Federico Ardila San Francisco State University Universidad de Los Andes (Polytop)ics Max Planck Institute, April 9, 2021 Part of Part 1 is with Graham Denham + June Huh (15-20). Part 2 is joint work with Laura Escobar (20). Lagrangian geometry of matroids. [ADH20] https://arxiv.org/abs/2004.13116 The harmonic polytope. [AE20] https://arxiv.org/abs/2006.03078 The bipermutahedron. [A20] https://arxiv.org/abs/2008.02295 origin # The plan - 0. Why study them? A very short origin story. - 1. What is the bipermutahedral fan? - 2. What is the bipermutahedron? What do we know about it? - 3. What is the harmonic fan? - 4. What is the harmonic polytope? What do we know about it? - 5. Why study them? A more detailed origin story. (If time.) ## A very brief origin story Given a matroid M of rank r, $$f$$ -vector = |coeffs| of $\chi_M(q)$ h -vector = |coeffs| of $\chi_M(q+1)$ #### Theorem. origin - 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72. - 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89. ## A very brief origin story Given a matroid M of rank r, $$f$$ -vector = |coeffs| of $\chi_M(q)$ h -vector = |coeffs| of $\chi_M(q+1)$ #### Theorem. - 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72. - 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89. [AHK 15]: tropical geom., alg. comb., combin. Hodge th. ambient space: Bergman fan Σ_M in permutahedral fan Σ_n [ADH 20]: Lagrangian geom., alg. comb., combin. Hodge th. ambient: conormal fan $\Sigma_{M,M^{\perp}}$ in the **bipermutahedral fan** $\Sigma_{n,n}$ (or any simplicial subdivision of the **harmonic fan** $K_{n,n}$) # The permutahedral fan as a moduli space **Permutahedral fan** Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$: Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n . # The permutahedral fan as a moduli space Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$: Hyperplane arrangement $x_i = x_j$ for $i \neq j$ in N_n . Moduli space: n-tuples of points in \mathbb{R} (mod. common translation) # The permutahedral fan as a moduli space Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$: Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n . Moduli space: *n*-tuples of points in \mathbb{R} (mod. common translation) Stratification: relative order Strata: ordered set partitions 3|28|04|1|7|569 ## The bipermutahedral fan as a moduli space [FA-Denham-Huh 20] **Bipermutahedral fan** $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) bipermutahedral fan ## The bipermutahedral fan as a moduli space [FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) - Stratification: draw lowest supporting -45° diagonal ℓ - record relative order of x and y projections onto ℓ ## The bipermutahedral fan as a moduli space [FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) - Stratification: draw lowest supporting -45° diagonal ℓ - record relative order of x and y projections onto ℓ bipermutahedral fan ## The bipermutahedral fan as a moduli space [FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) - Stratification: draw lowest supporting -45° diagonal ℓ - record relative order of x and y projections onto ℓ bipermutahedral fan ## The bipermutahedral fan as a moduli space [FA-Denham-Huh 20] Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • draw lowest supporting -45° diagonal ℓ • record relative order of x and y projections onto ℓ # The bipermutahedral fan as a moduli space **Bipermutahedral fan** $\Sigma_{n,n}$ in $N_n \times N_n$: Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) 0 Strata: **bisequences** on [n] Sequences $\mathfrak{B} = B_1 | \cdots | B_m$ such that - each number appears once or twice, - some number appears exactly once. Ex: 34|2|035|1|24|0 Permutahedral fan Σ_n : Normal fan of permutahedron Π_n . Bipermutahedral fan $\Sigma_{n,n}$: Normal fan of **bipermutahedron** $\Pi_{n,n}$. Prop. [FA-Denham-Huh 20, FA 20] The bipermutahedron is $$\sum_{e \in [n]} x_e = \sum_{e \in [n]} y_e = 0,$$ $$\sum_{e \in S} x_s + \sum_{t \in T} y_t \ge -(|S| + |S - T|)(|T| + |T - S|) \quad \text{for each } S|T.$$ ## Combinatorial structure of the bipermutahedron - faces: **bisequences** 12|45|4|235 - vertices: **bipermutations** 1|5|4|1|3|4|2|5|3. (one number appears once, others twice) $(2n)!/2^n$ • facets: **bisubsets** 1245|235 $(S, T \neq \emptyset, \text{ not both } [n], \text{ with } S \cup T = [n])$ $3^{n} - 3$ **Prop.** [FA 20] If $f_d(\Sigma_{n,n}) = \#$ of d-dim. faces of $\Sigma_{n,n}$, $$\sum_{d,n} f_{d-2}(\Sigma_{n,n}) \frac{x^d}{d!} \frac{y^n}{n!} = \frac{F(x, e^y)}{e^x}$$ where $$F(\alpha,\beta) = \sum_{n \ge 0} \frac{\alpha^n \beta^{\binom{n}{2}}}{n!}$$ is the two variable Rogers-Ramanujan function. $(F(\alpha,\beta))$ also arises in the generating functions for the (arithmetic) Tutte polynomials of classical root systems! (Mphako-Banda 00, FA 02, De Concini-Procesi 08, FA-Castillo-Henley 15) Connection?) The bipermutahedron is simple; consider its *h*-polynomial: $$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$ We call it the **biEulerian polynomial**, because The bipermutahedron is simple; consider its *h*-polynomial: $$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$ We call it the biEulerian polynomial, because **Prop.** [FA 20] The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is $h_i(\Pi_{n,n}) = \#$ of bipermutations of [n] with i descents. The bipermutahedron is simple; consider its *h*-polynomial: $$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$ We call it the biEulerian polynomial, because **Prop.** [FA 20] The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is $h_i(\Pi_{n,n}) = \#$ of bipermutations of [n] with i descents. Observation: this sequence is log-concave. How to prove it? Let Δ = standard triangle in \mathbb{R}^3 . **Prop.** [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$. Let Δ = standard triangle in \mathbb{R}^3 . **Prop.** [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$. Prop. [FA 20] By Ehrhart theory, the biEulerian polynomial is $$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k>0} {\binom{k+2}{2}}^n x^k$$ Let Δ = standard triangle in \mathbb{R}^3 . **Prop.** [FA 20] There's a unimodular triangulation of $\Delta \times \cdots \times \Delta$ that is combinatorially isomorphic to (the triple cone over) $\Sigma_{n,n}$. **Prop.** [FA 20] By Ehrhart theory, the biEulerian polynomial is $$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k \ge 0} {\binom{k+2}{2}}^n x^k$$ Prop. [FA 20] (thanks to Katharina Jochemko!) - All roots of the biEulerian polynomial are real and negative. - The *h*-vector of the bipermutahedron is log-concave. Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • record points on supporting -45° diagonal ℓ - ullet record relative order of x projections onto ℓ - ullet record relative order of y projections onto ℓ Strata: **harmonic triples** (15; 35|1|24|0, 34|2|05|1) Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • record points on supporting -45° diagonal ℓ - record relative order of x projections onto \(\ell \) - record relative order of y projections onto \(\ell \) Strata: harmonic triples (15; 35|1|24|0, 34|2|05|1) Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • record points on supporting -45° diagonal ℓ - record relative order of x projections onto \(\ell \) - record relative order of y projections onto \(\ell \) Strata: harmonic triples (15; 35|1|24|0, 34|2|05|1) Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • record points on supporting -45° diagonal ℓ - ullet record relative order of x projections onto ℓ - record relative order of y projections onto \(\ell \) Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation) Stratification: • record points on supporting -45° diagonal ℓ - ullet record relative order of x projections onto ℓ - ullet record relative order of y projections onto ℓ Strata: **harmonic triples** (15; 35|1|24|0, 34|2|05|1) The bipermutahedral fan refines the harmonic fan. Harmonic fan: harmonic triple е (15; 35|1|24|0, 34|2|05|1) Bipermut. fan: bipermutation 34|2|035|1|24|0 (The bipermutation determines the harmonic triple.) # The harmonic polytope Def./Prop. [FA - Escobar 20] The harmonic polytope is $$\begin{split} \sum_{e \in [n]} x_e &= \sum_{e \in [n]} y_e = \frac{n(n+1)}{2} + 1, \\ \sum_{e \in [n]} x_e &+ \sum_{e \in [n]} y_t \ge \frac{|S|(|S|+1) + |T|(|T|+1)}{2} + 1 \qquad \text{for each } S|T. \end{split}$$ ## Combinatorial structure of the harmonic polytope **Prop.** [FA-Escobar 20] Faces of polytope \longleftrightarrow harmonic triples - f-vector: we have a formula - # of facets = $3^n 3$ - # of vertices = $(n!)^2 \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$! ## Minkowski quotients Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$. **Minkowski quotient** $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$ Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$. **Minkowski quotient** $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$ **Prop.** [FA 20] $\Pi_{n,n}/H_{n,n} = 2$ ## Minkowski quotients Biperm. fan refines harm. fan $\iff \lambda H_{n,n}$ is a summand of $\Pi_{n,n}$. **Minkowski quotient** $P/Q := max\{\lambda : P = \lambda Q + R \text{ for some } R\}$ **Prop.** [FA 20] $$\Pi_{n,n}/H_{n,n} = 2$$ Proof: #### Volume $$H_{n,n} = (\Pi_n \times 0) + (0 \times \Pi_n) + conv(e_i + f_i : 1 \le i \le n)$$ = $$\sum_{i < j} [e_i, e_j] + \sum_{i < j} [f_i, f_j] + conv(e_i + f_i : 1 \le i \le n)$$ A sum of (twisted) simplices – almost a gen. permutahedron. $$H_{n,n} = (\Pi_n \times 0) + (0 \times \Pi_n) + conv(e_i + f_i : 1 \le i \le n)$$ = $$\sum_{i < j} [e_i, e_j] + \sum_{i < j} [f_i, f_j] + conv(e_i + f_i : 1 \le i \le n)$$ A sum of (twisted) simplices – almost a gen. permutahedron. Theorem. (FA - Escobar 20) $$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$ Γ = connected bipartite multigraphs on edges [n] X_{Γ} = (embedded) toric variety given by toric ideal of Γ **Theorem.** [AE 20] Summing over conn. bip. graphs on edges [n] $$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(v(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$ deg(X_{Γ}) = deg. of toric variety given by toric ideal of Γ = $i(P_{\Gamma}^{-})$ = # of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05) **Theorem.** [AE 20] Summing over conn. bip. graphs on edges [n] $$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$ deg(X_{Γ}) = deg. of toric variety given by toric ideal of Γ = $i(P_{\Gamma}^{-})$ = # of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05) $$\Gamma = 1$$ Toric ideal $\langle z_1 z_3 - z_2 z_4, z_5 - z_6 \rangle$ has degree 2. Polytope $P_{\Gamma}^- = (\Delta_{abc} + \Delta_{ab}) - \Delta_{abc} = \Delta_{ab}$ has 2 lattice points **Theorem.** [AE 20] Summing over conn. bip. graphs on edges [n] $$Vol(H_{n,n}) = \sum_{\Gamma} \frac{\deg(X_{\Gamma})}{(\nu(\Gamma) - 2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v) - 2}$$ $deg(X_{\Gamma}) = deg.$ of toric variety given by toric ideal of Γ $=i(P_{\Gamma}^{-})=\#$ of lattice points of trimmed gen. perm. P_{Γ}^{-} (Postnikov 05) $$\Gamma = 1$$ Toric ideal $\langle z_1 z_3 - z_2 z_4, z_5 - z_6 \rangle$ has degree 2. Polytope $P_r^- = (\Delta_{abc} + \Delta_{ab}) - \Delta_{abc} = \Delta_{ab}$ has 2 lattice points (This is MVol(e_{12} , e_{34} , e_{56} , f_{14} , f_{23} , f_{45} , f_{56} , D_{123456} , D_{123456} , D_{123456}) = 2.) ### Origin story: Lagrangian geometry of matroids Given a matroid M on n elements, rank r, $$f$$ -vector = |coeffs| of $\chi_M(q)$ h -vector = |coeffs| of $\chi_M(q+1)$ Ex: $$n=5$$ $r=3$ $f=(1,4,5,2)$ $h=(1,1,0,0)$ #### Theorem. - 1. [Adiprasito-Huh-Katz '15] f_0, f_1, \dots, f_r is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72. - 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89. # Log-concavity of *f*-vector: geometry of matroids [Adiprasito–Huh–Katz 15] (tropical geometry, alg combinatorics, combin. Hodge theory) 1. Use the **Bergman fan** Σ_M as a geometric model for M. (r-1)-dim fan in N_n , Supp $(\Sigma_M) = Trop(M)$ [FA-Klivans 06] 2. Find classes α, β in the Chow ring $A^{\bullet}(\Sigma_M)$ with $$deg(\alpha^{r-i}\beta^i) = f_i \qquad (1 \le i \le r)$$ 3. Prove the Hodge-Riemann relations for the fan Σ_M . They imply $(deg(\alpha^{r-i}\beta^i): 0 \le i \le r)$ is log-concave. ### Log-conc of *h*-vector: Lagrangian geom of matroids #### [Ardila-Denham-Huh 20] (Lagrangian geometry, alg combin., combin. Hodge theory) - 1. Use the **conormal fan** $\Sigma_{M,M^{\perp}}$ as a geometric model for M. (n-2)-dim fan in $N_n \times N_n$ - 2. Find classes γ, δ in the Chow ring $A^{\bullet}(\Sigma_{M,M^{\perp}})$ with $$deg(\gamma^{i}\delta^{n-2-i}) = h_{r-i} \qquad (1 \le i \le r)$$ 3. Prove the Hodge-Riemann relations for the fan $\Sigma_{M,M^{\perp}}$. They imply $(deg(\gamma^{i}\delta^{n-2-i}): 0 \le i \le r)$ is log-concave. ### How to construct the conormal fan $\Sigma_{M M^{\perp}}$? Varchenko's **critical set varieties** offer hints/requirements: - 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle. - 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$? ### How to construct the conormal fan $\Sigma_{M M^{\perp}}$? #### Varchenko's critical set varieties offer hints/requirements: - 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle. - 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$? - 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*) - ullet γ "should be" the pullback of lpha along $$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$ \bullet δ "should be" the pullback of α along $$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \ \ \sigma(x,y) = x + y$$ where Δ_n is the normal fan of the standard simplex. • Geometry predicts (*), prove it algebro-combinatorially. #### Varchenko's critical set varieties offer hints/requirements: - 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle. - 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$? - 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*) - ullet γ "should be" the pullback of lpha along $$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$ ullet δ "should be" the pullback of lpha along $$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \ \ \sigma(x,y) = x + y$$ where Δ_n is the normal fan of the standard simplex. • Geometry predicts (*), prove it algebro-combinatorially. Problem: σ is not a map of fans! ### How to construct the conormal fan $\Sigma_{M,M^{\perp}}$? Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how? ### How to construct the conormal fan $\Sigma_{M,M^{\perp}}$? Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how? Idea: Do it simultaneously for all matroids on *E*. #### [FA – Klivans 06] Permutahedral fan Σ_E resolved this issue for all Bergman fans: $$\Sigma_M := \mathsf{Trop}(M) \cap \Sigma_{\mathcal{E}}$$ #### [FA - Denham - Huh 20] **Bipermutahedral fan** $\Sigma_{E,E}$ resolves this for all conormal fans: $$\Sigma_{M,M^{\perp}} := (\mathsf{Trop}(M) \times \mathsf{Trop}(M^{\perp})) \cap \Sigma_{E,E}$$ ### How to construct the bipermutahedral fan? As usual, it is a science (harmonic) and an art (bipermutahedral). ### How to construct the bipermutahedral fan? As usual, it is a science (harmonic) and an art (bipermutahedral). #### What do we want? A **nice** complete fan Σ in $N_n \times N_n$ such that: - a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans - b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans - c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans where $$\Sigma_n$$ = braid fan and Δ_n = fan of \mathbb{P}^{n-1} . d. It is the normal fan of a polytope. As usual, it is a science (harmonic) and an art (bipermutahedral). #### What do we want? A **nice** complete fan Σ in $N_n \times N_n$ such that: - a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans - b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans - c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x, y) = x + y$ is a map of fans where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} . d. It is the normal fan of a polytope. **Try 1:** Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. ### How to construct the bipermutahedral fan? As usual, it is a science (harmonic) and an art (bipermutahedral). #### What do we want? A **nice** complete fan Σ in $N_n \times N_n$ such that: - a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans - b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans - c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} . d. It is the normal fan of a polytope. **Try 1:** Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. This is the **harmonic fan/polytope** $H_{n,n}$. Good news: It has all these properties + beautiful combinatorics. Bad news: It is not simplicial. How to compute in its Chow ring? ### How to construct the bipermutahedral fan? As usual, it is a science (harmonic) and an art (bipermutahedral). #### What do we want? A **nice** complete fan Σ in $N_n \times N_n$ such that: - a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans - b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans - c. $\sigma : \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans where $$\Sigma_n$$ = braid fan and Δ_n = fan of \mathbb{P}^{n-1} . d. It is the normal fan of a polytope. **Try 1:** Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. This is the **harmonic fan/polytope** $H_{n,n}$. Good news: It has all these properties + beautiful combinatorics. Bad news: It is not simplicial. How to compute in its Chow ring? Note: The harmonic fan is canonical. Any solution must refine it! ### How to define the bipermutahedral fan? We want a **nice**, **polytopal**, **simplicial** fan with these properties. **Try 1:** $$H_{n,n}$$ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$. ### How to define the bipermutahedral fan? We want a **nice**, **polytopal**, **simplicial** fan with these properties. **Try 1:** $$H_{n,n}$$ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. Try 2: $$\Sigma_{n,n}$$ = nice polytopal simplicial refinement of $H_{n,n}$. The **bipermutohedral fan** $\Sigma_{n,n}$ is the nicest one we could find. ### How to define the bipermutahedral fan? We want a **nice**, **polytopal**, **simplicial** fan with these properties. **Try 1:** $$H_{n,n}$$ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$. Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$. The **bipermutohedral fan** $\Sigma_{n,n}$ is the nicest one we could find. The **bipermutohedron** $\Pi_{n,n}$ is crucial in [ADH20]! ``` (⇒ nef cone of Σ_{M,M^{\perp}} is non-empty ⇒ log-concavity) ``` To conclude, there is much more (fun!) work to be done: - Chern-Schwartz-MacPherson classes of matroids - Lagrangian combinatorics of matroids ## muchas gracias ``` (part 1 of) [ADH20]: https://arxiv.org/abs/2004.13116 ``` [AE20]: https://arxiv.org/abs/2006.03078 [A20]: https://arxiv.org/abs/2008.02295