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Optimization

The discipline concerned with identifying the best element according to a criterion
from a collection of alternatives

Historically, scientific laws formulated as solutions of variational principles

Principle of least action

Principle of maximum entropy

Significant engineering applications from the 20th century onwards

Computation has played a key role
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Optimization as a Solution Concept

Question: What does it mean to solve a problem? How to obtain answer given input
data?

Provide a closed-form expression

Provide an algorithmic procedure

Question: What kinds of algorithmic procedures?

Solution of linear system

Solution of eigenvalue problem

Solution of optimization problem

In many domains, a problem is viewed as ‘solved’ if it is formulated as a tractable
optimization problem
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Examples

Portfolio selection in finance

Given some assets, design investment strategy to maximize return while
constraining risk to a user-specified level

Model selection in data science

Given data and a class of statistical models, identify model that best fits the data

Circuit design in electrical engineering

Supply chain and inventory management in logistics

Truss structure design in mechanical engineering
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Questions about an Optimization Problem

A mathematical optimization problem in Rn may be formulated as:

maximize f(x) subject to x ∈ S

f : Rn → R is the objective function

S ⊂ Rn is the constraint set

x ∈ Rn is the decision variable

Questions

How do we certify that a claimed maximizer is indeed a maximizer?

What is the geometry associated to the set of maximizers?
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Outline

Convex optimization problems as a canonical class of problems

Convex sets

Geometry of the solution set of a convex program

Duality of convex sets

Face structure of convex sets

Convexity Venkat Chandrasekaran 6



Canonical Form for an Optimization Problem

The optimization problem

maximize f(x) subject to x ∈ S

may be reformulated as follows

maximize t subject to x ∈ S, f(x) ≥ t

Here (x, t) ∈ Rn+1 is the decision variable

Without loss of generality, we may consider problems with linear objective functions

Convexity Venkat Chandrasekaran 7



Canonical Form for an Optimization Problem

Definition: Consider a set S ⊂ Rn. The convex hull of S is defined as

conv(S) ,

{
k∑

i=1

λi x
(i) | x(i) ∈ S, λ ∈ Rk

+, 1
′λ = 1

}

This is the collection of all convex combinations of elements of S.

Proposition: Fix a linear functional a ∈ (Rn)? and a set S ⊂ Rn. We have that

sup{〈a, x〉 | x ∈ S} = sup{〈a, x〉 | x ∈ conv(S)}

(Proof as exercise)
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Canonical Form of an Optimization Problem
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Canonical Form of an Optimization Problem

Definition: A set that is equal to its convex hull is called a convex set. A compact
convex set with non-empty interior is called a convex body.

Without loss of generality, we may consider optimization problems with linear objective
functions and convex constraint sets

Called convex optimization

Caveat: need to compute convex hulls efficiently

Our focus is on the geometry of convex optimization
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Convex Sets
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Convex Optimization

Key object of interest is convex constraint set

We will focus on convex bodies to ensure that maximizers exist

Recall earlier questions

How do we certify that a claimed maximizer is indeed a maximizer?

What is the geometry associated to the set of maximizers?

We will address these in the context of convex optimization
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Certifying Optimality

Consider optimization problem

maximize 〈a, x〉 subject to x ∈ C

with C ⊂ Rn a convex body and a ∈ (Rn)?

A point x̂ ∈ C is a maximizer if

〈a, x〉 ≤ 〈a, x̂〉 ∀x ∈ C

Definition: Consider a convex set C ⊂ Rn and let y ∈ C. The normal cone at y with
respect to C is defined as

NC(y) , {w ∈ (Rn)? | 〈w, z〉 ≤ 〈w, y〉, ∀z ∈ C}
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Certifying Optimality

Going back to our optimization problem

maximize 〈a, x〉 subject to x ∈ C

with C ⊂ Rn a convex body and a ∈ (Rn)?

A point x̂ ∈ C is a maximizer if
a ∈ NC(x̂)

Follows from definitions of normal cone and of a maximizer
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Certifying Optimality

Linear functionals that attain maximum at

(
1
0

)
are {a | a1 ≥ a2, a1 ≥ −a2}
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What do Optimal Solution Sets Look Like?

Consider again the optimization problem

maximize 〈a, x〉 subject to x ∈ C

with C ⊂ Rn a convex body and a ∈ (Rn)?

If x̂, x̃ ∈ C are both optimal solutions, then so is any point on the line segment
connecting x̂, x̃

More generally, solution set is of the form

{x | 〈a, x〉 = v} ∩ C

Question: Can we say more?
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Faces of a Convex Set

Definition: Let C ⊂ Rn be a convex set. A subset F ⊂ C is a face of C if no point in
F can be expressed as a convex combination of points in C\F .

Some related definitions

An element x of a convex set C is an extreme point if {x} is a face of C
A face F of a convex set C is an exposed face of C if F can be expressed as

F = C ∩ {x | 〈u, x〉 = c}

for u ∈ (Rn)?, c ∈ R
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Faces of a Convex Set
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Solutions Sets of Convex Programs

Consider optimization problem

maximize 〈a, x〉 subject to x ∈ C

with C ⊂ Rn a convex body and a ∈ (Rn)?

Proposition: The collection of maximizers of the above optimization problem is an
exposed face of C.

(Proof as exercise)

Question: How do we connect this proposition with the previous one based on normal
cones?
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Duality and Convexity
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Dual of a Convex Body

Definition: Consider a convex body C ⊂ Rn with 0 ∈ int(C). The dual of C is denoted
C◦ and it is defined as:

C◦ , {y | 〈y, x〉 ≤ 1, ∀x ∈ C}

This is the collection of linear functionals with a supremum of at most 1 over C

One can check that C◦ is a convex body with 0 ∈ int(C◦)
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Dual of a Convex Body
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Dual of a Convex Body
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Dual of a Convex Body

Proposition: Consider a convex body C ⊂ Rn with 0 ∈ int(C). The exposed faces of C
and of C◦ are in one-to-one correspondence – for any exposed face F on the boundary
of C, the collection of linear functionals on the boundary of C◦ that attain their
optimum at F constitute an exposed face of C◦.

Such pairs of exposed faces are sometimes called conjugate faces

Normal cones of C are exposed faces of C◦ (restricted to the boundary of C◦)

Optimal solution sets and certificates of optimality arise as pairs of conjugate faces
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Dual of a Convex Body
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Dual of a Convex Body
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Facial and Boundary Structure of Convex Bodies
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Combinatorial Properties

Proposition: Consider a convex body C. The faces (resp. exposed faces) constitute a
lattice with the empty set being the global minimum and C being the global maximum

Partial order given by containment

Join of F1,F2 given by smallest (exposed) face containing F1,F2

Meet of F1,F2 given by F1 ∩ F2

Rich duality between face lattice of C and of C◦

To say more, need to consider specific families of convex bodies
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Polyhedra

A polyhedron is a finite intersection of halfspaces

P = {x | Ax ≤ b}

Here A : Rn → Rk is a linear map and b ∈ Rk

The problem of optimizing a linear functional over a polyhedron is a linear program

Central both to the study of convex geometry and to optimization
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Polyhedra

Number of special properties

Finite face lattice

All faces are exposed faces

Projections of polyhedra are polyhedra

Duals of polyhedra are polyhedra

A polytope is the convex hull of a finite set

Weyl-Minkowski Theorem: A convex set if a polytope if and only if it is a bounded
polyhedron
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Polyhedra
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Spectrahedra

A spectrahedron is the convex set defined by a linear matrix inequality

S = {x | A(x) � B}

for a linear map A : Rn → Sk and B ∈ Sk

The problem of optimizing a linear functional over a spectrahedron is a semidefinite
program

If the image of A is a subset of diagonal matrices and B is diagonal, then reduce to
polyhedra and linear programming
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Spectrahedra

Spetrahedra are convex, closed, basic semialgebraic sets

Cut out by intersection of finitely many polynomial inequalities

Much less known about boundary structure of spectrahedra

Duals of spectrahedra are not necessarily spectrahedra

Projected spectrahedra are not spectrahedra, but are still convex and
semialgebraic (union of basic semialgebraic sets)

Faces of spectrahedra are exposed but those of projected spectrahedra are not in
general
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Spectrahedra
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Summary

Goal of this course is to discuss properties of the faces and boundary of convex bodies

Progress on particular families of suitably structured convex bodies

Many open research questions

Historically, most progress in the polyhedral case

Much remains to be understood more generally

Subsequent lectures will focus on combinatorial, algebraic, geometric aspects of face
structure of convex sets
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