Remark. In addition to knowing its vertex set, normal fan, we can quickly obtain its inequality description.

PART II:

Permutohedra, Associahedra and Permuto-Associahedra

Usual permutohedra

Definition. Given a strictly increasing sequence $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, for any $\pi \in \mathfrak{S}_{d+1}$, we use the following notation:

$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}).$$

Then we define the *usual permutohedron*

$$\operatorname{Perm}(\boldsymbol{\alpha}) := \operatorname{conv}(v_{\pi}^{\boldsymbol{\alpha}}: \pi \in \mathfrak{S}_{d+1}).$$

Usual permutohedra

Definition. Given a strictly increasing sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, for any $\pi \in \mathfrak{S}_{d+1}$, we use the following notation:

$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}).$$

Then we define the *usual permutohedron*

$$\operatorname{Perm}(\boldsymbol{\alpha}) := \operatorname{conv}(v_{\pi}^{\boldsymbol{\alpha}}: \pi \in \mathfrak{S}_{d+1}).$$

• If $\alpha = (1, 2, ..., d, d + 1)$, we obtain the *regular permutohedron* Π_d .

Example. Π_2 and Π_3 :

Example. Π_2 and Π_3 :

Poset of ordered partitions

Definition. An *ordered (set) partition* of [d+1] is an ordered tuple $S = (S_1, \dots, S_k)$ where S_1, \dots, S_k are k disjoint sets whose union is [d+1].

Let \mathcal{O}_{d+1} be the set of all ordered partitions of [d+1] ordered by *refinement*.

Poset of ordered partitions

Definition. An *ordered (set) partition* of [d+1] is an ordered tuple $S = (S_1, \dots, S_k)$ where S_1, \dots, S_k are k disjoint sets whose union is [d+1].

Let \mathcal{O}_{d+1} be the set of all ordered partitions of [d+1] ordered by *refinement*.

Example.

Poset of ordered partitions

Definition. An *ordered (set) partition* of [d+1] is an ordered tuple $S = (S_1, \dots, S_k)$ where S_1, \dots, S_k are k disjoint sets whose union is [d+1].

Let \mathcal{O}_{d+1} be the set of all ordered partitions of [d+1] ordered by *refinement*.

Example.

It is well-known that

$$\mathcal{F}(\operatorname{Perm}(\boldsymbol{\alpha})) = \mathcal{O}_{d+1}$$

Associahedra

Definition. Let \mathcal{K}_d be the set of all "valid" bracketings B on $(1*2*\cdots*(d+2))$ with an ordering that $B_1 \leq B_2$ if B_2 is obtained from B_1 by removing some brackets.

Associahedra

Definition. Let \mathcal{K}_d be the set of all "valid" bracketings B on $(1*2*\cdots*(d+2))$ with an ordering that $B_1 \leq B_2$ if B_2 is obtained from B_1 by removing some brackets.

Example.

Associahedra

Definition. Let \mathcal{K}_d be the set of all "valid" bracketings B on $(1*2*\cdots*(d+2))$ with an ordering that $B_1 \leq B_2$ if B_2 is obtained from B_1 by removing some brackets.

Example.

Definition. A d-dimensional *associahedron* is a polytope whose face lattice is \mathcal{K}_d .

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Realization of associahedra

There are many realizations of associahedra. One constructed by Loday is important for this talk:

Loday associates a vector to each minimal element of \mathcal{K}_d , and define $\operatorname{LodayAsso}(d)$ to be the convex hull of these vectors. He then shows that it is indeed an associahedron.

Loday also showed that this associahedron is a deformation of the regular permutohedron $\Pi_d \subset \mathbb{R}^{d+1}$.

Note: Constructions of associahedra by Shnider-Sternberg, Postnikov, Rote-Santos-Streinu, Hohlweg-Lange, and Buchstaber are all very related to Loday's realization.

Kapranov's poset

Kapranov's poset

The poset $\mathcal{K}\Pi_d$ is defined as follows:

Kapranov's poset

The poset $\mathcal{K}\Pi_d$ is defined as follows:

Elements: Ordered partitions of [d+1] with bracketings, e.g,

$$(15 * 237 * ((4 * 69) * 8))$$

is one element for d=8.

Kapranov's poset

The poset $K\Pi_d$ is defined as follows:

Elements: Ordered partitions of [d+1] with bracketings, e.g.,

$$(15 * 237 * ((4 * 69) * 8))$$

is one element for d=8.

Covering relation:

- i. removing one bracket (other than the most outside one); or
- ii. removing one most inner bracket and merge the blocks inside into one block.

Kapranov's poset

The poset $K\Pi_d$ is defined as follows:

Elements: Ordered partitions of [d+1] with bracketings, e.g.,

$$(15 * 237 * ((4 * 69) * 8))$$

is one element for d=8.

Covering relation:

- i. removing one bracket (other than the most outside one); or
- ii. removing one most inner bracket and merge the blocks inside into one block.

Example. Below is one maximal chain in $\mathcal{K}\Pi_3$:

$$((3*4)*(2*1)) \prec ((3*4)*12) \prec (3*4*12) \prec 1234$$

Kapranov's poset

The poset $K\Pi_d$ is defined as follows:

Elements: Ordered partitions of [d+1] with bracketings, e.g.,

$$(15 * 237 * ((4 * 69) * 8))$$

is one element for d=8.

Covering relation:

- i. removing one bracket (other than the most outside one); or
- ii. removing one most inner bracket and merge the blocks inside into one block.

Example. Below is one maximal chain in $\mathcal{K}\Pi_3$:

$$((3*4)*(2*1)) \prec ((3*4)*12) \prec (3*4*12) \prec 1234$$

Observation. $K\Pi_d$ is graded of rank d.

Permuto-Associahedra

Definition. A d-dimensional permuto-associahedron is a polytope whose face lattice is $\mathcal{K}\Pi_d$.

Permuto-Associahedra

Definition. A d-dimensional permuto-associahedron is a polytope whose face lattice is $\mathcal{K}\Pi_d$.

Example. Kapranov showed in his original paper that permuto-associahedra can be realized for dimension 2 and 3.

Permuto-Associahedra

Definition. A d-dimensional *permuto-associahedron* is a polytope whose face lattice is $\mathcal{K}\Pi_d$.

Example. Kapranov showed in his original paper that permuto-associahedra can be realized for dimension 2 and 3.

The 2nd picture suggests: put a **small** (d-1)-dimensional associahedron at each vertex of a d-dimensional permutohedron.

Failed constructions

Permute a **generic** pentagon. Generally you get 8 edges (instead of 6) coming out of each pentagon.

Failed constructions

This polytope has the **correct face-vector** but the **wrong combinatorics**.

Reiner-Ziegler's construction

Gelfand, Kapranov, and Zelevinsky constructed an associahedron as the secondary polytope of a convex (d+3)-gon Q.

Reiner-Ziegler's construction

Gelfand, Kapranov, and Zelevinsky constructed an associahedron as the secondary polytope of a convex (d+3)-gon Q.

Permute a **projected** GTZ associahedron constructed from a cyclic polygon.

PART III:

Our Construction

- Nested permutohedra
- Permuto-associahedra

Our strategy

Goal:

Construct a polytope P with a given face poset \mathcal{F} or more generally satisfying certain combinatorial properties.

- (1) Construction:
 - (a) Construct vertex set candidate $\{v_i\}$,
 - (b) Construct candidates for top dimensional cones $\{\sigma_i\}$.
- (2) Verify that $\{v_i\}$ and $\{\sigma_i\}$ "match".

Then conclude $P := \operatorname{conv}\{v_i\}$ is a desired polytope where

- $\{v_i\}$ is its vertex set and
- $\{\sigma_i\}$ are the top dimensional cones in its normal fan.

We can also obtain an inequality description for P.

Usual nested permutohedra

Definition (Informal). Replace each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{Perm}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the usual nested permutohedron $\operatorname{Perm}(\boldsymbol{\alpha},\boldsymbol{\beta})$.

One requirement: Entries in α is suffciently larger than entries in β

Vertex set candidate for Usual N.P.

Recall that $\{v_{\pi}^{\alpha}: \pi \in \mathfrak{S}_{d+1}\}$ is the vertex set of $\operatorname{Perm}(\alpha)$, where

$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}) = \sum_{i=1}^{d+1} \alpha_i \boldsymbol{e}_{\pi^{-1}(i)}.$$

Vertex set candidate for Usual N.P.

Recall that $\{v_{\pi}^{\alpha}: \pi \in \mathfrak{S}_{d+1}\}$ is the vertex set of $\operatorname{Perm}(\alpha)$, where

$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}) = \sum_{i=1}^{d+1} \alpha_i \boldsymbol{e}_{\pi^{-1}(i)}.$$

For any $(\pi, \tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d$, we define

$$v_{\pi,\tau}^{(\boldsymbol{\alpha},\boldsymbol{\beta})} := \underbrace{\sum_{i=1}^{d+1} \alpha_i \boldsymbol{e}_{\pi^{-1}(i)}}_{v_{\pi}^{\boldsymbol{\alpha}}} + \underbrace{\sum_{i=1}^{d} \beta_i \boldsymbol{f}_{\tau^{-1}(i)}^{\pi}}_{v_{\tau}^{\boldsymbol{\beta}} \text{ in correct orientation}}^{d},$$

where for any permutation $\pi \in \mathfrak{S}_{d+1}$,

$$f_i^{\pi} := e_{\pi^{-1}(i+1)} - e_{\pi^{-1}(i)}, \quad \forall 1 \leq i \leq d.$$

Top dimensional cones for Usual N.P.

Recall that the normal cone of $\operatorname{Perm}(\boldsymbol{\alpha})$ at $v_{\pi}^{\boldsymbol{\alpha}}$ is:

$$\sigma(\pi) := \{ \boldsymbol{w} \in V^* : w_{\pi^{-1}(1)} \le w_{\pi^{-1}(2)} \le \dots \le w_{\pi^{-1}(d+1)} \}.$$

is a cone determined by *ordering of coordinates* associated with the permutation $\pi \in \mathfrak{S}_{d+1}$.

Top dimensional cones for Usual N.P.

Recall that the normal cone of $\operatorname{Perm}(\boldsymbol{\alpha})$ at $v_{\pi}^{\boldsymbol{\alpha}}$ is:

$$\sigma(\pi) := \{ \boldsymbol{w} \in V^* : w_{\pi^{-1}(1)} \le w_{\pi^{-1}(2)} \le \dots \le w_{\pi^{-1}(d+1)} \}.$$

is a cone determined by *ordering of coordinates* associated with the permutation $\pi \in \mathfrak{S}_{d+1}$.

For $(\pi, \tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d$, we define $\sigma(\pi, \tau)$ to be the subcone of $\sigma(\pi)$ determined by *first differences of coordinates* associated with the permutation τ ,

Top dimensional cones for Usual N.P.

Recall that the normal cone of $\operatorname{Perm}(\boldsymbol{\alpha})$ at $v_{\pi}^{\boldsymbol{\alpha}}$ is:

$$\sigma(\pi) := \{ \boldsymbol{w} \in V^* : w_{\pi^{-1}(1)} \le w_{\pi^{-1}(2)} \le \dots \le w_{\pi^{-1}(d+1)} \}.$$

is a cone determined by *ordering of coordinates* associated with the permutation $\pi \in \mathfrak{S}_{d+1}$.

For $(\pi, \tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d$, we define $\sigma(\pi, \tau)$ to be the subcone of $\sigma(\pi)$ determined by *first differences of coordinates* associated with the permutation τ ,

that is,

$$\sigma(\pi,\tau) := \left\{ \boldsymbol{w} \in V^* : \underbrace{w_{\pi^{-1}(1)} \leq w_{\pi^{-1}(2)} \leq w_{\pi^{-1}(3)}}_{\Delta_1} \leq \cdots \leq \underbrace{w_{\pi^{-1}(d)} \leq w_{\pi^{-1}(d+1)}}_{\Delta_d} \right\}.$$

$$\Delta_{\tau^{-1}(1)} \leq \Delta_{\tau^{-1}(2)} \leq \cdots \leq \Delta_{\tau^{-1}(d)}$$

We verify that $\left\{v_{\pi,\tau}^{(m{lpha},m{eta})}\right\}$ and $\left\{\sigma_{\pi, au}\right\}$ "match". Hence:

$$\operatorname{Perm}(\boldsymbol{\alpha},\boldsymbol{\beta}) := \operatorname{conv}\left(v_{\pi,\tau}^{(\boldsymbol{\alpha},\boldsymbol{\beta})} : (\pi,\tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d\right)$$

is the usual nested permutohedron we look for.

Question:

Recall that Loday's associahedron is a deformation of a regular permutohedron.

Can we give a realization of permuto-associahedron as a deformation of a usual nested permutohedron?

Question:

Recall that Loday's associahedron is a deformation of a regular permutohedron.

Can we give a realization of permuto-associahedron as a deformation of a usual nested permutohedron?

Answer: Yes!

Details of our construction

(1) Loday's associahedron actually is a *removohedron*.

Details of our construction

(1) Loday's associahedron actually is a *removohedron*.

We generalize Loday's construction and define $LodayAsso(\beta)$, which can be obtained from $Perm(\beta)$ by removing facets.

Details of our construction

(1) Loday's associahedron actually is a *removohedron*.

We generalize Loday's construction and define $LodayAsso(\beta)$, which can be obtained from $Perm(\beta)$ by removing facets.

The construction of $LodayAsso(\beta)$ was constructed using our general strategy. Hence, we have constructed (i) its vertex set $\{v_T^{\beta}\}$, and

(ii) its top dimensional normal cones $\{\sigma_T\}$, which induces its normal fan. We call it the *Loday fan*.

Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{LodayAsso}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the permuto-associahedron $\operatorname{PermAsso}(\boldsymbol{\alpha},\boldsymbol{\beta})$.

Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{LodayAsso}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the permuto-associahedron $\operatorname{PermAsso}(\boldsymbol{\alpha},\boldsymbol{\beta})$.

Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{LodayAsso}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the permuto-associahedron $\operatorname{PermAsso}(\boldsymbol{\alpha},\boldsymbol{\beta})$.

We already have figured out what the correction oriention is in our construction for nested permutohedron.

Details of our construction

(2) Informally, by replacing each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{LodayAsso}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the $\operatorname{permuto-associahedron} \operatorname{PermAsso}(\boldsymbol{\alpha}, \boldsymbol{\beta})$.

We already have figured out what the correction oriention is in our construction for nested permutohedron.

Using this together with the information we know about $LodayAsso(\beta)$, we are able to construct $PermAsso(\alpha, \beta)$ using our general strategy again.

Another Construction

Permute a 2-dimensional removohedron, but not Loday's associahedron.

Another Construction

Permute a 2-dimensional removohedron, but not Loday's associahedron.

This does **not** give a realization of Kapranov's poset.

Another Construction

Permute a 2-dimensional removohedron, but not Loday's associahedron.

This does **not** give a realization of Kapranov's poset.

However, it is a simple permuto-associahedron considered by Baralic-Ivanovic-Petric.

THANK YOU!