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Overview

@ Spectrahedra

@ Projected Spectrahedra

© Many more convex objects

O Terracini Convexity
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Semialgebraic Sets P

A basic closed semialgebraic set is
{zeR":gi(z) 2 0,...,9:(x) > 0}

for polynomials g; € Rx1,...,x,].
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Semialgebraic Sets 2N

A basic closed semialgebraic set is
{x eR": g1(x) >0,...,9-(x) >0}

for polynomials g; € Rx1,...,x,].

Semialgebraic sets are boolean combinations of basic closed semialgebraic sets.

Tarski-Seidenberg Theorem

The projection of a semialgebraic set is semialgebraic.
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Spectrahedra J2

A set S C R" is a spectrahedron if
S={zeR": Ag+ A1z1 +---+ Apz, = 0}

where A; € SV are symmetric matrices.
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Spectrahedra 2N

A set S C R" is a spectrahedron if
S={zeR": Ag+ A1z1+ -+ Apz,, = 0}

where A; € SV are symmetric matrices.

PSD cone N an affine subspace of symmetric matrices.
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Spectrahedra ) Example 2

S ={(z,y) € R?:
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Spectrahedra ) Example 2

T+ 2 Y 0
S={(x,y) €eR?*: | y 3 —z+1| =0}
0 —x+1 5

Recall a matrix is positive semidefinite if its principle minors are nonnegative:
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Spectrahedra ) Example

T+ 2 Y 0
S={(x,y) €eR?*: | y 3 —z+1| =0}
0 —x+1 5

Recall a matrix is positive semidefinite if its principle minors are nonnegative:

r+2>0
3(z+2)—y* >0
15— (—z+1)?>0
det(A(z)) >0
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Spectrahedra J2

Properties of Spectrahedra

® Closed, convex sets
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Spectrahedra J2

Properties of Spectrahedra

® Closed, convex sets
® [ntersection of an affine subspace with the PSD cone.

® Basic closed semialgebraic sets
® A spectrahedron is defined by the 2 — 1 principle minors being nonnegative.

e All faces are exposed (Exercise)

® Rigidly Convex

6/42



Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u € R™ if p(u) > 0 and for every nonzero
w € R™ the complex zeros of the univariate polynomial p(u + tw) € R[t] are all real.
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Rigid Convexity =

Definition
A polynomial p is a real zero polynomial at u € R™ if p(u) > 0 and for every nonzero
w € R™ the complex zeros of the univariate polynomial p(u + tw) € R[t] are all real.

Non-Example
Let p=1—2} — 23 and u = (0,0).
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Rigid Convexity J

Definition
A polynomial p is a real zero polynomial at u € R™ if p(u) > 0 and for every nonzero
w € R™ the complex zeros of the univariate polynomial p(u + tw) € R[t] are all real.

Example
Let A(x) =1+ Ayz1+ -+ Az, and let p(x) = det(A(x)) with u = 0.
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Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u € R™ if p(u) > 0 and for every nonzero
w € R™ the complex zeros of the univariate polynomial p(u + tw) € R[t] are all real.

Example
Let A(z) =1+ Ajx1 + -+ Apzy and let p(z) = det(A(z)) with w = 0. Then

p(tw) = det(I + tW)

where W = 3" A;w;.
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Rigid Convexity

Definition
A polynomial p is a real zero polynomial at u € R™ if p(u) > 0 and for every nonzero
w € R™ the complex zeros of the univariate polynomial p(u + tw) € R[t] are all real.

Example
Let A(z) =1+ Ajx1 + -+ Apzy and let p(z) = det(A(z)) with w = 0. Then

p(tw) = det(I + tW)

where W = 3" A;w;. Since W is symmetric, the zeros of this polynomial are all real,
hence p is a real zero polynomial at the origin.
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Rigid Convexity J

Definition

A subset C' C R" js called rigidly convex if there is a point w € R™ and a polynomial p
which is a real zero polynomial at u such that C equals the closure of the connected
component of {x € R™ : p(x) > 0} at u.
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Theorem il
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Example
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10/42



Rigid Convexity J

Definition

A subset S C R" is an algebraic interior if S equals the closure of a connected
component of the set {x : p(x) > 0} for some p € R[x] and p is called a defining
polynomial of S.
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Rigid Convexity J

Definition

A subset S C R" is an algebraic interior if S equals the closure of a connected
component of the set {x : p(x) > 0} for some p € R[x] and p is called a defining
polynomial of S. The defining polynomial of smallest possible degree is unique (up to
a positive constant factor) and is called the minimal polynomial of S.

Facts
® Rigidly convex sets are algebraic interiors.

® The minimal polynomial is a factor of every other defining polynomial.

Theorem
An algebraic interior is rigidly convex if and only if its minimal polynomial is a real zero
polynomial at any of its interior points.
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Rigid Convexity J

Consider the TV screen p =1 — 2} — 273
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Rigid Convexity J

Consider the TV screen p =1 — 2} — 273

versus the disk f =1 — 27 — 22
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Rigid Convexity J

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex.
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Rigid Convexity J

Theorem (Helton, Vinnikov)

If an algebraic interior is a spectrahedron, then it is rigidly convex. In R?, the converse
is also true.

Proof outline of converse

If S C R? is rigidly convex, then it is an algebraic interior. Let p(x1,z2) be its minimal
polynomial of degree d.

p(x1,xe) = det(I + A1y + Agxo)

where A1, Ay are d x d symmetric matrices. Therefore
S ={(z1,2z2) : [ + Ajz1 + Agzo = 0}

is a spectrahedron.
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Symmetric Determinantal Representations J

A polynomial p € R[z] has a symmetric determinantal representation if
p(z) = detA(z) for some

Alx) = Ao+ A1z + -+ Apzyy

where A; are symmetric matrices.
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Symmetric Determinantal Representations J

A polynomial p € R[x] has a symmetric determinantal representation if
p(z) = detA(z) for some

Az) = Ao+ Ay + -+ + Apap

where A; are symmetric matrices. If Ag > 0, we say p has a monic symmetric
determinantal representation.

Question

Does every real zero polynomial have a monic symmetric determinantal representation?
Answer: No. (Brandén, Netzer and Thom)
Counterexample

p=1+z3?—-a23 . —22 forn >4
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Summary A

S is a spectrahedron

S is an algebraic interior
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Summary P

S'is a spectrahedron]=/ S is rigidly convex /

S is an algebraic interior
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Summary 2
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[S is a spectrahedron]=/ S is rigidly convex /

S is an algebraic interior
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Summary 2

n=2

[S is a spectrahedron]=/ S is rigidly convex

S is an algebraic interior
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Summary B

n=2

[S is a spectrahedron]=/ S is rigidly convex

S is an algebraic interior

Is every rigidly convex algebraic interior of R™ a spectrahedron?

Open Question

15/42



Spectrahedra J2

Spectraplex

The set of PSD matrices with trace one:
{Xe§": X >=0,Tr(X) =1}

Extreme points of the spectraplex are rank one PSD matrices, X = za7.
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Spectrahedra J2

Spectraplex

The set of PSD matrices with trace one:
{Xe§": X >=0,Tr(X) =1}
Extreme points of the spectraplex are rank one PSD matrices, X = za7.

Elliptope

The set of PSD matrices with ones on the diagonal:

{XGS”ZXEO,XZ‘Z':LZ':L...,TL}
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Spectrahedra A

Figure 5.8. The elliptope P = €3 and its dual conver body P°.
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Spectrahedra A

Figure 5.8. The elliptope P = €3 and its dual conver body P°.

The dual body of the elliptope is a projected spectrahedron.
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Projected Spectrahedra

Consider the spectrahedron

o O O
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Projected Spectrahedra BN

Consider the spectrahedron

18/42



Projected Spectrahedra 2N

Consider the spectrahedron
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Projected Spectrahedra 2N

Consider the spectrahedron

Not a spectrahedron!
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Projected Spectrahedra 2

Definition
A set P C R" is a projected spectrahedron if there exists a spectrahedron S € R"*

such that
P={zeR": (z,y) € S for some y € R*}.
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Projected Spectrahedra 2

Some examples
® TV Screen: {(z1,22) : o + 23 <1}
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Projected Spectrahedra

Some examples
® TV Screen: {(z1,72) : a1 + 23 <1}

1+y1 e
Y2 1—wn

1 Y1

T2

T2
Y2
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Projected Spectrahedra 2

Some examples
® TV Screen: {(z1,22) : o + 23 <1}
® For X € 8", let s(X) be the sum of the k largest eigenvalues. Then

{(X,8) € S" xR : s5(X) < t}.

is a projected spectrahedron.
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Projected Spectrahedra 2

Some examples
® TV Screen: {(z1,22) : o + 23 <1}
® For X € 8", let s(X) be the sum of the k largest eigenvalues. Then

(X, 1) € S" x R: s5(X) < t.

is a projected spectrahedron.
® X, 24, the cone of SOS polynomials.

® The dual of the samosa.
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Projected Spectrahedra 2

Some examples
® TV Screen: {(z1,22) : o + 23 <1}
® For X € 8", let s(X) be the sum of the k largest eigenvalues. Then

(X, 1) € S" x R: s5(X) < t.

is a projected spectrahedron.
® X, 24, the cone of SOS polynomials.

® The dual of the samosa.

Projected spectrahedra are closed under projection, duality, and convex hull of finite
unions.
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Many more convex objects ) Orbitopes /2

Orbitopes

An orbitope is the convex hull of the orbit of an element v in a real representation V'

of a compact group G,

conv(G-v)={g-v:geG}CV
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Orbitopes
An orbitope is the convex hull of the orbit of an element v in a real representation V'
of a compact group G,

conv(G-v)={g-v:geG}CV

Examples
® Permutahedron, S,-orbitope
® Sphere, SO(n)-orbitope

Orbitopes are convex semialgebraic sets and some are spectrahedra or projected
spectrahedra,

21/42



Many more convex objects ) Orbitopes 2

Orbitopes
An orbitope is the convex hull of the orbit of an element v in a real representation V'
of a compact group G,

conv(G-v)={g-v:geG}CV

Examples
® Permutahedron, S,-orbitope
® Sphere, SO(n)-orbitope

Orbitopes are convex semialgebraic sets and some are spectrahedra or projected
spectrahedra, but there are orbitopes which are not projected spectrahedral
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Many more convex objects ) Orbitopes 2

Want to learn more about orbitopes?

@ Raman Sanyal, Frank Sottile, and Bernd Sturmfels,
Orbitopes,
Mathematika. 2011, pp. 275-314.

@ Tim Kobert,
Spectrahedral and semidefinite representability of orbitopes,
PhD thesis (Universitat Konstanz, 2019)
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Many more convex objects ) Zonoids 2

Definition
Let K, L C R™ be compact sets. The Hausdorff distance of K, L C R" is

0(K, L) := max{sup inf ||z — y||,sup inf ||z — .
(. L) o= max{sup inf [lo =y sup inf 1z = ]}
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Definition
Let K, L C R™ be compact sets. The Hausdorff distance of K, L C R" is

0(K, L) := max{sup inf ||z — y||,sup inf ||z — .
(. L) o= max{sup inf [lo =y sup inf 1z = ]}

Hausdorff metric
® The metric space (C",d) is complete and every bounded sequence has a
convergent subsequence.
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Many more convex objects ) Zonoids 2

Definition
Let K, L C R™ be compact sets. The Hausdorff distance of K, L C R" is

0(K, L) := max{sup inf ||z — y||,sup inf ||z — .
(. L) o= max{sup inf [lo =y sup inf 1z = ]}

Hausdorff metric

® The metric space (C",d) is complete and every bounded sequence has a
convergent subsequence.

® Every bounded sequence of convex bodies has a subsequence that converges to a
convex body.
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Many more convex objects ) Zonoids 2

Recall, a zonotope is the minkowski sum of finitely many line segments.
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Zonoid
A compact convex set in R™ is a zonoid if it is the Hausdorff limit of a sequence of
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Many more convex objects ) Projection Bodies J2

Let K be a convex body in R™. The projection body IIK of K is the centered convex
body defined by the support function,

1
itk (u) = Voly1 (K|ut) = /SH - o] dS (K, u)

for all uw € S™1,
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Many more convex objects ) Projection Bodies J2

Theorem
A projection body is a centered zonoid. Conversely, every centered full dimensional
zonoid in R™ is the projection body of a unique centered convex body.

26/42



Many more convex objects ) Projection Bodies

PN

Theorem
A projection body is a centered zonoid. Conversely, every centered full dimensional
zonoid in R™ is the projection body of a unique centered convex body.

Tv nr c i nc
/ 'll‘iiillll /l
I’II

Figure 4.1. Projection bodies.
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Many more convex objects ) Projection Bodies

Theorem
A projection body is a centered zonoid. Conversely, every centered full dimensional
zonoid in R™ is the projection body of a unique centered convex body.

Fieure 4.1 Proiection hodies.

Theorem
A convex body in R™ is a zonoid if and only if it is a HausdorfF limit of finite
Minkowski sums of n-dimensional ellipsoids.
26/42



Many more convex objects ) Projection Bodies

Want to learn more about projection bodies and zonoids?

¥ Richard Harding Gardner,
Geometric Tomography,
Cambridge University Press, New York. 2006

¥ Rolf Schneider,
Convex bodies: the Brunn-Minkowski theory,
Cambridge University Press, Cambridge. 2014
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Many more convex objects =

Intersection Bodies
Ask Marie and Katalin
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Many more convex objects

Intersection Bodies
Ask Marie and Katalin

Minkowski Sums of Disks
Ask Chiara

Convex Hulls in Buildings
Ask Mima and Marvin
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Combinatorics of convex sets =

How do we describe facial structures/face lattice of convex sets generally?
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Combinatorics of convex sets 2

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?

— Chiara will mention one possibility in her talk on Wednesday.

What other combinatorial properties of polytopes can be generalized to other convex
sets and how?
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Combinatorics of convex sets 2

How do we describe facial structures/face lattice of convex sets generally?

What is the f-vector of a spectrahedra/orbitope/etc...?

— Chiara will mention one possibility in her talk on Wednesday.

What other combinatorial properties of polytopes can be generalized to other convex
sets and how?

— One answer for neighborliness of convex cones is via Terracini convexity.

29/42



Terracini Convexity =

Definition
A subset C C R" is a cone if for all A\ > 0 and x € C, \x € C.
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Terracini Convexity =

Definition
A subset C' C R"™ is a convex cone if for all A\ > 0 and x € C, A\x € C and C is convex.

More definitions
® A ray of a cone C'is a set of the form {\z : A > 0} for a nonzero z € C.

® Aray S is an extreme ray if to following holds: for any x,y € C if xt +y € S then
x,y € 8.

® Aset F C(Cisa faceof C if for x,y € C, x +y € F implies that x,y € F.
® We say that a cone is pointed if it contains no lines, C' N —C = {0}.
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Terracini Convexity =

Definition
A polytope is called k-neighborly if every set of k or fewer vertices forms a face.
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Terracini Convexity =
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A pointed polyhedral cone is called k-neighborly if every set of k or fewer extreme rays
forms a face.
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Terracini Convexity =

Let C' C R™ be a closed, pointed, convex cone.

Define K¢ (z) = cone{z — x : z € C} to be the cone of feasible directions into C' at
zeC.
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Terracini Convexity =

Let C' C R™ be a closed, pointed, convex cone.
Define K¢ (z) = cone{z — x : z € C} to be the cone of feasible directions into C' at
x € C. The convex tangent space of C' at z is

Lo(z) = Ke(z) N =Keo(z),

the lineality space of the closure of the cone of feasible directions.
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Terracini Convexity

Let C' C R™ be a closed, pointed, convex cone.
Define K¢ (z) = cone{z — x : z € C} to be the cone of feasible directions into C' at
x € C. The convex tangent space of C' at z is

ﬁc((lj) = /Cc(.%’) N —]Cc({l?),
the lineality space of the closure of the cone of feasible directions.
Definition

A closed, pointed, convex cone C' is k-Terracini convex if for any collection
M. %) of generators of extreme rays of C,

k k

'CC(Z x(i)) — ch(w(i))
] 1

=1 =

If C is k-Terracini convex for all k, then C is Terracini convex.
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Terracini Convexity 2N

Le, (I(l))
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Terracini Convexity

Examples

® A pointed k-neighborly polyhedral cone is k-Terracini convex.
® The nonnegative orthant is Terracini convex
® Any smooth pointed convex cone is Terracini convex.

® PSD cone is Terracini convex
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Terracini Convexity =

The normal cone to a convex cone C and z is

Ne(z) ={l:1Tz =0}
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Terracini Convexity =

The normal cone to a convex cone C and z is

Ne(z)={1:1Tz =0}

Proposition
A closed, pointed, convex cone C C R"™ is k-Terracini convex if and only if for any
collection zV), ..., z(¥) of generators of extreme rays of C,

k

k . .
5pan< N Nc(a;(z))> = span(Ne(zD)).
i=1

=1
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Terracini Convexity =

The normal cone to a convex cone C and z is

Ne(z)={1:1Tz =0}

Proposition

A closed, pointed, convex cone C C R"™ is k-Terracini convex if and only if for any

collection zV), ..., z(¥) of generators of extreme rays of C,
5pan< N Nc(a;(z))> = span(Ne(zD)).
i=1 i=1

— PSD cone is Terracini convex (Exercise)
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Terracini Convexity =

Definition

Let F@, fori=1,...m, be collection a face of C.
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Terracini Convexity =

Definition
Let F@, fori=1,...m, be collection a face of C. If

FO ... - Fm)

then this collection is a chain of faces. The height of the poset of faces of C, denoted
H(C), is the length of the longest chain.
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then this collection is a chain of faces. The height of the poset of faces of C, denoted
H(C), is the length of the longest chain.

— H(C) < dim(C) + 1
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Let F@, fori=1,...m, be collection a face of C. If

FO ... - Fm)

then this collection is a chain of faces. The height of the poset of faces of C, denoted
H(C), is the length of the longest chain.

— H(C) < dim(C) + 1

Theorem

Let C' be a closed, pointed, convex cone that is (H(C') — 1)-Terracini convex. Then C
is Terracini convex.
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Terracini Convexity =

Definition
Let F@, fori=1,...m, be collection a face of C. If

FO c...c gm

then this collection is a chain of faces. The height of the poset of faces of C, denoted
H(C), is the length of the longest chain.
— H(C) < dim(C) +1

Theorem

Let C' be a closed, pointed, convex cone that is (H(C') — 1)-Terracini convex. Then C
is Terracini convex.

dim(C)-Terracini convex = Terracini convex.

35/42



Terracini Convexity =

Consider £(C) = {Lc(z) : z € C}.
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Terracini Convexity =

Consider £(C) = {Lc(z) : x € C}.

Theorem

Let C' C R™ be a closed, pointed, convex cone. C'is Terracini convex if and only if
£(C) is a join sub-semilattice of the lattice of all subspaces in R™.
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Terracini Convexity

Consider £(C) = {Lc(z) : x € C}.

Theorem

Let C' C R™ be a closed, pointed, convex cone. C'is Terracini convex if and only if
£(C) is a join sub-semilattice of the lattice of all subspaces in R™.

PSDy

//\\

Lo(a z®)

\\ s

{0}
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Terracini Convexity =

Fix k € N and let [support(x)| for a vector & be the number of nonzero entries.
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Terracini Convexity =

Fix k € N and let [support(x)| for a vector & be the number of nonzero entries.
Definition
® A linear map A : R? — R™ satisfies the exact recovery property if, for any

z* € RY with |support(z*)| < k, the unique optimal solution of the linear
programming problem min{xy + --- + xz,, : Ax = Ax*,x > 0} is x*.
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Terracini Convexity 2

Fix k € N and let [support(x)| for a vector & be the number of nonzero entries.
Definition
® A linear map A : R? — R™ satisfies the exact recovery property if, for any

z* € RY with |support(z*)| < k, the unique optimal solution of the linear
programming problem min{xy + --- + xz,, : Ax = Ax*,x > 0} is x*.

* Consider a linear map B : R? — RN. The cone B(RY) satisfies the unique
preimage property if, for any x* € Ri with |support(x*)| < k, the point Bx* has
a unique preimage in R‘i.
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Terracini Convexity 2

Fix k € N and let [support(x)| for a vector & be the number of nonzero entries.
Definition
® A linear map A : R? — R™ satisfies the exact recovery property if, for any
z* € RY with |support(z*)| < k, the unique optimal solution of the linear
programming problem min{xy + --- + xz,, : Ax = Ax*,x > 0} is x*.
* Consider a linear map B : R? — RN. The cone B(RY) satisfies the unique
preimage property if, for any x* € Ri with |support(x*)| < k, the point Bx* has
a unique preimage in ]R‘i.
* Consider a linear map B : R? — RN. The cone B (R‘j_) satisfies the Terracini

convexity property if it is pointed, it has d extreme rays, and it is k-Terracini
convex.
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Terracini Convexity

[}C
Theorem
Consider a linear map A : R* — R™ that is surjective and define the linear map
B:RY — R a5
A
Bx = o .
Suppose that null(A) "R" | # (. Fix a positive integer k < d. The map A satisfies
the exact recovery property if and only if the cone B (Ri) satisfies the Terracini
convexity property.
Proof.
Exact recovery property <= unique preimage property <= Terracini convexity
property. [
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Terracini Convexity 2

Fix kK € N.
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Terracini Convexity =

Fix k£ € N.
Definition
* A linear map A : S¢ — R" satisfies the exact recovery property if for any

X* € 8 with rank(X*) < k, the unique optimal solution of the semidefinite
programming problem min{trace(X) : A(X) = A(X*),X = 0} is X*.
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Fix £ € N.
Definition
* A linear map A : S¢ — R" satisfies the exact recovery property if for any
X* € 8 with rank(X*) < k, the unique optimal solution of the semidefinite
programming problem min{trace(X) : A(X) = A(X*),X = 0} is X*.
* Consider a linear map B : 8¢ — RY. The cone B(S$) satisfies the unique

preimage property if, for any X* € Sj‘fr with rank(X™*) < k, the point B(X™*) has a
unique preimage in Si.
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Terracini Convexity 2N

Fix k£ € N.
Definition

*® A linear map A : S® — R" satisfies the exact recovery property if for any
X* € 8 with rank(X*) < k, the unique optimal solution of the semidefinite
programming problem min{trace(X) : A(X) = A(X*), X = 0} is X*.

* Consider a linear map B : 8¢ — RY. The cone B(S$) satisfies the unique
preimage property if, for any X* € Sj‘fr with rank(X™*) < k, the point B(X™*) has a
unique preimage in Si.

* Consider a linear map B : 8¢ — RY. The cone B(S%) satisfies the Terracini

convexity property if it is closed and pointed, its extreme rays are in one-to-one
correspondence with those of S, and it is k-Terracini convex.
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Terracini Convexity 2N

Theorem
Consider a linear map A : S® — R" and fix a positive integer k < d.
© Suppose A is surjective and null(A) N ST, # 0. Define B: S — R"*! as

_ ([ AX)
B(X) = trace(X)
satisfies the Terracini convexity property.

) . If A satisfies the exact recovery property, then B(Si)

@ Letn > (41 — (“"5H1). Suppose there exists an open set & in the space of

linear maps from S% to R™ with the following properties:
* Aecé6.
® Foreach A € &, A is surjective and null(A) N S%, # 0.
* For each A € G with associated BB, the cone B(Si) satisfies the Terracini convexity
property.
Then the map A satisfies the exact recovery property.
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Terracini Convexity 2N

@ Venkat Chandrasekaran and James Saunderson,
Terracini Convexity,
Preprint: arxiv.org/abs/2010.00805. 2020
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Combinatorics of convex sets =

Neighborliness of convex cones — Terracini Convexity.
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Combinatorics of convex sets =

Neighborliness of convex cones — Terracini Convexity.

Exercise

Pick up Convex Polytopes by Griinbaum or Lectures on Polytopes by Ziegler. For each
chapter/section /subsection /theorem /property, what is a generalization to
non-polyhedral convex sets?
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Combinatorics of convex sets 2

Neighborliness of convex cones — Terracini Convexity.

Exercise

Pick up Convex Polytopes by Griinbaum or Lectures on Polytopes by Ziegler. For each
chapter/section /subsection /theorem /property, what is a generalization to
non-polyhedral convex sets?

Thank you!
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