Algebra and Convexity

Chiara Meroni

Max-Planck-Institut für
 Mathematik
 in den Naturwissenschaften

Minicourse on Convex Geometry MPI MIS Leipzig

July 14, 2021

MAX-PLANCK-GESELLSCHAFT

Background in algebraic geometry

Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be an ideal.

Definition

The variety associated to I is the set

$$\mathcal{V}(I) = \{ (x_1, \dots, x_n) \in \mathbb{C}^n \mid f(x_1, \dots, x_n) = 0 \,\forall f \in I \}.$$

If $I = \langle f_1, \ldots, f_k \rangle$ then we will also write $\mathcal{V}(I) = \mathcal{V}(f_1, \ldots, f_k)$.

Definition

A variety $\mathcal{V}(I)$ is called irreducible if it cannot be written as a union of two proper subvarieties in \mathbb{C}^n . Namely,

$$\mathcal{V}(I)=\mathcal{V}(J_1)\cup\mathcal{V}(J_2) \quad \Longrightarrow \quad \mathcal{V}(I)=\mathcal{V}(J_1) \text{ or } \mathcal{V}(I)=\mathcal{V}(J_2).$$

When $I = \langle f \rangle$, the associated variety is called a hypersurface.

Remarks:

- irreducible hypersurface \longleftrightarrow irreducible polynomial;
- degree of the hypersurface \longleftrightarrow degree of the (reduced) polynomial.

Today we are going to use the following topology on \mathbb{C}^n .

Definition

Declare the sets $\mathcal{V}(I)$, for every ideal $I \subset \mathbb{R}[x_1, \ldots, x_n]$, to be closed. They form a basis of a topology. Such a topology is called the \mathbb{R} -Zariski topology of \mathbb{C}^n .

Algebraic boundary

Let $S \subset \mathbb{R}^n$ be a semialgebraic set and denote by ∂S its Euclidean boundary.

Definition

The algebraic boundary of S, denoted $\partial_a S$, is the closure in \mathbb{C}^n , with respect to the Zariski topology, of ∂S .

If $K\subset \mathbb{R}^n$ is a semialgebraic convex body with non–empty interior, then $\partial_a K$ is a hypersurface.

Proposition

A convex body with non-empty interior is semialgebraic if and only if its algebraic boundary is a hypersurface.

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid y^2(x^2 + y^2 + z^2 - 1) \le 0, \ z^2(x^2 + y^2 + z^2 - 1) \le 0\}$$

$$\partial_a S = \mathcal{V}(x^2 + y^2 + z^2 - 1) \cup \mathcal{V}(y, z)$$

Consider the spectrahedron associated to the matrix

$$M = \begin{pmatrix} 1 & x & y & 0 & 0 \\ x & 1 & 0 & 0 & z \\ y & 0 & 1 & x + y & 0 \\ 0 & 0 & x + y & 1 & 0 \\ 0 & z & 0 & 0 & 1 \end{pmatrix}$$

Its algebraic boundary is the vanishing locus $\mathcal{V}(\det M)$, namely

$$x^{4} + 2x^{3}y + x^{2}y^{2} + x^{2}z^{2} + 2xyz^{2} + 2y^{2}z^{2} - 2x^{2} - 2xy - 2y^{2} - z^{2} + 1 = 0$$

Algebraic boundary > example: a discotope

A subset $C \subset \mathbb{R}^n$ is called (convex) cone if (it is convex and) for all $\lambda \ge 0$ and all $x \in C$, $\lambda x \in C$.

Some definitions:

• The conic hull of a set $D \subset \mathbb{R}^n$ is

 $\operatorname{cone}(D) = \{\lambda_1 x_1 + \ldots + \lambda_k x_k \mid k \in \mathbb{N}, \lambda_i \ge 0, x_i \in D\};\$

- A *ray* is a set of the form $\mathbb{R}_{\geq 0}x$;
- We say that a cone is *pointed* if it contains no lines;
- \bullet A basis of a cone C is its intersection $C\cap H$ with an hyperplane non containing the origin, such that

$$\operatorname{cone}(C \cap H) = C.$$

 ${\cal C}$ has a compact basis if and only if ${\cal C}$ is pointed and closed.

 \square

Convex body \rightsquigarrow Convex cone

Let $K \subset \mathbb{R}^n$ be a convex body and consider the map $\phi : \mathbb{R}^n \to \mathbb{R}^{n+1}$ such that $x \mapsto (1, x)$. Then $C_K = \operatorname{cone}(\phi(K))$ is a closed pointed cone, with non-empty interior.

This procedure gives a bijection between the faces of K and C_K .

$$\partial_a K \longrightarrow \partial_a C_K$$

 $\partial_a (\text{compact basis of } C) \longleftarrow \partial_a (C, \text{ pointed and closed})$

A point (1, x) belongs to the boundary of C_K if and only if $x \in \partial K$. Therefore

$$\partial_a(C_K) = \widehat{X}$$

where X is the closure of $\partial_a K$ in $\mathbb{P}^n_{\mathbb{C}}$ and \widehat{X} is the affine cone over X.

More precisely: $\partial_a K \subset \mathbb{C}^n \hookrightarrow \mathbb{P}^n_{\mathbb{C}}$, with the usual embedding $(x_1, \ldots, x_n) \mapsto [1, x_1, \ldots, x_n]$, and

$$\widehat{X} = \left\{ x \in \mathbb{C}^{n+1} \mid \text{ the line through } x \text{ and the origin is in } X \right\}.$$

For all "nice" cones:

Corollary

If $C \subset \mathbb{R}^{n+1}$ is a semialgebraic pointed closed convex cone, its algebraic boundary is a hypersurface and an algebraic cone. In particular it is the affine cone over the projectivization of $\partial_a C$ in $\mathbb{P}^n_{\mathbb{C}}$.

Meaning: $\partial_a C$ is defined by homogeneous equations in \mathbb{C}^{n+1} , so it makes sense to think of it inside $\mathbb{P}^n_{\mathbb{C}}$. Then take the affine cone over this projective variety: you get $\partial_a C$ back!

For a convex set $K \subset \mathbb{R}^n$ we define the polar/dual convex set as

$$K^{\circ} = \left\{ \ell \in (\mathbb{R}^n)^* \mid \ell(x) \le 1 \; \forall x \in K \right\}.$$

In the case of a convex cone $C \subset \mathbb{R}^{n+1}$, the definition above is equivalent to

$$\left\{\ell \in \left(\mathbb{R}^{n+1}\right)^* \mid \ell(x) \le 0 \; \forall x \in C\right\}$$

and we will denote the dual convex cone by C^{\vee} in order to emphasize that it is a cone.

• $(K^{\circ})^{\circ} = cl (conv(K \cup 0))$. In particular if K is a convex body containing the origin, $(K^{\circ})^{\circ} = K$. If C is a closed convex cone, then $(C^{\vee})^{\vee} = C$.

•
$$K_1 \subset K_2 \Longrightarrow K_2^{\circ} \subset K_1^{\circ};$$

•
$$(K_1 \cap K_2)^\circ = \operatorname{conv}(K_1^\circ \cup K_2^\circ);$$

• for all
$$g \in GL_n(\mathbb{R})$$
, $(g \cdot K)^\circ = g^{-T} \cdot K^\circ$;

• let K be the unit ball of the L^p- norm, then K° is the unit ball of the L^q- norm, with $\frac{1}{p}+\frac{1}{q}=1;$

• let P be a polytope with the origin in its interior, then P° is a polytope as well.

Duality > basic example

Let F be a face of a convex set $K \subset \mathbb{R}^n$, we define the dual face F° as the set of linear functionals $\ell \in (\mathbb{R}^n)^*$ that attain the maximum over K on F.

Remarks:

- F° is an exposed face of K° ;
- \bullet if K is a convex body containing the origin, then

$$F^{\circ} = \{\ell \in K^{\circ} \mid \ell(x) = 1 \,\forall x \in F\};$$

 \bullet analogously, for a convex cone ${\cal C}$ we have that

$$F^{\circ} = \left\{ \ell \in C^{\vee} \mid \ell(x) = 0 \; \forall x \in F \right\};$$

• "biduality": if F is an exposed face of K, the dual of $F^{\circ} \subset K^{\circ}$ is exactly F.

exposed extreme point of $K \longrightarrow$ inclusion maximal face of K° inclusion maximal face of $K \longrightarrow$ exposed extreme point of K°

Example

Consider the convex body $K = \{y^2 - 2x - 1 \le 0, y^2 + 2x - 1 \le 0\}.$ Its dual convex body is $K^{\circ} = \operatorname{conv}\{(x - 1)^2 + y^2 = 1, (x + 1)^2 + y^2 = 1\}.$

"homogenization commutes with duality"

Recall that $C_K = \operatorname{cone}(\phi(K))$, where

 $\phi : \mathbb{R}^n \to \mathbb{R}^{n+1}$ $x \mapsto (1, x)$

then $(C_K)^{\vee} = C_{K^{\circ}}$.

Dual variety!

Let $I \subset \mathbb{R}[x_0, \ldots, x_n]$ be a homogeneous ideal and consider $X = \mathcal{V}(I) \subset \mathbb{P}^n_{\mathbb{C}}$. Then, if $c = \operatorname{codim} X$, the singular locus $\operatorname{Sing}(X)$ is a subvariety of X defined by the vanishing of the $c \times c$ minors of the Jacobian matrix J(X).

If
$$I=\langle p_1,\ldots,p_k
angle$$
, then $J(X)=\left(rac{\partial p_i}{\partial x_j}
ight)_{i,j}$ is a $k imes(n+1)$ matrix.

Definition

The *regular points* of X are $X_{reg} = X \setminus Sing(X)$.

Duality > example

Consider the plane cubic curve $X = \mathcal{V}(-y^3 + x^2 + y^2 + y - 1)$. We are in the case n = k = c = 1. The Jacobian matrix is just the gradient of the defining polynomial:

$$(2x, -3y^2 + 2y + 1)$$

and by definition $Sing(X) = \mathcal{V}(2x, -3y^2 + 2y + 1) \cap X = \{(0, 1)\}.$

 $(\mathbb{P}^n_{\mathbb{C}})^* =$ hyperplanes of $\mathbb{P}^n_{\mathbb{C}}$.

The point $v = [v_0, \ldots, v_n] \in (\mathbb{P}^n_{\mathbb{C}})^*$ represents the hyperplane $v_0 x_0 + \ldots + v_n x_n = 0$ in $\mathbb{P}^n_{\mathbb{C}}$. So v is said to be tangent to X at $x \in X_{\text{reg}}$ if x belongs to the hyperplane associated to v and if the vector (v_0, \ldots, v_n) lies in the row span of J(X) at x.

Definition

The conormal variety CN(X) of X is the closure of the set

 $\{(x,v) \in \mathbb{P}^n_{\mathbb{C}} \times (\mathbb{P}^n_{\mathbb{C}})^* \mid x \in X_{\mathsf{reg}}, v \text{ is tangent to } X \text{ at } x\}.$

Consider the projection $\pi : \mathbb{P}^n_{\mathbb{C}} \times (\mathbb{P}^n_{\mathbb{C}})^* \to (\mathbb{P}^n_{\mathbb{C}})^*$ onto the second factor. The dual variety of X is $X^* = \pi (CN(X))$. More precisely, it is the closure of the set

 $\{v \in (\mathbb{P}^n_{\mathbb{C}})^* \mid v \text{ is tangent to } X \text{ at some regular point}\}.$

Example

Let
$$X = \{-y^3 + x^2 + y^2 + y - 1 = 0\}$$
.
Its dual curve is $X^* = \{32x^4 + 13x^2y^2 + 4y^4 - 18x^2y + 4y^3 - 27x^2 = 0\}$.

• dim
$$X^* \leq n-1$$
;

• If X is a smooth (i.e.
$$X = X_{reg}$$
) hypersurface of degree d, then $\deg X^* = d(d-1)^{n-1}$;

• If X is an irreducible projective variety, then $(X^*)^* = X$.

Theorem

Let K be a semialgebraic convex body and define $S = \partial K^{\circ} \cap (\partial_a K^{\circ})_{reg}$. Then every element $\ell \in S$ supports a point of ∂K . S is open, semialgebraic and dense in ∂K° .

Theorem

Let C be a semialgebraic pointed and closed convex cone with non-empty interior; define $S = \partial C^{\vee} \cap (\partial_a C^{\vee})_{reg}$. Then every element $\ell \in S$ supports a ray. S is open, semialgebraic and dense in ∂C^{\vee} .

The previous result is NOT an "if and only if"!

Example: lemon and strawberry ice cream

$$K = \{x^2 + y^2 - 1 \le 0, y^2 + 2x - 1 \le 0, x - (1 + 2\sqrt{2})y - 2 \le 0\},\$$

$$K^{\circ} = \operatorname{conv}\left\{x^2 + y^2 - 1 \le 0, (x - 1)^2 + y^2 - 1 \le 0, \{(\frac{1}{2}, -\frac{1}{2} - \sqrt{2})\}\right\}.$$

Irreducible components and extreme points

We say that a point $x \in \partial K$ is an extreme point of the convex set K if x = ty + (1 - t)z implies x = y = z.

Theorem (Krein–Milman)

Let $K \subset \mathbb{R}^n$ be a compact convex set, then K is the convex hull of its extreme points.

Analogously for closed pointed convex cones, with extreme rays.

Notation:

 $\operatorname{Ex}_a(K)$: is the Zariski closure in \mathbb{C}^n of the union of the extreme points of the convex semialgebraic set $K \subset \mathbb{R}^n$. $\operatorname{Exr}_a(C)$: is the Zariski closure in \mathbb{C}^{n+1} of the union of the extreme rays of the convex semialgebraic cone $C \subset \mathbb{R}^{n+1}$

"It's enough to look at extreme points"

Let $C \subset \mathbb{R}^{n+1}$ be a pointed, closed, semialgebraic cone with non-empty interior.

Result 1.

The dual variety to the algebraic boundary of C is contained in the Zariski closure of the extreme rays of the dual convex cone:

 $(\mathbb{P}\partial_a C)^* \subset \mathbb{P}\mathsf{Exr}_a(C^{\vee}).$

Result 2.

The dual variety to the Zariski closure of the extreme rays of C is contained in the algebraic boundary of the dual convex cone:

$$(\mathbb{P}\mathsf{Exr}_a(C))^* \subset \mathbb{P}\partial_a C^{\vee}.$$

\square

Corollary

$$(\mathbb{P}\partial_a C)^* = \mathbb{P}\mathsf{Exr}_a(C^{\vee}) \qquad \mathsf{BUT} \qquad (\mathbb{P}\mathsf{Exr}_a(C^{\vee}))^* \neq \mathbb{P}\partial_a C$$

Example: strawberry ice cream

Consider the convex body $K = \operatorname{conv} \left\{ x^2 + y^2 - 1 \le 0, \{(0, -\frac{5}{3})\} \right\}.$ Its dual body is $K^{\circ} = \{x^2 + y^2 - 1 \le 0, y \ge -\frac{3}{5}\}.$

Do you want to know more about the irreducible components? Take a look at

Rainer Sinn,

Algebraic Boundaries of Convex Semi-algebraic Sets, Research in the Mathematical Sciences, 2, No. 1 (2015)

Do you want to know more about duality? Take a look at

Philipp Rostalski and Bernd Sturmfels,
 Dualities in convex algebraic geometry ,
 Rendiconti di Mathematica, Serie VII, 30, 285-327 (2010)

The convex hull and its algebraic boundary

Let X be a compact variety in \mathbb{R}^n . In this section we assume

 $K = \operatorname{conv}(X).$

How can we describe $\partial_a K$?

Example: the trefoil

Consider the plane curve $C = \{(x^2 + y^2)^2 = x(x^2 - 3y^2)\}.$

Example: the trefoil

Consider the plane curve $C = \{(x^2 + y^2)^2 = x(x^2 - 3y^2)\}.$

Its algebraic boundary is given by the curve itself, together with three lines.

A line is said to be bitangent to $\overline{C} \subset \mathbb{P}^2_{\mathbb{C}}$ if it is tangent to \overline{C} at two distinct points.

Plücker formula

Let \overline{C} be a generic smooth plane curve of degree $d\geq 2.$ Then the number of bitangents of \overline{C} is

$$\frac{(d-3)(d-2)d(d+3)}{2}.$$

Therefore we can give a bound to the degree of the algebraic boundary of $K=\mathrm{conv}(C),$ namely

$$\deg \partial_a K \le d + \frac{(d-3)(d-2)d(d+3)}{2}.$$

Convex hull > space curve

Consider a curve $C \subset \mathbb{R}^3$. Any two distinct points $p_1, p_2 \in C$ span a so called *bisecant line*. Such line is called a stationary bisecant line if the tangent lines to C at p_1 and p_2 lie in a common plane.

Definition

The union of all stationary bisecant lines is called the *edge surface* of C.

Convex hull > back to previous example

Consider two ellipsoids given by the zero loci of $q_1 = 4x^2 + 4y^2 + z^2 - 4$ and $q_2 = (x-1)^2 + 2y^2 + z^2 - 2$. Let C be the curve obtained as their intersection:

$$C = \{q_1 = 0\} \cap \{q_2 = 0\}.$$

The pink curve C is a quartic elliptic space curve.

Consider the pencil of quadrics given by $q_1 + tq_2$.

Let Q_1, Q_2 be the 4×4 symmetric matrices associated to q_1, q_2 . The univariate polynomial $f(t) = \det(Q_1 + tQ_2)$ has generically 4 distinct roots t_1, \ldots, t_4 .

Each of these values corresponds to a singular quadric $q_1 + t_i q_2$ of the pencil.

FACT:

The edge surface is the union of the 4 singular quadratic surfaces $\mathcal{V}(q_1 + t_i q_2)$.

In practice the equation of the edge surface can be computed as

 $\mathsf{resultant}_t(f(t),(q_1+tq_2)(x,y,z)).$

In our case we obtain the polynomial

$$\begin{split} &-192x^8 - 320x^6y^2 - 320x^4y^4 - 128x^2y^6 + 144x^6z^2 + 32x^2y^4z^2 + 64y^6z^2 \\ &-108x^4z^4 + 24x^2y^2z^4 + 64y^4z^4 + 42x^2z^6 + 28y^2z^6 - 896x^7 - 640x^5y^2 \\ &-512x^3y^4 - 256xy^6 + 864x^5z^2 - 128x^3y^2z^2 - 320xy^4z^2 - 480x^3z^4 - 208xy^2z^4 \\ &+28xz^6 - 1280x^6 + 704x^4y^2 + 896x^2y^4 + 128y^6 + 1424x^4z^2 + 512x^2y^2z^2 \\ &-32y^4z^2 - 56x^2z^4 - 24y^2z^4 - 42z^6 + 128x^5 + 768x^3y^2 + 512xy^4 - 832x^3z^2 \\ &+128xy^2z^2 + 480xz^4 + 1920x^4 - 704x^2y^2 - 320y^4 - 1424x^2z^2 - 108z^4 \\ &-128x^3 - 640xy^2 + 864xz^2 - 1280x^2 + 320y^2 - 144z^2 + 896x - 192 \end{split}$$

Convex hull > example: elliptic space curve

Outline of the algorithm:

Consider the corresponding complex projective curve $\overline{C} \subset \mathbb{P}^3_{\mathbb{C}}$, whose points can be expressed as

$$[F_0(x_0, x_1), F_1(x_0, x_1), F_2(x_0, x_1), F_3(x_0, x_1)].$$

The bisecant line between $p = (p_0, p_1)$ and $q = (q_0, q_1)$ is stationary if the determinant of the following matrix vanishes:

$$\begin{pmatrix} \frac{\partial F_0}{\partial x_0}(p) & \frac{\partial F_1}{\partial x_0}(p) & \frac{\partial F_2}{\partial x_0}(p) & \frac{\partial F_3}{\partial x_0}(p) \\ \frac{\partial F_0}{\partial x_1}(p) & \frac{\partial F_1}{\partial x_1}(p) & \frac{\partial F_2}{\partial x_1}(p) & \frac{\partial F_3}{\partial x_1}(p) \\ \frac{\partial F_0}{\partial x_0}(q) & \frac{\partial F_1}{\partial x_0}(q) & \frac{\partial F_2}{\partial x_0}(q) & \frac{\partial F_3}{\partial x_0}(q) \\ \frac{\partial F_0}{\partial x_1}(q) & \frac{\partial F_1}{\partial x_1}(q) & \frac{\partial F_2}{\partial x_1}(q) & \frac{\partial F_3}{\partial x_1}(q) \end{pmatrix}$$

Outline of the algorithm:

 $\mathbb{P}^{3}_{\mathbb{C}} \text{ with coordinates } p_{0}, p_{1}, q_{0}, q_{1}$ \downarrow $\mathbb{P}^{2}_{\mathbb{C}}$ \downarrow $\mathsf{Gr}(2, 4)$ \downarrow $\mathsf{our } \mathbb{P}^{3}_{\mathbb{C}}$

 Kristian Ranestad and Bernd Sturmfels, *The Convex Hull of a Space Curve*, Advances in Geometry, 12, 157-178 (2012)

A trigonometric space curve of degree d is a curve in \mathbb{R}^3 parametrized by three degree d trigonometric polynomials of the form

$$\sum_{i=1}^{d/2} a_i \cos(i\theta) + \sum_{i=1}^{d/2} b_i \sin(i\theta) + c.$$

Using the change of coordinates

$$\cos(\theta) = \frac{x_0^2 - x_1^2}{x_0^2 + x_1^2} \qquad \sin(\theta) = \frac{2x_0 x_1}{x_0^2 + x_1^2}$$

and clearing denominators, we obtain a polynomial parametrization of \overline{C} , which is rational and, for generic a_i, b_i, c , smooth.

We can use the algorithm!

Convex hull > example

$$C = \left\{ (\cos(\theta), \sin(\theta) + \cos(2\theta), \sin(2\theta)) \in \mathbb{R}^3 \mid \theta \in [0, 2\pi] \right\}$$

$$C = \left\{ (\cos(\theta), \sin(\theta) + \cos(2\theta), \sin(2\theta)) \in \mathbb{R}^3 \mid \theta \in [0, 2\pi] \right\}$$

The edge surface is the irreducible sextic $16x^6 - 32x^4y^2 + 16x^2y^4 - 96x^5z - 160x^3y^2z + 192x^4z^2 + 16x^2y^2z^2 - 128x^3z^3 + 216x^4y + 48x^2y^3 - 8y^5 + 72x^3yz + 88xy^3z - 72x^2yz^2 - 8y^3z^2 + 72xyz^3 - 207x^4 - 138x^2y^2 - 23y^4 + 180x^3z + 60xy^2z - 126x^2z^2 - 54y^2z^2 + 108xz^3 - 27z^4 - 36x^2y + 4y^3 - 36xyz + 108x^2 + 36y^2 - 108xz + 27z^2 = 0.$

Theorem

Let C be a general smooth space curve of degree d and genus g. The degree of its edge surface is 2(d-3)(d+g-1).

Sanity check with previous examples:

curve	degree	genus	edge surface
elliptic space curve	4	1	8
trigonometric space curve	4	0	6

A plane H is a tritangent plane of $\overline{C} \subset \mathbb{P}^3_{\mathbb{C}}$ if it is tangent to \overline{C} at three or more points.

Theorem

Let C be a general smooth space curve of degree d and genus g. The number of tritangent planes is

$$8\binom{d+g-1}{3} - 8(d+g-4)(d+2g-2) + 8g - 8.$$

Sanity check with previous examples:

curve	degree	genus	tritangent planes
elliptic space curve	4	1	0
trigonometric space curve	4	0	0

Let's try to generalize! Goal: $\partial_a \left(\operatorname{conv}(X) \right)$

Let X be a variety in \mathbb{R}^n , that spans the whole space. Fix $k \in \mathbb{N}$ and define a variety $X^{[k]}$ of $(\mathbb{P}^n_{\mathbb{C}})^*$ as follows: it is the Zariski closure of the set of hyperplanes that are tangent to X at k regular points which span a (k-1)-plane in $\mathbb{P}^n_{\mathbb{C}}$.

Remark: $X^{[1]} = X^*$

Theorem

Under reasonable assumptions,

$$\partial_a \left(\operatorname{conv}(X) \right) \subset \bigcup_{k=1}^n \left(X^{[k]} \right)^*$$

Do you want to know more? Take a look at

 Kristian Ranestad and Bernd Sturmfels, *The Convex Hull of a Variety*, "Notions of Positivity and the Geometry of Polynomials", Trends in Mathematics, Springer Verlag, Basel, pp. 331-344 (2011)

🔋 Rainer Sinn,

Algebraic Boundaries of Convex Semi-algebraic Sets, PhD thesis, Universität Konstanz (2014)

The notion of patches

Let $K \subset \mathbb{R}^n$, hence $\dim \partial K = n - 1$ and its patches are (n - 1 - k)-dimensional families of k-faces (+ some technical conditions). Key word: normal cycle

Do you want to know more? Take a look at

Daniel Plaumann, Rainer Sinn and Jannik Lennart Wesner, Families of Faces and the Normal Cycle of a Convex Semi-algebraic Set, Preprint, arXiv:2104.13306 (2021) Thank you and see you at the exercise session!