On the bond polytope

Martina Juhnke
(joint work with Markus Chimani and Alexander Nover)
(Polytop)ics: Recent advances on polytopes

April 9, 2021

(1) Introduction
(2) Constructing new facets from old ones: Graph operations
(3) Cycle and edge inequalities
4. $\left(K_{5}-e\right)$-minor-free graphs

(1) Introduction

(2) Constructing new facets from old ones: Graph operations

(3) Cycle and edge inequalities

4. $\left(K_{5}-e\right)$-minor-free graphs

The main ingredient: bonds

Let $G=(V, E)$ be a graph and $S \subseteq V$.

- $\delta(S)=\{e \in E:|e \cap S|=1\}$ is called cut.

The main ingredient: bonds

Let $G=(V, E)$ be a graph and $S \subseteq V$.

- $\delta(S)=\{e \in E:|e \cap S|=1\}$ is called cut.
- If $G[S]$ and $G-S$ are connected, $\delta(S)$ is a bond.

The main player: bond polytopes

Let $G=(V, E)$ be a graph. For each cut δ of G we define $x_{\delta} \in \mathbb{R}^{E}$ by

$$
x_{\delta}(e)= \begin{cases}1, & \text { if } e \in \delta \\ 0, & \text { otherwise }\end{cases}
$$

The main player: bond polytopes

Let $G=(V, E)$ be a graph. For each cut δ of G we define $x_{\delta} \in \mathbb{R}^{E}$ by

$$
x_{\delta}(e)= \begin{cases}1, & \text { if } e \in \delta \\ 0, & \text { otherwise }\end{cases}
$$

The cut and bond polytope of G are defined as:

$$
\operatorname{Cut}(G)=\operatorname{conv}\left(x_{\delta}: \delta \text { is a cut in } G\right)
$$

and
$\operatorname{Bond}(G)=\operatorname{conv}\left(x_{\delta}: \delta\right.$ is a bond in $\left.G\right)$.

$\operatorname{Cut}\left(P_{3}\right)$ vs. $\operatorname{Bond}\left(P_{3}\right)$

Recall $\delta(S)=\{e \in E:|e \cap S|=1\}$ for $S \subseteq V$
Cuts in P_{3} :

$\operatorname{Cut}\left(P_{3}\right)$ vs. $\operatorname{Bond}\left(P_{3}\right)$

Recall $\delta(S)=\{e \in E:|e \cap S|=1\}$ for $S \subseteq V$
Cuts in P_{3} :

Bonds in P_{3}

Motivation

Max cut problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxCut: Find cut δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Motivation

Max cut problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxCut: Find cut δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Applications:

- computation of ground states of Ising spin glasses,
- design of electronic circuits,
- network flows,
- semidefinite matrix completion.

Motivation

Max cut problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxCut: Find cut δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Applications:

- computation of ground states of Ising spin glasses,
- design of electronic circuits,
- network flows,
- semidefinite matrix completion.

Complexity:

- NP-complete, in general;
- polynomial time solvable for special graph classes (e.g., planar graphs).

Motivation

Max bond problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxBond: Find bond δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Motivation

Max bond problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxBond: Find bond δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Applications:

- image segmentation,
- forest planning,
- computing market splittings.

Motivation

Max bond problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxBond: Find bond δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Applications:

- image segmentation,
- forest planning,
- computing market splittings.

Complexity:

- NP-complete, even on 3-connected planar or bipartite planar graphs,
- solvable in linear time on series-parallel graphs,
- (polynomial time solvable on ($\left.K_{5}-e\right)$-minor free graphs).

Motivation

Max bond problem

Let $G=(V, E)$ be a graph with edge weights $\left(c_{e}\right)_{e \in E} \in \mathbb{R}^{E}$. MaxBond: Find bond δ in G such that $\sum_{e \in \delta} c_{e}$ is maximal.

Our starting point

- Information about $\operatorname{Cut}(G)$ and $\operatorname{Bond}(G)$ gives information about MaxCut and MaxBond, respectively.
But: Whereas $\operatorname{Cut}(G)$ has been studied intensively, nothing is known for $\operatorname{Bond}(G)$.

How do $\operatorname{Cut}(G)$ and $\operatorname{Bond}(G)$ relate to each other?

Observation: $\operatorname{Bond}\left(K_{n}\right)=\operatorname{Cut}\left(K_{n}\right)$

How do $\operatorname{Cut}(G)$ and $\operatorname{Bond}(G)$ relate to each other?

Observation: $\operatorname{Bond}\left(K_{n}\right)=\operatorname{Cut}\left(K_{n}\right)$

Proposition (Barahona, Mahjoub)

Let $G=(V, E)$ and δ, γ cuts in G. Then:
$\left\{x_{\delta}, x_{\gamma}\right\}$ is an edge of $\operatorname{Cut}(G) \Longleftrightarrow \delta \Delta \gamma$ is a bond.

How do $\operatorname{Cut}(G)$ and $\operatorname{Bond}(G)$ relate to each other?

Observation: $\operatorname{Bond}\left(K_{n}\right)=\operatorname{Cut}\left(K_{n}\right)$

Proposition (Barahona, Mahjoub)

Let $G=(V, E)$ and δ, γ cuts in G. Then:
$\left\{x_{\delta}, x_{\gamma}\right\}$ is an edge of $\operatorname{Cut}(G) \Longleftrightarrow \delta \triangle \gamma$ is a bond.

Consequently:

- Vertices of $\operatorname{Bond}(G)$ are $\mathbf{0}$ and its neighbors in $\operatorname{Cut}(G)$.
- $\operatorname{cone}(\operatorname{Bond}(G))=\operatorname{cone}(\operatorname{Cut}(G))$
- $\operatorname{dim} \operatorname{Bond}(G)=|E|$

Edge deletions and contractions

Let $G=(V, E)$ and $e \in E$.

	$\operatorname{Cut}(G)$	$\operatorname{Bond}(G)$
G / e		
$G-e$		

Edge deletions and contractions

Let $G=(V, E)$ and $e \in E$.

	$\operatorname{Cut}(G)$	$\operatorname{Bond}(G)$
G / e	intersection with $\left\{x_{e}=0\right\}$	intersection with $\left\{x_{e}=0\right\}$
$G-e$		

Edge deletions and contractions

Let $G=(V, E)$ and $e \in E$.

	$\operatorname{Cut}(G)$	$\operatorname{Bond}(G)$
G / e	intersection with $\left\{x_{e}=0\right\}$	intersection with $\left\{x_{e}=0\right\}$
$G-e$	projection on $\left\{x_{e}=0\right\}$	

Edge deletions and contractions

$$
\text { Let } G=(V, E) \text { and } e \in E \text {. }
$$

	$\operatorname{Cut}(G)$	$\operatorname{Bond}(G)$
G / e	intersection with $\left\{x_{e}=0\right\}$	intersection with $\left\{x_{e}=0\right\}$
$G-e$	projection on $\left\{x_{e}=0\right\}$	no nice behavior

Example

- $\delta_{K_{4}}(\{v, w\})$ is a bond in K_{4} but $\delta_{K_{4}-v w}(\{v, w\})$ is not.

(2) Constructing new facets from old ones: Graph operations

(3) Cycle and edge inequalities

4. $\left(K_{5}-e\right)$-minor-free graphs
(No) facets from subgraphs and vice versa

Example

- $\sum_{e \in E(C)} x_{e} \leq 2$ defines a facet for $\operatorname{Bond}(G)$ but not $\operatorname{Bond}(G+e)$.

G

$G+e$
(No) facets from subgraphs and vice versa

Example

- $\sum_{e \in E(C)} x_{e} \leq 2$ defines a facet for $\operatorname{Bond}(G)$ but not $\operatorname{Bond}(G+e)$.

G

$G+e$

- $\sum_{e \in E\left(C_{6}\right)} x_{e} \leq 4$ defines a facet of $\operatorname{Bond}\left(K_{3,3}\right)$ but not for $\operatorname{Bond}\left(C_{6}\right)$.

Node splitting I

Theorem
 Let $G=(V, E), v \in V$, and $a^{\top} x \leq b$ be facet-defining for $\operatorname{Bond}(G)$.

Node splitting I

Theorem

Let $G=(V, E), v \in V$, and $a^{\top} x \leq b$ be facet-defining for $\operatorname{Bond}(G)$. Obtain $\bar{G}=(\bar{V}, \bar{E})$ by splitting v into v_{1} and v_{2}.

Node splitting I

Theorem

Let $G=(V, E), v \in V$, and $a^{\top} x \leq b$ be facet-defining for $\operatorname{Bond}(G)$. Obtain $\bar{G}=(\bar{V}, \bar{E})$ by splitting v into v_{1} and v_{2}.

Then

$$
\sum_{e \in \bar{E} \backslash\left\{v_{1} v_{2}\right\}} a_{e} x_{e}+(b-\omega) x_{v_{1} v_{2}} \leq b
$$

defines a facet of $\operatorname{Bond}(\bar{G})$.
Here, ω is the value of a maximum bond in $\bar{G}-v_{1} v_{2}$ separating v_{1} and v_{2} w.r.t. edge weights induced by a.

Node splitting II

Node splitting II

Subdividing edges and vice versa

Subdividing edges and vice versa

(1) Introduction

(2) Constructing new facets from old ones: Graph operations

(3) Cycle and edge inequalities

4. $\left(K_{5}-e\right)$-minor-free graphs

Non-interleaved cycles

A cycle $C \subseteq G$ is interleaved if there exist $v_{1}, v_{2}, v_{3}, v_{4} \in V(C)$

- occurring along C in this order, and
- node-disjoint path P and Q in $G-E(C)$ connecting v_{1} with v_{3} and v_{2} with v_{4}, respectively.
Otherwise, C is non-interleaved.

Non-interleaved cycle inequalities

Theorem

Let G be 3-connected and $C \subseteq G$ be a non-interleaved cycle. Then $\sum_{e \in E(C)} x_{e} \leq 2$ is facet-defining for $\operatorname{Bond}(G)$.

Non-interleaved cycle inequalities

Theorem

Let G be 3-connected and $C \subseteq G$ be a non-interleaved cycle. Then $\sum_{e \in E(C)} x_{e} \leq 2$ is facet-defining for $\operatorname{Bond}(G)$.

- We show that if C is a cycle, then:

$$
\sum_{e \in E(C)} x_{e} \leq 2 \text { is valid } \Longleftrightarrow C \text { is non-interleaved. }
$$

2-connectedness does not suffice

Example

- The cycles $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ and $v_{1}, v_{2}, v_{3}, v_{7}, v_{6}, v_{5}, v_{1}$ are non-interleaved, but do not give rise to facets.

2-connectedness does not suffice

Example

- The cycles $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ and $v_{1}, v_{2}, v_{3}, v_{7}, v_{6}, v_{5}, v_{1}$ are non-interleaved, but do not give rise to facets.

2-connectedness does not suffice

Example

- The cycles $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ and $v_{1}, v_{2}, v_{3}, v_{7}, v_{6}, v_{5}, v_{1}$ are non-interleaved, but do not give rise to facets.
- We provide a necessary criterion for a cycle to be facet-defining in any connected graph.

The n-cycle C_{n}

Theorem

The only facets of $\operatorname{Bond}\left(C_{n}\right)$ are

$$
\begin{aligned}
& x_{e} \geq 0 \text { for all } e \in E\left(C_{n}\right), \\
& x_{f}-\sum_{\substack{e \in E\left(C_{n}\right) \\
e \neq f}} x_{e} \leq 0 \text { for all } f \in E\left(C_{n}\right), \\
& \sum_{e \in E\left(C_{n}\right)} x_{e} \leq 2
\end{aligned}
$$

Generalizations of non-interleaved cycles

Lemma

Let $C \subseteq G$ be a cycle.
$\sum_{e \in E(C)} x_{e} \leq 2 k$ is valid for $\operatorname{Bond}(G)$
$\Longleftrightarrow G$ does not contain a minor of the form $H=T_{1} \cup T_{2}$ with

- T_{1}, T_{2} disjoint trees on $k+1$ nodes,
- $V\left(T_{i}\right) \subseteq V(C)$,
- nodes of T_{1} and T_{2} alternate along C.

Generalizations of non-interleaved cycles

Lemma

Let $C \subseteq G$ be a cycle.
$\sum_{e \in E(C)} x_{e} \leq 2 k$ is valid for $\operatorname{Bond}(G)$
$\Longleftrightarrow G$ does not contain a minor of the form $H=T_{1} \cup T_{2}$ with

- T_{1}, T_{2} disjoint trees on $k+1$ nodes,
- $V\left(T_{i}\right) \subseteq V(C)$,
- nodes of T_{1} and T_{2} alternate along C.

Problem

When is $\sum_{e \in E(C)} x_{e} \leq 2 k$ facet-defining?

Examples: Wagner graphs

The generalized Wagner graph $V_{n}(n \in 2 \mathbb{N})$ is obtained from C_{n} by adding the edges $\{i, i+n / 2\}$ for $1 \leq i \leq n / 2$.

Examples: Wagner graphs

The generalized Wagner graph $V_{n}(n \in 2 \mathbb{N})$ is obtained from C_{n} by adding the edges $\{i, i+n / 2\}$ for $1 \leq i \leq n / 2$.

Example

- $\sum_{e \in E\left(C_{n}\right)} x_{e} \leq 4$ is facet-defining for Bond $\left(V_{n}\right)$.

Examples: Wagner graphs

The generalized Wagner graph $V_{n}(n \in 2 \mathbb{N})$ is obtained from C_{n} by adding the edges $\{i, i+n / 2\}$ for $1 \leq i \leq n / 2$.

Example

- $\sum_{e \in E\left(C_{n}\right)} x_{e} \leq 4$ is facet-defining for Bond $\left(V_{n}\right)$.

- Let $C \subseteq K_{5}$ be a 5-cycle. $\sum_{e \in E(C)} x_{e} \leq 4$ is valid but not facet-defining for $\operatorname{Bond}\left(K_{5}\right)$.

Edge inequalities

Observation: $x_{e} \leq 1$ is valid for any $e \in E(G)$.

Edge inequalities

Observation: $x_{e} \leq 1$ is valid for any $e \in E(G)$.

Question

When is $x_{e} \leq 1$ facet-defining?

Edge inequalities

Observation: $x_{e} \leq 1$ is valid for any $e \in E(G)$.
Question
When is $x_{e} \leq 1$ facet-defining?

Example

For the Wagner graph V_{n}, all inequalities $x_{e} \leq 1$ are facet-defining.

Edge inequalities

Observation: $x_{e} \leq 1$ is valid for any $e \in E(G)$.

Question

When is $x_{e} \leq 1$ facet-defining?

Example

For the Wagner graph V_{n}, all inequalities $x_{e} \leq 1$ are facet-defining.

Abstract

Lemma Let $G=(V, E)$ be a connected graph, $e \in E$. If e lies in a non-interleaved cycle, then $x_{e} \leq 1$ is not facet-defining.

Edge inequalities

Observation: $x_{e} \leq 1$ is valid for any $e \in E(G)$.

Question

When is $x_{e} \leq 1$ facet-defining?

Example

For the Wagner graph V_{n}, all inequalities $x_{e} \leq 1$ are facet-defining.

Lemma

Let $G=(V, E)$ be a connected graph, $e \in E$.
If e lies in a non-interleaved cycle, then $x_{e} \leq 1$ is not facet-defining.

Question

Is $x_{e} \leq 1$ facet-defining iff e does not lie in a non-interleaved cycle?

(2) Constructing new facets from old ones: Graph operations

(3) Cycle and edge inequalities
4. $\left(K_{5}-e\right)$-minor-free graphs

$\left(K_{5}-e\right)$-minor-free graphs

Theorem

Let $G \neq K_{3,3}$ be a 3-connected ($K_{5}-e$)-minor-free graph.
Then $\operatorname{Bond}(G)$ has the following facet description:

$$
x_{e}-\sum_{f \in E(C) \backslash\{e\}} x_{e} \geq 0 \quad \text { for each e not contained in a triangle, }
$$

$$
\sum_{e \in E(C)} x_{e} \leq 2 \quad \text { for each non-interleaved cycle } C
$$

Sketch of the proof:

The only 3-connected $\left(K_{5}-e\right)$-minor free graphs are

- K_{3},
- $K_{3,3}$,
- Prism, and
- $W_{n}(n \geq 3)$.

W_{5}

Prism

Sketch of the proof:

The only 3-connected $\left(K_{5}-e\right)$-minor free graphs are

- K_{3},
- $K_{3,3}$,
- Prism, and
- $W_{n}(n \geq 3)$.

W_{5}

Prism

Consequence:
MaxBond on $\left(K_{5}-e\right)$-minor free graphs can be solved in linear time .

3-connected planar graphs

Question

Is the bond polytope of a 3-connected planar graph determined by edge and cycle inequalities?

3-connected planar graphs

Question

Is the bond polytope of a 3-connected planar graph determined by edge and cycle inequalities?

No!
$x_{1}+x_{2}+x_{4}+x_{5}+x_{7}-x_{8}-x_{9} \leq 2$
defines a facet of $\operatorname{Bond}\left(K_{5}-e\right)$.

Conclusion

Results:

- basic properties of $\operatorname{Bond}(G)$,
- the effect of graph operations on facets of $\operatorname{Bond}(G)$,
- interleaved cycle and edge inequalities,
- Bond (G) for 3-connected $\left(K_{5}-e\right)$-minor-free planar graphs,
- algorithmic properties of MaxBond.

Conclusion

Results:

- basic properties of $\operatorname{Bond}(G)$,
- the effect of graph operations on facets of $\operatorname{Bond}(G)$,
- interleaved cycle and edge inequalities,
- $\operatorname{Bond}(G)$ for 3-connected $\left(K_{5}-e\right)$-minor-free planar graphs,
- algorithmic properties of MaxBond.

Open problems:

- Characterize interleaved cycles that induce facets.
- When is $x_{e} \leq 1$ facet-defining?
- How does $\operatorname{Bond}(G)$ behave under clique sums?

Thank you!

