Federico Ardila

San Francisco State University Universidad de Los Andes

(Polytop)ics Max Planck Institute, April 9, 2021 Part of Part 1 is with Graham Denham + June Huh (15-20). Part 2 is joint work with Laura Escobar (20).

Lagrangian geometry of matroids. [ADH20] https://arxiv.org/abs/2004.13116

The harmonic polytope. [AE20] https://arxiv.org/abs/2006.03078

The bipermutahedron. [A20] https://arxiv.org/abs/2008.02295

origin

The plan

- 0. Why study them? A very short origin story.
- 1. What is the bipermutahedral fan?
- 2. What is the bipermutahedron? What do we know about it?
- 3. What is the harmonic fan?
- 4. What is the harmonic polytope? What do we know about it?
- 5. Why study them? A more detailed origin story. (If time.)

A very brief origin story

Given a matroid M of rank r,

$$f$$
-vector = |coeffs| of $\chi_M(q)$ h -vector = |coeffs| of $\chi_M(q+1)$

Theorem.

origin

- 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72.
- 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89.

A very brief origin story

Given a matroid M of rank r,

$$f$$
-vector = |coeffs| of $\chi_M(q)$ h -vector = |coeffs| of $\chi_M(q+1)$

Theorem.

- 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72.
- 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89.

[AHK 15]: tropical geom., alg. comb., combin. Hodge th. ambient space: Bergman fan Σ_M in permutahedral fan Σ_n

[ADH 20]: Lagrangian geom., alg. comb., combin. Hodge th. ambient: conormal fan $\Sigma_{M,M^{\perp}}$ in the **bipermutahedral fan** $\Sigma_{n,n}$ (or any simplicial subdivision of the **harmonic fan** $K_{n,n}$)

The permutahedral fan as a moduli space

Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n .

The permutahedral fan as a moduli space

Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_j$ for $i \neq j$ in N_n .

Moduli space: n-tuples of points in \mathbb{R} (mod. common translation)

The permutahedral fan as a moduli space

Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n .

Moduli space: *n*-tuples of points in \mathbb{R} (mod. common translation)

Stratification: relative order

Strata: ordered set partitions 3|28|04|1|7|569

The bipermutahedral fan as a moduli space

[FA-Denham-Huh 20] **Bipermutahedral fan** $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

bipermutahedral fan

The bipermutahedral fan as a moduli space

[FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

- Stratification: draw lowest supporting -45° diagonal ℓ
 - record relative order of x and y projections onto ℓ

The bipermutahedral fan as a moduli space

[FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

- Stratification: draw lowest supporting -45° diagonal ℓ
 - record relative order of x and y projections onto ℓ

bipermutahedral fan

The bipermutahedral fan as a moduli space

[FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

- Stratification: draw lowest supporting -45° diagonal ℓ
 - record relative order of x and y projections onto ℓ

bipermutahedral fan

The bipermutahedral fan as a moduli space

[FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • draw lowest supporting -45° diagonal ℓ

• record relative order of x and y projections onto ℓ

The bipermutahedral fan as a moduli space

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

0

Strata: **bisequences** on [n]

Sequences $\mathfrak{B} = B_1 | \cdots | B_m$ such that

- each number appears once or twice,
- some number appears exactly once.

Ex: 34|2|035|1|24|0

Permutahedral fan Σ_n : Normal fan of permutahedron Π_n .

Bipermutahedral fan $\Sigma_{n,n}$: Normal fan of **bipermutahedron** $\Pi_{n,n}$.

Prop. [FA-Denham-Huh 20, FA 20] The bipermutahedron is

$$\sum_{e \in [n]} x_e = \sum_{e \in [n]} y_e = 0,$$

$$\sum_{e \in S} x_s + \sum_{t \in T} y_t \ge -(|S| + |S - T|)(|T| + |T - S|) \quad \text{for each } S|T.$$

Combinatorial structure of the bipermutahedron

- faces: **bisequences** 12|45|4|235
- vertices: **bipermutations** 1|5|4|1|3|4|2|5|3. (one number appears once, others twice)

 $(2n)!/2^n$

• facets: **bisubsets** 1245|235 $(S, T \neq \emptyset, \text{ not both } [n], \text{ with } S \cup T = [n])$

 $3^{n} - 3$

Prop. [FA 20] If $f_d(\Sigma_{n,n}) = \#$ of d-dim. faces of $\Sigma_{n,n}$,

$$\sum_{d,n} f_{d-2}(\Sigma_{n,n}) \frac{x^d}{d!} \frac{y^n}{n!} = \frac{F(x, e^y)}{e^x}$$

where

$$F(\alpha,\beta) = \sum_{n \ge 0} \frac{\alpha^n \beta^{\binom{n}{2}}}{n!}$$

is the two variable Rogers-Ramanujan function.

 $(F(\alpha,\beta))$ also arises in the generating functions for the (arithmetic) Tutte polynomials of classical root systems! (Mphako-Banda 00, FA 02, De Concini-Procesi 08, FA-Castillo-Henley 15) Connection?)

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the **biEulerian polynomial**, because

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the biEulerian polynomial, because

Prop. [FA 20] The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

 $h_i(\Pi_{n,n}) = \#$ of bipermutations of [n] with i descents.

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the biEulerian polynomial, because

Prop. [FA 20] The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

 $h_i(\Pi_{n,n}) = \#$ of bipermutations of [n] with i descents.

Observation: this sequence is log-concave. How to prove it?

Let Δ = standard triangle in \mathbb{R}^3 .

Prop. [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$.

Let Δ = standard triangle in \mathbb{R}^3 .

Prop. [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$.

Prop. [FA 20] By Ehrhart theory, the biEulerian polynomial is

$$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k>0} {\binom{k+2}{2}}^n x^k$$

Let Δ = standard triangle in \mathbb{R}^3 .

Prop. [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$.

Prop. [FA 20] By Ehrhart theory, the biEulerian polynomial is

$$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k \ge 0} {\binom{k+2}{2}}^n x^k$$

Prop. [FA 20] (thanks to Katharina Jochemko!)

- All roots of the biEulerian polynomial are real and negative.
- The *h*-vector of the bipermutahedron is log-concave.

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • record points on supporting -45° diagonal ℓ

- ullet record relative order of x projections onto ℓ
- ullet record relative order of y projections onto ℓ

Strata: **harmonic triples** (15; 35|1|24|0, 34|2|05|1)

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • record points on supporting -45° diagonal ℓ

- record relative order of x projections onto \(\ell \)
- record relative order of y projections onto \(\ell \)

Strata: harmonic triples (15; 35|1|24|0, 34|2|05|1)

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • record points on supporting -45° diagonal ℓ

- record relative order of x projections onto \(\ell \)
- record relative order of y projections onto \(\ell \)

Strata: harmonic triples (15; 35|1|24|0, 34|2|05|1)

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • record points on supporting -45° diagonal ℓ

- ullet record relative order of x projections onto ℓ
- record relative order of y projections onto \(\ell \)

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Stratification: • record points on supporting -45° diagonal ℓ

- ullet record relative order of x projections onto ℓ
- ullet record relative order of y projections onto ℓ

Strata: **harmonic triples** (15; 35|1|24|0, 34|2|05|1)

The bipermutahedral fan refines the harmonic fan.

Harmonic fan: harmonic triple

е

(15; 35|1|24|0, 34|2|05|1)

Bipermut. fan: bipermutation

34|2|035|1|24|0

(The bipermutation determines the harmonic triple.)

The harmonic polytope

Def./Prop. [FA - Escobar 20] The harmonic polytope is

$$\begin{split} \sum_{e \in [n]} x_e &= \sum_{e \in [n]} y_e = \frac{n(n+1)}{2} + 1, \\ \sum_{e \in [n]} x_e &+ \sum_{e \in [n]} y_t \ge \frac{|S|(|S|+1) + |T|(|T|+1)}{2} + 1 \qquad \text{for each } S|T. \end{split}$$

Combinatorial structure of the harmonic polytope

Prop. [FA-Escobar 20] Faces of polytope \longleftrightarrow harmonic triples

- f-vector: we have a formula
- # of facets = $3^n 3$
- # of vertices = $(n!)^2 \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$!

Minkowski quotients

Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$.

Minkowski quotient $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$

Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$.

Minkowski quotient $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$

Prop. [FA 20] $\Pi_{n,n}/H_{n,n} = 2$

Minkowski quotients

Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$.

Minkowski quotient $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$

Prop. [FA 20]
$$\Pi_{n,n}/H_{n,n} = 2$$

Proof:

Volume

$$H_{n,n} = (\Pi_n \times 0) + (0 \times \Pi_n) + conv(e_i + f_i : 1 \le i \le n)$$

=
$$\sum_{i < j} [e_i, e_j] + \sum_{i < j} [f_i, f_j] + conv(e_i + f_i : 1 \le i \le n)$$

A sum of (twisted) simplices – almost a gen. permutahedron.

$$H_{n,n} = (\Pi_n \times 0) + (0 \times \Pi_n) + conv(e_i + f_i : 1 \le i \le n)$$

=
$$\sum_{i < j} [e_i, e_j] + \sum_{i < j} [f_i, f_j] + conv(e_i + f_i : 1 \le i \le n)$$

A sum of (twisted) simplices – almost a gen. permutahedron.

Theorem. (FA - Escobar 20)

$$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$

 Γ = connected bipartite multigraphs on edges [n] X_{Γ} = (embedded) toric variety given by toric ideal of Γ

Theorem. [AE 20] Summing over conn. bip. graphs on edges [n]

$$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(v(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$

deg(X_{Γ}) = deg. of toric variety given by toric ideal of Γ = $i(P_{\Gamma}^{-})$ = # of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05)

Theorem. [AE 20] Summing over conn. bip. graphs on edges [n]

$$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$

deg(X_{Γ}) = deg. of toric variety given by toric ideal of Γ = $i(P_{\Gamma}^{-})$ = # of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05)

$$\Gamma = 1$$

Toric ideal $\langle z_1 z_3 - z_2 z_4, z_5 - z_6 \rangle$ has degree 2. Polytope $P_{\Gamma}^- = (\Delta_{abc} + \Delta_{ab}) - \Delta_{abc} = \Delta_{ab}$ has 2 lattice points

Theorem. [AE 20] Summing over conn. bip. graphs on edges [n]

$$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$

 $deg(X_{\Gamma}) = deg.$ of toric variety given by toric ideal of Γ $=i(P_{\Gamma}^{-})=\#$ of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05)

$$\Gamma = 1$$

Toric ideal $\langle z_1 z_3 - z_2 z_4, z_5 - z_6 \rangle$ has degree 2. Polytope $P_r^- = (\Delta_{abc} + \Delta_{ab}) - \Delta_{abc} = \Delta_{ab}$ has 2 lattice points

(This is MVol(e_{12} , e_{34} , e_{56} , f_{14} , f_{23} , f_{45} , f_{56} , D_{123456} , D_{123456} , D_{123456}) = 2.)

Origin story: Lagrangian geometry of matroids

Given a matroid M on n elements, rank r,

$$f$$
-vector = |coeffs| of $\chi_M(q)$
 h -vector = |coeffs| of $\chi_M(q+1)$

Ex:
$$n=5$$
 $r=3$ $f=(1,4,5,2)$ $h=(1,1,0,0)$

Theorem.

- 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72.
- 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89.

Log-concavity of *f*-vector: geometry of matroids [Adiprasito–Huh–Katz 15]

(tropical geometry, alg combinatorics, combin. Hodge theory)

1. Use the **Bergman fan** Σ_M as a geometric model for M. (r-1)-dim fan in N_n , Supp $(\Sigma_M) = Trop(M)$ [FA-Klivans 06]

2. Find classes α, β in the Chow ring $A^{\bullet}(\Sigma_M)$ with

$$deg(\alpha^{r-i}\beta^i) = f_i \qquad (1 \le i \le r)$$

3. Prove the Hodge-Riemann relations for the fan Σ_M . They imply $(deg(\alpha^{r-i}\beta^i): 0 \le i \le r)$ is log-concave.

Log-conc of *h*-vector: Lagrangian geom of matroids

[Ardila-Denham-Huh 20]

(Lagrangian geometry, alg combin., combin. Hodge theory)

- 1. Use the **conormal fan** $\Sigma_{M,M^{\perp}}$ as a geometric model for M. (n-2)-dim fan in $N_n \times N_n$
- 2. Find classes γ, δ in the Chow ring $A^{\bullet}(\Sigma_{M,M^{\perp}})$ with

$$deg(\gamma^{i}\delta^{n-2-i}) = h_{r-i} \qquad (1 \le i \le r)$$

3. Prove the Hodge-Riemann relations for the fan $\Sigma_{M,M^{\perp}}$. They imply $(deg(\gamma^{i}\delta^{n-2-i}): 0 \le i \le r)$ is log-concave.

How to construct the conormal fan $\Sigma_{M M^{\perp}}$?

Varchenko's **critical set varieties** offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$?

How to construct the conormal fan $\Sigma_{M M^{\perp}}$?

Varchenko's critical set varieties offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$?
- 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*)
 - ullet γ "should be" the pullback of lpha along

$$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$

 \bullet δ "should be" the pullback of α along

$$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \ \ \sigma(x,y) = x + y$$

where Δ_n is the normal fan of the standard simplex.

• Geometry predicts (*), prove it algebro-combinatorially.

Varchenko's critical set varieties offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$?
- 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*)
 - ullet γ "should be" the pullback of lpha along

$$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$

ullet δ "should be" the pullback of lpha along

$$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \ \ \sigma(x,y) = x + y$$

where Δ_n is the normal fan of the standard simplex.

• Geometry predicts (*), prove it algebro-combinatorially.

Problem: σ is not a map of fans!

How to construct the conormal fan $\Sigma_{M,M^{\perp}}$?

Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how?

How to construct the conormal fan $\Sigma_{M,M^{\perp}}$?

Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how?

Idea: Do it simultaneously for all matroids on *E*.

[FA – Klivans 06]

Permutahedral fan Σ_E resolved this issue for all Bergman fans:

$$\Sigma_M := \mathsf{Trop}(M) \cap \Sigma_{\mathcal{E}}$$

[FA - Denham - Huh 20]

Bipermutahedral fan $\Sigma_{E,E}$ resolves this for all conormal fans:

$$\Sigma_{M,M^{\perp}} := (\mathsf{Trop}(M) \times \mathsf{Trop}(M^{\perp})) \cap \Sigma_{E,E}$$

How to construct the bipermutahedral fan?

As usual, it is a science (harmonic) and an art (bipermutahedral).

How to construct the bipermutahedral fan?

As usual, it is a science (harmonic) and an art (bipermutahedral).

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans

where
$$\Sigma_n$$
 = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .

d. It is the normal fan of a polytope.

As usual, it is a science (harmonic) and an art (bipermutahedral).

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x, y) = x + y$ is a map of fans

where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .

d. It is the normal fan of a polytope.

Try 1: Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

How to construct the bipermutahedral fan?

As usual, it is a science (harmonic) and an art (bipermutahedral).

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans

where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .

d. It is the normal fan of a polytope.

Try 1: Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

This is the **harmonic fan/polytope** $H_{n,n}$.

Good news: It has all these properties + beautiful combinatorics. Bad news: It is not simplicial. How to compute in its Chow ring?

How to construct the bipermutahedral fan?

As usual, it is a science (harmonic) and an art (bipermutahedral).

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma : \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans

where
$$\Sigma_n$$
 = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .

d. It is the normal fan of a polytope.

Try 1: Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

This is the **harmonic fan/polytope** $H_{n,n}$.

Good news: It has all these properties + beautiful combinatorics. Bad news: It is not simplicial. How to compute in its Chow ring? Note: The harmonic fan is canonical. Any solution must refine it!

How to define the bipermutahedral fan?

We want a **nice**, **polytopal**, **simplicial** fan with these properties.

Try 1:
$$H_{n,n}$$
 = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$.

How to define the bipermutahedral fan?

We want a **nice**, **polytopal**, **simplicial** fan with these properties.

Try 1:
$$H_{n,n}$$
 = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

Try 2:
$$\Sigma_{n,n}$$
 = nice polytopal simplicial refinement of $H_{n,n}$.

The **bipermutohedral fan** $\Sigma_{n,n}$ is the nicest one we could find.

How to define the bipermutahedral fan?

We want a **nice**, **polytopal**, **simplicial** fan with these properties.

Try 1:
$$H_{n,n}$$
 = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$.

The **bipermutohedral fan** $\Sigma_{n,n}$ is the nicest one we could find. The **bipermutohedron** $\Pi_{n,n}$ is crucial in [ADH20]!

```
(⇒ nef cone of Σ_{M,M^{\perp}} is non-empty ⇒ log-concavity)
```

To conclude, there is much more (fun!) work to be done:

- Chern-Schwartz-MacPherson classes of matroids
- Lagrangian combinatorics of matroids

muchas gracias

```
(part 1 of) [ADH20]: https://arxiv.org/abs/2004.13116
```

[AE20]: https://arxiv.org/abs/2006.03078

[A20]: https://arxiv.org/abs/2008.02295