Non-polyhedral Convex Sets

Isabelle Shankar

__ Max-Planck-Institut für
Mathematik
in den Naturwissenschaften
Minicourse on Convex Geometry MPI MIS Leipzig

July 12, 2021

Overview

(1) Spectrahedra
(2) Projected Spectrahedra
(3) Many more convex objects
(4) Terracini Convexity

Semialgebraic Sets

A basic closed semialgebraic set is

$$
\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

for polynomials $g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Semialgebraic Sets

A basic closed semialgebraic set is

$$
\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

for polynomials $g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
Semialgebraic sets are boolean combinations of basic closed semialgebraic sets.

Semialgebraic Sets

A basic closed semialgebraic set is

$$
\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

for polynomials $g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
Semialgebraic sets are boolean combinations of basic closed semialgebraic sets.

Semialgebraic Sets

A basic closed semialgebraic set is

$$
\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}
$$

for polynomials $g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
Semialgebraic sets are boolean combinations of basic closed semialgebraic sets.

Tarski-Seidenberg Theorem

The projection of a semialgebraic set is semialgebraic.

Spectrahedra

A set $S \subset \mathbb{R}^{n}$ is a spectrahedron if

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n} \succeq 0\right\}
$$

where $A_{i} \in \mathcal{S}^{N}$ are symmetric matrices.

Spectrahedra

A set $S \subset \mathbb{R}^{n}$ is a spectrahedron if

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n} \succeq 0\right\}
$$

where $A_{i} \in \mathcal{S}^{N}$ are symmetric matrices.

Spectrahedra

A set $S \subset \mathbb{R}^{n}$ is a spectrahedron if

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n} \succeq 0\right\}
$$

where $A_{i} \in \mathcal{S}^{N}$ are symmetric matrices.

PSD cone \cap an affine subspace of symmetric matrices.

Spectrahedra > Example

$$
S=\left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{ccc}
x+2 & y & 0 \\
y & 3 & -x+1 \\
0 & -x+1 & 5
\end{array}\right] \succeq 0\right\}
$$

Spectrahedra > Example

$$
S=\left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{ccc}
x+2 & y & 0 \\
y & 3 & -x+1 \\
0 & -x+1 & 5
\end{array}\right] \succeq 0\right\}
$$

Recall a matrix is positive semidefinite if its principle minors are nonnegative:

Spectrahedra > Example

$$
S=\left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{ccc}
x+2 & y & 0 \\
y & 3 & -x+1 \\
0 & -x+1 & 5
\end{array}\right] \succeq 0\right\}
$$

Recall a matrix is positive semidefinite if its principle minors are nonnegative:

$$
\begin{aligned}
x+2 & \geq 0 \\
3(x+2)-y^{2} & \geq 0 \\
15-(-x+1)^{2} & \geq 0 \\
\operatorname{det}(A(x)) & \geq 0
\end{aligned}
$$

Spectrahedra > Example

$$
S=\left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{ccc}
x+2 & y & 0 \\
y & 3 & -x+1 \\
0 & -x+1 & 5
\end{array}\right] \succeq 0\right\}
$$

Recall a matrix is positive semidefinite if its principle minors are nonnegative:

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets
- Intersection of an affine subspace with the PSD cone.

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets
- Intersection of an affine subspace with the PSD cone.
- Basic closed semialgebraic sets

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets
- Intersection of an affine subspace with the PSD cone.
- Basic closed semialgebraic sets
- A spectrahedron is defined by the $2^{N}-1$ principle minors being nonnegative.

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets
- Intersection of an affine subspace with the PSD cone.
- Basic closed semialgebraic sets
- A spectrahedron is defined by the $2^{N}-1$ principle minors being nonnegative.
- All faces are exposed (Exercise)

Spectrahedra

Properties of Spectrahedra

- Closed, convex sets
- Intersection of an affine subspace with the PSD cone.
- Basic closed semialgebraic sets
- A spectrahedron is defined by the $2^{N}-1$ principle minors being nonnegative.
- All faces are exposed (Exercise)
- Rigidly Convex

Rigid Convexity

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Rigid Convexity

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Example

Let $p=1-x_{1}^{2}-x_{2}^{2}$ and $u=(0,0)$.

Rigid Convexity

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Non-Example

Let $p=1-x_{1}^{4}-x_{2}^{4}$ and $u=(0,0)$.

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Example

Let $A(x)=I+A_{1} x_{1}+\cdots+A_{n} x_{n}$ and let $p(x)=\operatorname{det}(A(x))$ with $u=0$.

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Example

Let $A(x)=I+A_{1} x_{1}+\cdots+A_{n} x_{n}$ and let $p(x)=\operatorname{det}(A(x))$ with $u=0$. Then

$$
p(t w)=\operatorname{det}(I+t W)
$$

where $W=\sum A_{i} w_{i}$.

Definition

A polynomial p is a real zero polynomial at $u \in \mathbb{R}^{n}$ if $p(u)>0$ and for every nonzero $w \in \mathbb{R}^{n}$ the complex zeros of the univariate polynomial $p(u+t w) \in \mathbb{R}[t]$ are all real.

Example

Let $A(x)=I+A_{1} x_{1}+\cdots+A_{n} x_{n}$ and let $p(x)=\operatorname{det}(A(x))$ with $u=0$. Then

$$
p(t w)=\operatorname{det}(I+t W)
$$

where $W=\sum A_{i} w_{i}$. Since W is symmetric, the zeros of this polynomial are all real, hence p is a real zero polynomial at the origin.

Rigid Convexity

Definition

A subset $C \subseteq \mathbb{R}^{n}$ is called rigidly convex if there is a point $u \in \mathbb{R}^{n}$ and a polynomial p which is a real zero polynomial at u such that C equals the closure of the connected component of $\left\{x \in \mathbb{R}^{n}: p(x)>0\right\}$ at u.

Rigid Convexity

Definition

A subset $C \subseteq \mathbb{R}^{n}$ is called rigidly convex if there is a point $u \in \mathbb{R}^{n}$ and a polynomial p which is a real zero polynomial at u such that C equals the closure of the connected component of $\left\{x \in \mathbb{R}^{n}: p(x)>0\right\}$ at u.

Theorem

Every full-dimensional spectrahedron is rigidly convex.

Rigid Convexity

Definition

A subset $C \subseteq \mathbb{R}^{n}$ is called rigidly convex if there is a point $u \in \mathbb{R}^{n}$ and a polynomial p which is a real zero polynomial at u such that C equals the closure of the connected component of $\left\{x \in \mathbb{R}^{n}: p(x)>0\right\}$ at u.

Theorem

Every full-dimensional spectrahedron is rigidly convex.

Example

$$
S=\left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{ccc}
x+2 & y & 0 \\
y & 3 & -x+1 \\
0 & -x+1 & 5
\end{array}\right] \succeq 0\right\}
$$

Rigid Convexity

Definition

A subset $S \subseteq \mathbb{R}^{n}$ is an algebraic interior if S equals the closure of a connected component of the set $\{x: p(x)>0\}$ for some $p \in \mathbb{R}[x]$ and p is called a defining polynomial of S.

Rigid Convexity

Definition

A subset $S \subseteq \mathbb{R}^{n}$ is an algebraic interior if S equals the closure of a connected component of the set $\{x: p(x)>0\}$ for some $p \in \mathbb{R}[x]$ and p is called a defining polynomial of S. The defining polynomial of smallest possible degree is unique (up to a positive constant factor) and is called the minimal polynomial of S.

Definition

A subset $S \subseteq \mathbb{R}^{n}$ is an algebraic interior if S equals the closure of a connected component of the set $\{x: p(x)>0\}$ for some $p \in \mathbb{R}[x]$ and p is called a defining polynomial of S. The defining polynomial of smallest possible degree is unique (up to a positive constant factor) and is called the minimal polynomial of S.

Facts

- Rigidly convex sets are algebraic interiors.
- The minimal polynomial is a factor of every other defining polynomial.

Definition

A subset $S \subseteq \mathbb{R}^{n}$ is an algebraic interior if S equals the closure of a connected component of the set $\{x: p(x)>0\}$ for some $p \in \mathbb{R}[x]$ and p is called a defining polynomial of S. The defining polynomial of smallest possible degree is unique (up to a positive constant factor) and is called the minimal polynomial of S.

Facts

- Rigidly convex sets are algebraic interiors.
- The minimal polynomial is a factor of every other defining polynomial.

Theorem

An algebraic interior is rigidly convex if and only if its minimal polynomial is a real zero polynomial at any of its interior points.

Rigid Convexity

Consider the TV screen $p=1-x_{1}^{4}-x_{2}^{4}$

Rigid Convexity

Consider the TV screen $p=1-x_{1}^{4}-x_{2}^{4}$

versus the disk $f=1-x_{1}^{2}-x_{2}^{2}$

Rigid Convexity

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex.

Rigid Convexity

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex. In \mathbb{R}^{2}, the converse is also true.

Rigid Convexity

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex. In \mathbb{R}^{2}, the converse is also true.

Proof outline of converse

If $S \subset \mathbb{R}^{2}$ is rigidly convex, then it is an algebraic interior. Let $p\left(x_{1}, x_{2}\right)$ be its minimal polynomial of degree d.

Rigid Convexity

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex. In \mathbb{R}^{2}, the converse is also true.

Proof outline of converse

If $S \subset \mathbb{R}^{2}$ is rigidly convex, then it is an algebraic interior. Let $p\left(x_{1}, x_{2}\right)$ be its minimal polynomial of degree d.

$$
p\left(x_{1}, x_{2}\right)=\operatorname{det}\left(I+A_{1} x_{1}+A_{2} x_{2}\right)
$$

where A_{1}, A_{2} are $d \times d$ symmetric matrices.

Rigid Convexity

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex. In \mathbb{R}^{2}, the converse is also true.

Proof outline of converse

If $S \subset \mathbb{R}^{2}$ is rigidly convex, then it is an algebraic interior. Let $p\left(x_{1}, x_{2}\right)$ be its minimal polynomial of degree d.

$$
p\left(x_{1}, x_{2}\right)=\operatorname{det}\left(I+A_{1} x_{1}+A_{2} x_{2}\right)
$$

where A_{1}, A_{2} are $d \times d$ symmetric matrices. Therefore

$$
S=\left\{\left(x_{1}, x_{2}\right): I+A_{1} x_{1}+A_{2} x_{2} \succeq 0\right\}
$$

is a spectrahedron.

Symmetric Determinantal Representations

A polynomial $p \in \mathbb{R}[x]$ has a symmetric determinantal representation if $p(x)=\operatorname{det} A(x)$ for some

$$
A(x)=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}
$$

where A_{i} are symmetric matrices.

Symmetric Determinantal Representations

A polynomial $p \in \mathbb{R}[x]$ has a symmetric determinantal representation if $p(x)=\operatorname{det} A(x)$ for some

$$
A(x)=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}
$$

where A_{i} are symmetric matrices. If $A_{0} \succ 0$, we say p has a monic symmetric determinantal representation.

Symmetric Determinantal Representations

A polynomial $p \in \mathbb{R}[x]$ has a symmetric determinantal representation if $p(x)=\operatorname{det} A(x)$ for some

$$
A(x)=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}
$$

where A_{i} are symmetric matrices. If $A_{0} \succ 0$, we say p has a monic symmetric determinantal representation.

Question

Does every real zero polynomial have a monic symmetric determinantal representation?

Symmetric Determinantal Representations

A polynomial $p \in \mathbb{R}[x]$ has a symmetric determinantal representation if $p(x)=\operatorname{det} A(x)$ for some

$$
A(x)=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}
$$

where A_{i} are symmetric matrices. If $A_{0} \succ 0$, we say p has a monic symmetric determinantal representation.

Question

Does every real zero polynomial have a monic symmetric determinantal representation?
Answer: No. (Brändén, Netzer and Thom)

Symmetric Determinantal Representations

A polynomial $p \in \mathbb{R}[x]$ has a symmetric determinantal representation if $p(x)=\operatorname{det} A(x)$ for some

$$
A(x)=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}
$$

where A_{i} are symmetric matrices. If $A_{0} \succ 0$, we say p has a monic symmetric determinantal representation.

Question

Does every real zero polynomial have a monic symmetric determinantal representation?
Answer: No. (Brändén, Netzer and Thom)
Counterexample
$p=\left(1+x_{1}^{2}\right)^{2}-x_{2}^{2}-\cdots-x_{n}^{2}$ for $n \geq 4$
S is a spectrahedron

Open Question

Is every rigidly convex algebraic interior of \mathbb{R}^{n} a spectrahedron?

Spectrahedra

Spectraplex

The set of PSD matrices with trace one:

$$
\left\{X \in \mathcal{S}^{n}: X \succeq 0, \operatorname{Tr}(X)=1\right\}
$$

Extreme points of the spectraplex are rank one PSD matrices, $X=x x^{T}$.

Spectrahedra

Spectraplex

The set of PSD matrices with trace one:

$$
\left\{X \in \mathcal{S}^{n}: X \succeq 0, \operatorname{Tr}(X)=1\right\}
$$

Extreme points of the spectraplex are rank one PSD matrices, $X=x x^{T}$.

Elliptope

The set of PSD matrices with ones on the diagonal:

$$
\left\{X \in \mathcal{S}^{n}: X \succeq 0, X_{i i}=1, i=1, \ldots, n\right\}
$$

Figure 5.8. The elliptope $P=\mathcal{E}_{3}$ and its dual convex body P°.

Spectrahedra

Figure 5.8. The elliptope $P=\mathcal{E}_{3}$ and its dual convex body P°

The dual body of the elliptope is a projected spectrahedron.

Projected Spectrahedra

Consider the spectrahedron

$$
\left(\begin{array}{cccc}
1+x & y & 0 & 0 \\
y & 1-x & 0 & 0 \\
0 & 0 & 1+z & 0 \\
0 & 0 & 0 & 1-z
\end{array}\right) \succeq 0
$$

Projected Spectrahedra

Consider the spectrahedron

Projected Spectrahedra

Consider the spectrahedron

Projected Spectrahedra

Consider the spectrahedron

Not a spectrahedron!

Projected Spectrahedra

Definition

A set $P \subset \mathbb{R}^{n}$ is a projected spectrahedron if there exists a spectrahedron $S \in \mathbb{R}^{n+k}$ such that

$$
P=\left\{x \in \mathbb{R}^{n}:(x, y) \in S \text { for some } y \in \mathbb{R}^{k}\right\}
$$

Projected Spectrahedra

Definition

A set $P \subset \mathbb{R}^{n}$ is a projected spectrahedron if there exists a spectrahedron $S \in \mathbb{R}^{n+k}$ such that

$$
P=\left\{x \in \mathbb{R}^{n}:(x, y) \in S \text { for some } y \in \mathbb{R}^{k}\right\}
$$

S is a spectrahedral lift of P.

Projected Spectrahedra

Definition

A set $P \subset \mathbb{R}^{n}$ is a projected spectrahedron if there exists a spectrahedron $S \in \mathbb{R}^{n+k}$ such that

$$
P=\left\{x \in \mathbb{R}^{n}:(x, y) \in S \text { for some } y \in \mathbb{R}^{k}\right\}
$$

S is a spectrahedral lift of P.

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$
$\left(\begin{array}{cccccc}1+y_{1} & y_{2} & & & & \\ y_{2} & 1-y_{1} & & & & \\ & & 1 & x_{1} & & \\ & & x_{1} & y_{1} & & \\ & & & & 1 & x_{2} \\ & & & & x_{2} & y_{2}\end{array}\right) \succeq 0$

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$
- For $X \in \mathcal{S}^{n}$, let $s_{k}(X)$ be the sum of the k largest eigenvalues. Then

$$
\left\{(X, t) \in \mathcal{S}^{n} \times \mathbb{R}: s_{k}(X) \leq t\right\}
$$

is a projected spectrahedron.

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$
- For $X \in \mathcal{S}^{n}$, let $s_{k}(X)$ be the sum of the k largest eigenvalues. Then

$$
\left\{(X, t) \in \mathcal{S}^{n} \times \mathbb{R}: s_{k}(X) \leq t\right\}
$$

is a projected spectrahedron.

- $\Sigma_{n, 2 d}$, the cone of SOS polynomials.

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$
- For $X \in \mathcal{S}^{n}$, let $s_{k}(X)$ be the sum of the k largest eigenvalues. Then

$$
\left\{(X, t) \in \mathcal{S}^{n} \times \mathbb{R}: s_{k}(X) \leq t\right\}
$$

is a projected spectrahedron.

- $\Sigma_{n, 2 d}$, the cone of SOS polynomials.
- The dual of the samosa.

Projected Spectrahedra

Some examples

- TV Screen: $\left\{\left(x_{1}, x_{2}\right): x_{1}^{4}+x_{2}^{4} \leq 1\right\}$
- For $X \in \mathcal{S}^{n}$, let $s_{k}(X)$ be the sum of the k largest eigenvalues. Then

$$
\left\{(X, t) \in \mathcal{S}^{n} \times \mathbb{R}: s_{k}(X) \leq t\right\}
$$

is a projected spectrahedron.

- $\Sigma_{n, 2 d}$, the cone of SOS polynomials.
- The dual of the samosa.

Projected spectrahedra are closed under projection, duality, and convex hull of finite unions.

Many more convex objects $>$ Orbitopes

Orbitopes

An orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\{g \cdot v: g \in G\} \subset V
$$

Many more convex objects $>$ Orbitopes

Orbitopes

An orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\{g \cdot v: g \in G\} \subset V
$$

Examples

- Permutahedron, S_{n}-orbitope
- Sphere, $S O(n)$-orbitope

Orbitopes are convex semialgebraic sets and some are spectrahedra or projected spectrahedra,

Many more convex objects $>$ Orbitopes

Orbitopes

An orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\{g \cdot v: g \in G\} \subset V
$$

Examples

- Permutahedron, S_{n}-orbitope
- Sphere, $S O(n)$-orbitope

Orbitopes are convex semialgebraic sets and some are spectrahedra or projected spectrahedra, but there are orbitopes which are not projected spectrahedra!

Many more convex objects $>$ Orbitopes

Want to learn more about orbitopes?
Raman Sanyal, Frank Sottile, and Bernd Sturmfels,
Orbitopes,
Mathematika. 2011, pp. 275-314.
庫 Tim Kobert,
Spectrahedral and semidefinite representability of orbitopes,
PhD thesis (Universität Konstanz, 2019)

Many more convex objects \rangle Zonoids

Definition

Let $K, L \subset \mathbb{R}^{n}$ be compact sets. The Hausdorff distance of $K, L \subset \mathbb{R}^{n}$ is

$$
\delta(K, L):=\max \left\{\sup _{x \in K} \inf _{y \in L}\|x-y\|, \sup _{x \in L} \inf _{y \in K}\|x-y\|\right\} .
$$

Many more convex objects \rangle Zonoids

Definition

Let $K, L \subset \mathbb{R}^{n}$ be compact sets. The Hausdorff distance of $K, L \subset \mathbb{R}^{n}$ is

$$
\delta(K, L):=\max \left\{\sup _{x \in K} \inf _{y \in L}\|x-y\|, \sup _{x \in L} \inf _{y \in K}\|x-y\|\right\} .
$$

Hausdorff metric

- The metric space $\left(C^{n}, \delta\right)$ is complete and every bounded sequence has a convergent subsequence.

Many more convex objects \rangle Zonoids

Definition

Let $K, L \subset \mathbb{R}^{n}$ be compact sets. The Hausdorff distance of $K, L \subset \mathbb{R}^{n}$ is

$$
\delta(K, L):=\max \left\{\sup _{x \in K} \inf _{y \in L}\|x-y\|, \sup _{x \in L} \inf _{y \in K}\|x-y\|\right\} .
$$

Hausdorff metric

- The metric space $\left(C^{n}, \delta\right)$ is complete and every bounded sequence has a convergent subsequence.
- Every bounded sequence of convex bodies has a subsequence that converges to a convex body.

Many more convex objects \rangle Zonoids

Recall, a zonotope is the minkowski sum of finitely many line segments.

Many more convex objects \rangle Zonoids

Recall, a zonotope is the minkowski sum of finitely many line segments.

Zonoid

A compact convex set in \mathbb{R}^{n} is a zonoid if it is the Hausdorff limit of a sequence of zonotopes.

Many more convex objects \rangle Zonoids

Recall, a zonotope is the minkowski sum of finitely many line segments.

Zonoid

A compact convex set in \mathbb{R}^{n} is a zonoid if it is the Hausdorff limit of a sequence of zonotopes.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects \rangle Projection Bodies

Let K be a convex body in \mathbb{R}^{n}. The projection body ΠK of K is the centered convex body defined by the support function,

$$
h_{\Pi K}(u)=\operatorname{Vol}_{n-1}\left(K \mid u^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, u)
$$

for all $u \in S^{n-1}$.

Many more convex objects >Projection Bodies

Theorem

A projection body is a centered zonoid. Conversely, every centered full dimensional zonoid in \mathbb{R}^{n} is the projection body of a unique centered convex body.

Many more convex objects >Projection Bodies

Theorem

A projection body is a centered zonoid. Conversely, every centered full dimensional zonoid in \mathbb{R}^{n} is the projection body of a unique centered convex body.

Figure 4.1. Projection bodies.

Many more convex objects >Projection Bodies

Theorem

A projection body is a centered zonoid. Conversely, every centered full dimensional zonoid in \mathbb{R}^{n} is the projection body of a unique centered convex body.

Theorem

Figure 4.1. Proiection bodies.
A convex body in \mathbb{R}^{n} is a zonoid if and only if it is a Hausdorff limit of finite Minkowski sums of n-dimensional ellipsoids.

Many more convex objects \rangle Projection Bodies

Want to learn more about projection bodies and zonoids?
Richard Harding Gardner,
Geometric Tomography,
Cambridge University Press, New York. 2006
Rolf Schneider,
Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, Cambridge. 2014

Many more convex objects

Intersection Bodies
Ask Marie and Katalin

Many more convex objects

Intersection Bodies
Ask Marie and Katalin
Minkowski Sums of Disks
Ask Chiara

Many more convex objects

Intersection Bodies
Ask Marie and Katalin
Minkowski Sums of Disks
Ask Chiara
Convex Hulls in Buildings
Ask Mima and Marvin

Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?

Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?
\rightarrow Chiara will mention one possibility in her talk on Wednesday.

Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?
\rightarrow Chiara will mention one possibility in her talk on Wednesday.

What other combinatorial properties of polytopes can be generalized to other convex sets and how?

Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?
\rightarrow Chiara will mention one possibility in her talk on Wednesday.

What other combinatorial properties of polytopes can be generalized to other convex sets and how?
\rightarrow One answer for neighborliness of convex cones is via Terracini convexity.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a convex cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$ and C is convex.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a convex cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$ and C is convex.
More definitions

- A ray of a cone C is a set of the form $\{\lambda x: \lambda \geq 0\}$ for a nonzero $x \in C$.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a convex cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$ and C is convex.
More definitions

- A ray of a cone C is a set of the form $\{\lambda x: \lambda \geq 0\}$ for a nonzero $x \in C$.
- A ray S is an extreme ray if to following holds: for any $x, y \in C$ if $x+y \in S$ then $x, y \in S$.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a convex cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$ and C is convex.

More definitions

- A ray of a cone C is a set of the form $\{\lambda x: \lambda \geq 0\}$ for a nonzero $x \in C$.
- A ray S is an extreme ray if to following holds: for any $x, y \in C$ if $x+y \in S$ then $x, y \in S$.
- A set $\mathcal{F} \subseteq C$ is a face of C if for $x, y \in C, x+y \in \mathcal{F}$ implies that $x, y \in \mathcal{F}$.

Terracini Convexity

Definition

A subset $C \subset R^{n}$ is a convex cone if for all $\lambda \geq 0$ and $x \in C, \lambda x \in C$ and C is convex.

More definitions

- A ray of a cone C is a set of the form $\{\lambda x: \lambda \geq 0\}$ for a nonzero $x \in C$.
- A ray S is an extreme ray if to following holds: for any $x, y \in C$ if $x+y \in S$ then $x, y \in S$.
- A set $\mathcal{F} \subseteq C$ is a face of C if for $x, y \in C, x+y \in \mathcal{F}$ implies that $x, y \in \mathcal{F}$.
- We say that a cone is pointed if it contains no lines, $C \cap-C=\{0\}$.

Terracini Convexity

Definition

A polytope is called k-neighborly if every set of k or fewer vertices forms a face.

Terracini Convexity

Definition

A pointed polyhedral cone is called k-neighborly if every set of k or fewer extreme rays forms a face.

Terracini Convexity

Definition

A pointed polyhedral cone is called k-neighborly if every set of k or fewer extreme rays forms a face.

Terracini Convexity

Let $C \subset \mathbb{R}^{n}$ be a closed, pointed, convex cone.
Define $\mathcal{K}_{C}(x)=$ cone $\{z-x: z \in C\}$ to be the cone of feasible directions into C at $x \in C$.

Terracini Convexity

Let $C \subset \mathbb{R}^{n}$ be a closed, pointed, convex cone.
Define $\mathcal{K}_{C}(x)=$ cone $\{z-x: z \in C\}$ to be the cone of feasible directions into C at $x \in C$. The convex tangent space of C at x is

$$
\mathcal{L}_{C}(x):=\overline{\mathcal{K}_{C}(x)} \cap-\overline{\mathcal{K}_{C}(x)},
$$

the lineality space of the closure of the cone of feasible directions.

Terracini Convexity

Let $C \subset \mathbb{R}^{n}$ be a closed, pointed, convex cone.
Define $\mathcal{K}_{C}(x)=$ cone $\{z-x: z \in C\}$ to be the cone of feasible directions into C at $x \in C$. The convex tangent space of C at x is

$$
\mathcal{L}_{C}(x):=\overline{\mathcal{K}_{C}(x)} \cap-\overline{\mathcal{K}_{C}(x)},
$$

the lineality space of the closure of the cone of feasible directions.

Definition

A closed, pointed, convex cone C is k-Terracini convex if for any collection $x^{(1)}, \ldots, x^{(k)}$ of generators of extreme rays of C,

$$
\mathcal{L}_{C}\left(\sum_{i=1}^{k} x^{(i)}\right)=\sum_{i=1}^{k} \mathcal{L}_{C}\left(x^{(i)}\right)
$$

If C is k-Terracini convex for all k, then C is Terracini convex.

Terracini Convexity

Terracini Convexity

Examples

- A pointed k-neighborly polyhedral cone is k-Terracini convex.
- The nonnegative orthant is Terracini convex
- Any smooth pointed convex cone is Terracini convex.
- PSD cone is Terracini convex

Terracini Convexity

The normal cone to a convex cone C and x is

$$
\mathcal{N}_{C}(x)=\left\{l: l^{T} x=0\right\}
$$

Terracini Convexity

The normal cone to a convex cone C and x is

$$
\mathcal{N}_{C}(x)=\left\{l: l^{T} x=0\right\}
$$

Proposition

A closed, pointed, convex cone $C \subset \mathbb{R}^{n}$ is k-Terracini convex if and only if for any collection $x^{(1)}, \ldots, x^{(k)}$ of generators of extreme rays of C,

$$
\operatorname{span}\left(\bigcap_{i=1}^{k} \mathcal{N}_{C}\left(x^{(i)}\right)\right)=\bigcap_{i=1}^{k} \operatorname{span}\left(\mathcal{N}_{C}\left(x^{(i)}\right)\right) .
$$

Terracini Convexity

The normal cone to a convex cone C and x is

$$
\mathcal{N}_{C}(x)=\left\{l: l^{T} x=0\right\}
$$

Proposition

A closed, pointed, convex cone $C \subset \mathbb{R}^{n}$ is k-Terracini convex if and only if for any collection $x^{(1)}, \ldots, x^{(k)}$ of generators of extreme rays of C,

$$
\operatorname{span}\left(\bigcap_{i=1}^{k} \mathcal{N}_{C}\left(x^{(i)}\right)\right)=\bigcap_{i=1}^{k} \operatorname{span}\left(\mathcal{N}_{C}\left(x^{(i)}\right)\right) .
$$

\longrightarrow PSD cone is Terracini convex (Exercise)

Terracini Convexity

Definition

Let $\mathcal{F}^{(i)}$, for $i=1, \ldots m$, be collection a face of C.

Terracini Convexity

Definition

Let $\mathcal{F}^{(i)}$, for $i=1, \ldots m$, be collection a face of C. If

$$
\mathcal{F}^{(1)} \subsetneq \cdots \subsetneq \mathcal{F}^{(m)}
$$

then this collection is a chain of faces. The height of the poset of faces of C, denoted $\mathcal{H}(C)$, is the length of the longest chain.

Terracini Convexity

Definition

Let $\mathcal{F}^{(i)}$, for $i=1, \ldots m$, be collection a face of C. If

$$
\mathcal{F}^{(1)} \subsetneq \cdots \subsetneq \mathcal{F}^{(m)}
$$

then this collection is a chain of faces. The height of the poset of faces of C, denoted $\mathcal{H}(C)$, is the length of the longest chain.
$\longrightarrow \mathcal{H}(C) \leq \operatorname{dim}(C)+1$

Terracini Convexity

Definition

Let $\mathcal{F}^{(i)}$, for $i=1, \ldots m$, be collection a face of C. If

$$
\mathcal{F}^{(1)} \subsetneq \ldots \subsetneq \mathcal{F}^{(m)}
$$

then this collection is a chain of faces. The height of the poset of faces of C, denoted $\mathcal{H}(C)$, is the length of the longest chain.
$\longrightarrow \mathcal{H}(C) \leq \operatorname{dim}(C)+1$

Theorem

Let C be a closed, pointed, convex cone that is $(\mathcal{H}(C)-1)$-Terracini convex. Then C is Terracini convex.

Terracini Convexity

Definition

Let $\mathcal{F}^{(i)}$, for $i=1, \ldots m$, be collection a face of C. If

$$
\mathcal{F}^{(1)} \subsetneq \ldots \subsetneq \mathcal{F}^{(m)}
$$

then this collection is a chain of faces. The height of the poset of faces of C, denoted $\mathcal{H}(C)$, is the length of the longest chain.
$\longrightarrow \mathcal{H}(C) \leq \operatorname{dim}(C)+1$

Theorem

Let C be a closed, pointed, convex cone that is $(\mathcal{H}(C)-1)$-Terracini convex. Then C is Terracini convex.

$$
\text { dim }(C) \text {-Terracini convex } \Longrightarrow \text { Terracini convex. }
$$

Terracini Convexity
Consider $\mathfrak{L}(C)=\left\{\mathcal{L}_{C}(x): x \in C\right\}$.

Terracini Convexity

Consider $\mathfrak{L}(C)=\left\{\mathcal{L}_{C}(x): x \in C\right\}$.
Theorem
Let $C \subset \mathbb{R}^{n}$ be a closed, pointed, convex cone. C is Terracini convex if and only if $\mathfrak{L}(C)$ is a join sub-semilattice of the lattice of all subspaces in \mathbb{R}^{n}.

Terracini Convexity

Consider $\mathfrak{L}(C)=\left\{\mathcal{L}_{C}(x): x \in C\right\}$.

Theorem

Let $C \subset \mathbb{R}^{n}$ be a closed, pointed, convex cone. C is Terracini convex if and only if $\mathfrak{L}(C)$ is a join sub-semilattice of the lattice of all subspaces in \mathbb{R}^{n}.

Terracini Convexity

Fix $k \in \mathbb{N}$ and let $|\operatorname{support}(x)|$ for a vector x be the number of nonzero entries.

Terracini Convexity

Fix $k \in \mathbb{N}$ and let $|\operatorname{support}(x)|$ for a vector x be the number of nonzero entries.

Definition

- A linear map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if, for any $x^{*} \in \mathbb{R}_{+}^{d}$ with $\left|\operatorname{support}\left(x^{*}\right)\right| \leq k$, the unique optimal solution of the linear programming problem $\min \left\{x_{1}+\cdots+x_{n}: A x=A x^{*}, x \geq 0\right\}$ is x^{*}.

Fix $k \in \mathbb{N}$ and let $|\operatorname{support}(x)|$ for a vector x be the number of nonzero entries.

Definition

- A linear map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if, for any $x^{*} \in \mathbb{R}_{+}^{d}$ with $\left|\operatorname{support}\left(x^{*}\right)\right| \leq k$, the unique optimal solution of the linear programming problem $\min \left\{x_{1}+\cdots+x_{n}: A x=A x^{*}, x \geq 0\right\}$ is x^{*}.
- Consider a linear map $B: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$. The cone $B\left(\mathbb{R}_{+}^{d}\right)$ satisfies the unique preimage property if, for any $x^{*} \in \mathbb{R}_{+}^{d}$ with $\left|\operatorname{support}\left(x^{*}\right)\right| \leq k$, the point $B x^{*}$ has a unique preimage in \mathbb{R}_{+}^{d}.

Fix $k \in \mathbb{N}$ and let $|\operatorname{support}(x)|$ for a vector x be the number of nonzero entries.

Definition

- A linear map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if, for any $x^{*} \in \mathbb{R}_{+}^{d}$ with $\left|\operatorname{support}\left(x^{*}\right)\right| \leq k$, the unique optimal solution of the linear programming problem $\min \left\{x_{1}+\cdots+x_{n}: A x=A x^{*}, x \geq 0\right\}$ is x^{*}.
- Consider a linear map $B: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$. The cone $B\left(\mathbb{R}_{+}^{d}\right)$ satisfies the unique preimage property if, for any $x^{*} \in \mathbb{R}_{+}^{d}$ with $\left|\operatorname{support}\left(x^{*}\right)\right| \leq k$, the point $B x^{*}$ has a unique preimage in \mathbb{R}_{+}^{d}.
- Consider a linear map $B: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$. The cone $B\left(\mathbb{R}_{+}^{d}\right)$ satisfies the Terracini convexity property if it is pointed, it has d extreme rays, and it is k-Terracini convex.

Terracini Convexity

Theorem

Consider a linear map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ that is surjective and define the linear map $B: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n+1}$ as

$$
B x=\binom{A x}{x_{1}+\cdots+x_{d}} .
$$

Suppose that null $(A) \cap \mathbb{R}_{++}^{n} \neq \emptyset$. Fix a positive integer $k<d$. The map A satisfies the exact recovery property if and only if the cone $B\left(\mathbb{R}_{+}^{d}\right)$ satisfies the Terracini convexity property.

Proof.

Exact recovery property \Longleftrightarrow unique preimage property \Longleftrightarrow Terracini convexity property.

Terracini Convexity

Fix $k \in \mathbb{N}$.

Terracini Convexity

Fix $k \in \mathbb{N}$.

Definition

- A linear map $\mathcal{A}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if for any $X^{*} \in \mathcal{S}_{+}^{d}$ with $\operatorname{rank}\left(X^{*}\right) \leq k$, the unique optimal solution of the semidefinite programming problem $\min \left\{\operatorname{trace}(X): \mathcal{A}(X)=\mathcal{A}\left(X^{*}\right), X \succeq 0\right\}$ is X^{*}.

Terracini Convexity

Fix $k \in \mathbb{N}$.

Definition

- A linear map $\mathcal{A}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if for any $X^{*} \in \mathcal{S}_{+}^{d}$ with $\operatorname{rank}\left(X^{*}\right) \leq k$, the unique optimal solution of the semidefinite programming problem $\min \left\{\operatorname{trace}(X): \mathcal{A}(X)=\mathcal{A}\left(X^{*}\right), X \succeq 0\right\}$ is X^{*}.
- Consider a linear map $\mathcal{B}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{N}$. The cone $\mathcal{B}\left(\mathcal{S}_{+}^{d}\right)$ satisfies the unique preimage property if, for any $X^{*} \in \mathcal{S}_{+}^{d}$ with $\operatorname{rank}\left(X^{*}\right) \leq k$, the point $\mathcal{B}\left(X^{*}\right)$ has a unique preimage in \mathcal{S}_{+}^{d}.

Fix $k \in \mathbb{N}$.

Definition

- A linear map $\mathcal{A}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{n}$ satisfies the exact recovery property if for any $X^{*} \in \mathcal{S}_{+}^{d}$ with $\operatorname{rank}\left(X^{*}\right) \leq k$, the unique optimal solution of the semidefinite programming problem $\min \left\{\operatorname{trace}(X): \mathcal{A}(X)=\mathcal{A}\left(X^{*}\right), X \succeq 0\right\}$ is X^{*}.
- Consider a linear map $\mathcal{B}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{N}$. The cone $\mathcal{B}\left(\mathcal{S}_{+}^{d}\right)$ satisfies the unique preimage property if, for any $X^{*} \in \mathcal{S}_{+}^{d}$ with $\operatorname{rank}\left(X^{*}\right) \leq k$, the point $\mathcal{B}\left(X^{*}\right)$ has a unique preimage in \mathcal{S}_{+}^{d}.
- Consider a linear map $\mathcal{B}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{N}$. The cone $\mathcal{B}\left(\mathcal{S}_{+}^{d}\right)$ satisfies the Terracini convexity property if it is closed and pointed, its extreme rays are in one-to-one correspondence with those of \mathcal{S}_{+}^{d}, and it is k-Terracini convex.

Terracini Convexity

Theorem

Consider a linear map $\mathcal{A}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{n}$ and fix a positive integer $k<d$.
(1) Suppose \mathcal{A} is surjective and null $(\mathcal{A}) \cap \mathcal{S}_{++}^{n} \neq \emptyset$. Define $\mathcal{B}: \mathcal{S}^{d} \rightarrow \mathbb{R}^{n+1}$ as $\mathcal{B}(X)=\binom{\mathcal{A}(X)}{\operatorname{trace}(X)}$. If \mathcal{A} satisfies the exact recovery property, then $\mathcal{B}\left(\mathcal{S}_{+}^{d}\right)$ satisfies the Terracini convexity property.
(2) Let $n>\binom{d+1}{2}-\binom{d-k+1}{2}$. Suppose there exists an open set \mathfrak{S} in the space of linear maps from \mathcal{S}^{d} to \mathbb{R}^{n} with the following properties:

- $\mathcal{A} \in \mathfrak{S}$.
- For each $\tilde{\mathcal{A}} \in \mathfrak{S}, \tilde{\mathcal{A}}$ is surjective and $\operatorname{null}(\tilde{\mathcal{A}}) \cap \mathcal{S}_{++}^{d} \neq \emptyset$.
- For each $\tilde{\mathcal{A}} \in \mathfrak{S}$ with associated $\tilde{\mathcal{B}}$, the cone $\tilde{\mathcal{B}}\left(\mathcal{S}_{+}^{d}\right)$ satisfies the Terracini convexity property.
Then the map \mathcal{A} satisfies the exact recovery property.

Terracini Convexity

Venkat Chandrasekaran and James Saunderson, Terracini Convexity,
Preprint: arxiv.org/abs/2010.00805. 2020

Combinatorics of convex sets

Neighborliness of convex cones \rightarrow Terracini Convexity.

Combinatorics of convex sets

Neighborliness of convex cones \rightarrow Terracini Convexity.

Exercise

Pick up Convex Polytopes by Grünbaum or Lectures on Polytopes by Ziegler. For each chapter/section/subsection/theorem/property, what is a generalization to non-polyhedral convex sets?

Combinatorics of convex sets

Neighborliness of convex cones \rightarrow Terracini Convexity.

Exercise

Pick up Convex Polytopes by Grünbaum or Lectures on Polytopes by Ziegler. For each chapter/section/subsection/theorem/property, what is a generalization to non-polyhedral convex sets?

Thank you!

