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Semialgebraic Sets

A basic closed semialgebraic set is

{x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}

for polynomials gi ∈ R[x1, . . . , xn].

Semialgebraic sets are boolean combinations of basic closed semialgebraic sets.

Tarski-Seidenberg Theorem
The projection of a semialgebraic set is semialgebraic.
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Spectrahedra

A set S ⊂ Rn is a spectrahedron if
S = {x ∈ Rn : A0 +A1x1 + · · ·+Anxn � 0}

where Ai ∈ SN are symmetric matrices.

PSD cone ∩ an affine subspace of symmetric matrices.
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Spectrahedra Example

S = {(x, y) ∈ R2 :

x+ 2 y 0
y 3 −x+ 1
0 −x+ 1 5

 � 0}

Recall a matrix is positive semidefinite if its principle minors are nonnegative:
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S = {(x, y) ∈ R2 :

x+ 2 y 0
y 3 −x+ 1
0 −x+ 1 5

 � 0}

Recall a matrix is positive semidefinite if its principle minors are nonnegative:

x+ 2 ≥ 0
3(x+ 2)− y2 ≥ 0

15− (−x+ 1)2 ≥ 0
det(A(x)) ≥ 0
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Spectrahedra

Properties of Spectrahedra

• Closed, convex sets

• Intersection of an affine subspace with the PSD cone.

• Basic closed semialgebraic sets
• A spectrahedron is defined by the 2N − 1 principle minors being nonnegative.

• All faces are exposed (Exercise)

• Rigidly Convex
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Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u ∈ Rn if p(u) > 0 and for every nonzero
w ∈ Rn the complex zeros of the univariate polynomial p(u+ tw) ∈ R[t] are all real.

Example
Let p = 1− x2

1 − x2
2 and u = (0, 0).
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Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u ∈ Rn if p(u) > 0 and for every nonzero
w ∈ Rn the complex zeros of the univariate polynomial p(u+ tw) ∈ R[t] are all real.

Non-Example
Let p = 1− x4

1 − x4
2 and u = (0, 0).
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Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u ∈ Rn if p(u) > 0 and for every nonzero
w ∈ Rn the complex zeros of the univariate polynomial p(u+ tw) ∈ R[t] are all real.

Example
Let A(x) = I +A1x1 + · · ·+Anxn and let p(x) = det(A(x)) with u = 0.

Then

p(tw) = det(I + tW )

where W =
∑
Aiwi. Since W is symmetric, the zeros of this polynomial are all real,

hence p is a real zero polynomial at the origin.
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Rigid Convexity

Definition
A subset C ⊆ Rn is called rigidly convex if there is a point u ∈ Rn and a polynomial p
which is a real zero polynomial at u such that C equals the closure of the connected
component of {x ∈ Rn : p(x) > 0} at u.

Theorem
Every full-dimensional spectrahedron is rigidly convex.

Example

S = {(x, y) ∈ R2 :

x+ 2 y 0
y 3 −x+ 1
0 −x+ 1 5

 � 0}
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Rigid Convexity

Definition
A subset S ⊆ Rn is an algebraic interior if S equals the closure of a connected
component of the set {x : p(x) > 0} for some p ∈ R[x] and p is called a defining
polynomial of S.

The defining polynomial of smallest possible degree is unique (up to
a positive constant factor) and is called the minimal polynomial of S.

Facts
• Rigidly convex sets are algebraic interiors.
• The minimal polynomial is a factor of every other defining polynomial.

Theorem
An algebraic interior is rigidly convex if and only if its minimal polynomial is a real zero
polynomial at any of its interior points.
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Rigid Convexity

Consider the TV screen p = 1− x4
1 − x4

2

versus the disk f = 1− x2
1 − x2

2
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Rigid Convexity

Theorem (Helton, Vinnikov)
If an algebraic interior is a spectrahedron, then it is rigidly convex.

In R2, the converse
is also true.

Proof outline of converse
If S ⊂ R2 is rigidly convex, then it is an algebraic interior. Let p(x1, x2) be its minimal
polynomial of degree d.

p(x1, x2) = det(I +A1x1 +A2x2)

where A1, A2 are d× d symmetric matrices. Therefore

S = {(x1, x2) : I +A1x1 +A2x2 � 0}

is a spectrahedron.
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Symmetric Determinantal Representations

A polynomial p ∈ R[x] has a symmetric determinantal representation if
p(x) = detA(x) for some

A(x) = A0 +A1x1 + · · ·+Anxn

where Ai are symmetric matrices.

If A0 � 0, we say p has a monic symmetric
determinantal representation.

Question
Does every real zero polynomial have a monic symmetric determinantal representation?

Answer: No. (Brändén, Netzer and Thom)

Counterexample
p = (1 + x2

1)2 − x2
2 − · · · − x2

n for n ≥ 4
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Summary

S is a spectrahedron S is rigidly convex

S is an algebraic interior

n = 2

p is RZ
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Summary

S is a spectrahedron S is rigidly convex

S is an algebraic interior

n = 2

p is RZ

Open Question
Is every rigidly convex algebraic interior of Rn a spectrahedron?
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Spectrahedra

Spectraplex
The set of PSD matrices with trace one:

{X ∈ Sn : X � 0,Tr(X) = 1}

Extreme points of the spectraplex are rank one PSD matrices, X = xxT .

Elliptope
The set of PSD matrices with ones on the diagonal:

{X ∈ Sn : X � 0, Xii = 1, i = 1, . . . , n}
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Spectrahedra

The dual body of the elliptope is a projected spectrahedron.
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Spectrahedra

The dual body of the elliptope is a projected spectrahedron.
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Projected Spectrahedra

Consider the spectrahedron
1 + x y 0 0
y 1− x 0 0
0 0 1 + z 0
0 0 0 1− z

 � 0

Not a spectrahedron!
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Projected Spectrahedra

Definition
A set P ⊂ Rn is a projected spectrahedron if there exists a spectrahedron S ∈ Rn+k

such that
P = {x ∈ Rn : (x, y) ∈ S for some y ∈ Rk}.

S is a spectrahedral lift of P .
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Projected Spectrahedra

Some examples
• TV Screen: {(x1, x2) : x4

1 + x4
2 ≤ 1}

• For X ∈ Sn, let sk(X) be the sum of the k largest eigenvalues. Then

{(X, t) ∈ Sn × R : sk(X) ≤ t}.

is a projected spectrahedron.
• Σn,2d, the cone of SOS polynomials.
• The dual of the samosa.

Projected spectrahedra are closed under projection, duality, and convex hull of finite
unions.
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y2 1− y1

1 x1
x1 y1

1 x2
x2 y2
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Many more convex objects Orbitopes

Orbitopes
An orbitope is the convex hull of the orbit of an element v in a real representation V
of a compact group G,

conv(G · v) = {g · v : g ∈ G} ⊂ V

Examples
• Permutahedron, Sn-orbitope
• Sphere, SO(n)-orbitope

Orbitopes are convex semialgebraic sets and some are spectrahedra or projected
spectrahedra, but there are orbitopes which are not projected spectrahedra!
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Many more convex objects Orbitopes

Want to learn more about orbitopes?

Raman Sanyal, Frank Sottile, and Bernd Sturmfels,
Orbitopes,
Mathematika. 2011, pp. 275-314.

Tim Kobert,
Spectrahedral and semidefinite representability of orbitopes,
PhD thesis (Universität Konstanz, 2019)
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Many more convex objects Zonoids

Definition
Let K,L ⊂ Rn be compact sets. The Hausdorff distance of K,L ⊂ Rn is

δ(K,L) := max{sup
x∈K

inf
y∈L
||x− y||, sup

x∈L
inf

y∈K
||x− y||}.

Hausdorff metric
• The metric space (Cn, δ) is complete and every bounded sequence has a

convergent subsequence.
• Every bounded sequence of convex bodies has a subsequence that converges to a

convex body.
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Many more convex objects Zonoids

Recall, a zonotope is the minkowski sum of finitely many line segments.

Zonoid
A compact convex set in Rn is a zonoid if it is the Hausdorff limit of a sequence of
zonotopes.
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Many more convex objects Projection Bodies

Let K be a convex body in Rn. The projection body ΠK of K is the centered convex
body defined by the support function,

hΠK(u) = Voln−1(K|u⊥) = 1
2

∫
Sn−1

|u · v|dS(K,u)

for all u ∈ Sn−1.
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Many more convex objects Projection Bodies

Theorem
A projection body is a centered zonoid. Conversely, every centered full dimensional
zonoid in Rn is the projection body of a unique centered convex body.

Theorem
A convex body in Rn is a zonoid if and only if it is a Hausdorff limit of finite
Minkowski sums of n-dimensional ellipsoids.
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Many more convex objects Projection Bodies

Want to learn more about projection bodies and zonoids?

Richard Harding Gardner,
Geometric Tomography,
Cambridge University Press, New York. 2006

Rolf Schneider,
Convex bodies: the Brunn-Minkowski theory,
Cambridge University Press, Cambridge. 2014
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Many more convex objects

Intersection Bodies
Ask Marie and Katalin

Minkowski Sums of Disks
Ask Chiara

Convex Hulls in Buildings
Ask Mima and Marvin
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Combinatorics of convex sets

How do we describe facial structures/face lattice of convex sets generally?

What is the f -vector of a spectrahedra/orbitope/etc...?

→ Chiara will mention one possibility in her talk on Wednesday.

What other combinatorial properties of polytopes can be generalized to other convex
sets and how?

→ One answer for neighborliness of convex cones is via Terracini convexity.
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Terracini Convexity

Definition
A subset C ⊂ Rn is a cone if for all λ ≥ 0 and x ∈ C, λx ∈ C.

More definitions
• A ray of a cone C is a set of the form {λx : λ ≥ 0} for a nonzero x ∈ C.
• A ray S is an extreme ray if to following holds: for any x, y ∈ C if x+ y ∈ S then
x, y ∈ S.

• A set F ⊆ C is a face of C if for x, y ∈ C, x+ y ∈ F implies that x, y ∈ F .
• We say that a cone is pointed if it contains no lines, C ∩ −C = {0}.
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Terracini Convexity

Definition
A polytope is called k-neighborly if every set of k or fewer vertices forms a face.

Definition
A pointed polyhedral cone is called k-neighborly if every set of k or fewer extreme rays
forms a face.
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Terracini Convexity

Let C ⊂ Rn be a closed, pointed, convex cone.
Define KC(x) = cone{z − x : z ∈ C} to be the cone of feasible directions into C at
x ∈ C.

The convex tangent space of C at x is

LC(x) := KC(x) ∩ −KC(x),

the lineality space of the closure of the cone of feasible directions.

Definition
A closed, pointed, convex cone C is k-Terracini convex if for any collection
x(1), . . . , x(k) of generators of extreme rays of C,

LC(
k∑

i=1
x(i)) =

k∑
i=1
LC(x(i))

If C is k-Terracini convex for all k, then C is Terracini convex.
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Terracini Convexity

Examples
• A pointed k-neighborly polyhedral cone is k-Terracini convex.
• The nonnegative orthant is Terracini convex
• Any smooth pointed convex cone is Terracini convex.
• PSD cone is Terracini convex
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Terracini Convexity

The normal cone to a convex cone C and x is

NC(x) = {l : lTx = 0}

Proposition
A closed, pointed, convex cone C ⊂ Rn is k-Terracini convex if and only if for any
collection x(1), . . . , x(k) of generators of extreme rays of C,

span
( k⋂

i=1
NC(x(i))

)
=

k⋂
i=1

span
(
NC(x(i))

)
.

−→ PSD cone is Terracini convex (Exercise)
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Terracini Convexity

Definition
Let F (i), for i = 1, . . .m, be collection a face of C.

If

F (1) ( · · · ( F (m)

then this collection is a chain of faces. The height of the poset of faces of C, denoted
H(C), is the length of the longest chain.

−→ H(C) ≤ dim(C) + 1

Theorem
Let C be a closed, pointed, convex cone that is (H(C)− 1)-Terracini convex. Then C
is Terracini convex.

dim(C)-Terracini convex =⇒ Terracini convex.
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Terracini Convexity

Consider L(C) = {LC(x) : x ∈ C}.

Theorem
Let C ⊂ Rn be a closed, pointed, convex cone. C is Terracini convex if and only if
L(C) is a join sub-semilattice of the lattice of all subspaces in Rn.

PSD2

LC(x(1)) LC(x(2)) LC(x(3)) · · ·

{0}
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Terracini Convexity

Fix k ∈ N and let |support(x)| for a vector x be the number of nonzero entries.

Definition
• A linear map A : Rd → Rn satisfies the exact recovery property if, for any
x∗ ∈ Rd

+ with |support(x∗)| ≤ k, the unique optimal solution of the linear
programming problem min{x1 + · · ·+ xn : Ax = Ax∗, x ≥ 0} is x∗.
• Consider a linear map B : Rd → RN . The cone B(Rd

+) satisfies the unique
preimage property if, for any x∗ ∈ Rd

+ with |support(x∗)| ≤ k, the point Bx∗ has
a unique preimage in Rd

+.
• Consider a linear map B : Rd → RN . The cone B(Rd

+) satisfies the Terracini
convexity property if it is pointed, it has d extreme rays, and it is k-Terracini
convex.
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Terracini Convexity

Theorem
Consider a linear map A : Rd → Rn that is surjective and define the linear map
B : Rd → Rn+1 as

Bx =
(

Ax
x1 + · · ·+ xd

)
.

Suppose that null(A) ∩ Rn
++ 6= ∅. Fix a positive integer k < d. The map A satisfies

the exact recovery property if and only if the cone B(Rd
+) satisfies the Terracini

convexity property.

Proof.
Exact recovery property ⇐⇒ unique preimage property ⇐⇒ Terracini convexity
property.
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Terracini Convexity

Fix k ∈ N.

Definition
• A linear map A : Sd → Rn satisfies the exact recovery property if for any
X∗ ∈ Sd

+ with rank(X∗) ≤ k, the unique optimal solution of the semidefinite
programming problem min{trace(X) : A(X) = A(X∗), X � 0} is X∗.
• Consider a linear map B : Sd → RN . The cone B(Sd

+) satisfies the unique
preimage property if, for any X∗ ∈ Sd

+ with rank(X∗) ≤ k, the point B(X∗) has a
unique preimage in Sd

+.
• Consider a linear map B : Sd → RN . The cone B(Sd

+) satisfies the Terracini
convexity property if it is closed and pointed, its extreme rays are in one-to-one
correspondence with those of Sd

+, and it is k-Terracini convex.
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correspondence with those of Sd

+, and it is k-Terracini convex.
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Terracini Convexity

Theorem
Consider a linear map A : Sd → Rn and fix a positive integer k < d.

1 Suppose A is surjective and null(A) ∩ Sn
++ 6= ∅. Define B : Sd → Rn+1 as

B(X) =
(
A(X)

trace(X)

)
. If A satisfies the exact recovery property, then B(Sd

+)

satisfies the Terracini convexity property.
2 Let n >

(d+1
2
)
−
(d−k+1

2
)
. Suppose there exists an open set S in the space of

linear maps from Sd to Rn with the following properties:
• A ∈ S.
• For each Ã ∈ S, Ã is surjective and null(Ã) ∩ Sd

++ 6= ∅.
• For each Ã ∈ S with associated B̃, the cone B̃(Sd

+) satisfies the Terracini convexity
property.

Then the map A satisfies the exact recovery property.
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Terracini Convexity

Venkat Chandrasekaran and James Saunderson,
Terracini Convexity,
Preprint: arxiv.org/abs/2010.00805. 2020
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Combinatorics of convex sets

Neighborliness of convex cones → Terracini Convexity.

Exercise
Pick up Convex Polytopes by Grünbaum or Lectures on Polytopes by Ziegler. For each
chapter/section/subsection/theorem/property, what is a generalization to
non-polyhedral convex sets?

Thank you!
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Pick up Convex Polytopes by Grünbaum or Lectures on Polytopes by Ziegler. For each
chapter/section/subsection/theorem/property, what is a generalization to
non-polyhedral convex sets?

Thank you!

42/42


