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Algebraic background ) ideals and varieties

Let I C Clzy,...,zy] be an ideal.

Definition
The variety associated to [ is the set

V(I)={(x1,...,xn) € C"| f(z1,...,2,) =0Vf € I}.
If I =(f1,...,fx) then we will also write V(I) = V(f1,..., fx)-

Definition
A variety V(I) is called irreducible if it cannot be written as a union of two proper
subvarieties in C™. Namely,

V(I)=V(h)UV(h) = VI)=V())orV(I)=V(]).
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Algebraic background ) hypersurfaces >

When I = (f), the associated variety is called a hypersurface.

Remarks:
e irreducible hypersurface «+— irreducible polynomial,

e degree of the hypersurface «+— degree of the (reduced) polynomial.
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Algebraic background ) our Zariski topology J2

Today we are going to use the following topology on C".

Definition
Declare the sets V(I), for every ideal I C R[z1,...,x,], to be closed. They form a
basis of a topology. Such a topology is called the R—Zariski topology of C".
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Algebraic boundary ) setting and definition

Let S C R" be a semialgebraic set and denote by 95 its Euclidean boundary.

Definition
The algebraic boundary of S, denoted 9,5, is the closure in C™, with respect to the
Zariski topology, of 0S.

If K C R™ is a semialgebraic convex body with non—empty interior, then 9,K is a
hypersurface.

Proposition

A convex body with non—empty interior is semialgebraic if and only if its algebraic
boundary is a hypersurface.
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Algebraic boundary ) warning A

S={(z,y,2) R | Y (@® +y* +2°— 1) <0, 22(2* + y* + 22 — 1) <0}

oS =V(x? + 2 + 22 —1)UV(y, 2)
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Algebraic boundary ) example: a spectrahedron J

Consider the spectrahedron associated to the matrix

1 =z Y 0 0
z 1 0 0 z
M=1y 0 1 z+y 0
0 0 z+4+vy 1 0
0 =z 0 0 1

Its algebraic boundary is the vanishing locus V(det M),
namely

st 203y P 40t 22 2y 2P 4202 22 — 202 — 20y — 22 — 2241 = 0
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Algebraic boundary ) example: a discotope A

K={z=0,"+2"<1}+{y=02"+2" <4} + {z = 0,27 +* < 9}

together with 6 hyperplanes
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Algebraic boundary ) convex cones J2

A subset C' C R is called (convex) cone if (it is convex and) for all A > 0 and all
rzeC, xed.

Some definitions:
e The conic hull of a set D C R" is

cone(D) = {\z1+ ...+ Nz | k€N, N; > 0,2; € D}

e A ray is a set of the form R>oz;
e We say that a cone is pointed if it contains no lines;

e A basis of a cone C s its intersection C' "\ H with an hyperplane non containing

the origin, such that
cone(CNH) =C.

C' has a compact basis if and only if C is pointed and closed.
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Algebraic boundary ) homogenization

Convex body ~ Convex cone

Let K C R" be a convex body and consider the map ¢ : R” — R"*! such that
— (1,x). Then Cx = cone (¢(K)) is a closed pointed cone, with non—empty
interior.

This procedure gives a bijection between the faces of K and C.
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Algebraic boundary 2

0K ~ 0.Ck

Oq(compact basis of C) o 04(C, pointed and closed)
A point (1, ) belongs to the boundary of Ck if and only if z € OK. Therefore
9u(Cx) =X
where X is the closure of 9, K in P¢ and X is the affine cone over X.

More precisely: 9, K C C™ — Pg, with the usual embedding
(x1,...,xp) = [L,21,...,24,], and

X = {x € C""! | the line through z and the origin is in X}.
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Algebraic boundary 2

For all “nice” cones:

Corollary

If C c R™*! is a semialgebraic pointed closed convex cone, its algebraic boundary is a
hypersurface and an algebraic cone. In particular it is the affine cone over the
projectivization of 9,C in P{.

Meaning: 0,C is defined by homogeneous equations in C"*!, so it makes sense to
think of it inside IP%:. Then take the affine cone over this projective variety: you get
0,C back!
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Duality ) dual body 2

For a convex set K C R" we define the polar/dual convex set as

Ke={{te®")" |lx)<1Vzr e K}.

In the case of a convex cone C' C R™*!, the definition above is equivalent to

{te (R™1)" o) <ovrec)

and we will denote the dual convex cone by C'V in order to emphasize that it is a cone.
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Duality ) basic properties B

e (K°)° =cl(conv(K U0)). In particular if K is a convex body containing the
origin, (K°)° = K. If C'is a closed convex cone, then (CV)" = C.

e Ki C K9 = K35 C K7;
o (K1 N K>3)° = conv(K; UKS);
e forallgc GL,(R), (g- K)° =g T K°;

e let K be the unit ball of the LP—norm, then K° is the unit ball of the L—norm,
with % + % =1

e let P be a polytope with the origin in its interior, then P° is a polytope as well.
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Duality ) basic example 2

P =conv{(+1,+1,£1)} ~> P°=conv{te;,tey, +e3}

3aP°:V(H(lfx:ty:tz)H(IwLﬂ::l:y:I:z))
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Duality ) dual face

/%

Let I’ be a face of a convex set K C R", we define the dual face F'° as the set of
linear functionals ¢ € (R™)* that attain the maximum over K on F.

Remarks:
e F'° is an exposed face of K°;

o if K is a convex body containing the origin, then
F°e={te K°|l(x)=1Vz € F};
e analogously, for a convex cone C we have that

Fe={{eCY|lx)=0Vx € F};

e “biduality”: if F' is an exposed face of K, the dual of F° C K° is exactly F.
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Duality ) dual face A

exposed extreme point of K ~=  inclusion maximal face of K°
inclusion maximal face of K =ax exposed extreme point of K°

Example

Consider the convex body K = {y?> — 2z —1 < 0,y? + 2z — 1 < 0}.
Its dual convex body is K° = conv{(z —1)2+¢*> =1,(z + 1)2 + > = 1}.
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Duality ) homogenization 2

“homogenization commutes with duality”

Recall that C'x = cone(¢(K)), where

¢:R" — R"H!
z— (1, 2)

then (Cx)" = Cko.
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Duality ) toward algebraic geometry A

K : K°:
x2+y2+iz231 2’ +y’ +427 <1

Dual variety!
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Duality ) the dual variety 2

Let I C R[zo, ..., xy,] be a homogeneous ideal and consider X = V(I) C P¢. Then, if
¢ = codim X, the singular locus Sing(X) is a subvariety of X defined by the vanishing
of the ¢ x ¢ minors of the Jacobian matrix J(X).

If I = (p1,...,p), then J(X) = (g;’;)ij isak x (n+ 1) matrix.

Definition
The regular points of X are Xreg = X \ Sing(X).
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Duality ) example

Consider the plane cubic curve X = V(—y% + 22 + 4% +y — 1). We are in the case

n =k = c=1. The Jacobian matrix is just the gradient of the defining polynomial:

(2x, —3y? + 2y + 1)

and by definition Sing(X) = V(2z, —3y* + 2y + 1) N X = {(0,1)}.

Hence Xreg = X \ {(0,1)}.
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Duality ) the dual variety B

(PZ)* = hyperplanes of P{.

The point v = [v, ..., v,] € (PE)" represents the hyperplane vozg + . .. + vp2n, =0 in
P¢. So v is said to be tangent to X at x € Xyeg if = belongs to the hyperplane
associated to v and if the vector (v, ..., vy) lies in the row span of J(X) at z.

Definition
The conormal variety CN(X) of X is the closure of the set

{(z,v) € PE x (P¢)" | © € Xreg,v is tangent to X at x}.
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Duality ) the dual variety

Consider the projection 7 : P x (P¢)" — (P¢)" onto the second factor. The dual
variety of X is X* = 7 (CN(X)). More precisely, it is the closure of the set

{ve P3)" | vistangent to X at some regular point}.

Example

Let X ={—y3+22+9y>+y—1=0}.
Its dual curve is X* = {322 4+ 13229% + 4y* — 1822y + 43> — 272% = 0}.
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Duality ) the dual variety: some properties J

o dim X* <n—1;

o If X is a smooth (i.e. X = Xyeg) hypersurface of degree d, then
deg X* =d(d —1)"1;

o If X is an irreducible projective variety, then (X*)* = X.
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Duality ) back to the algebraic boundary 22

Theorem

Let K be a semialgebraic convex body and define S = 0K° N (0, K°) reg- 1hen every
element £ € S supports a point of 0K . S is open, semialgebraic and dense in 0K°.

Theorem

Let C be a semialgebraic pointed and closed convex cone with non—empty interior;
define S = 0C"V N (8acv)reg- Then every element ¢ € S supports a ray. S is open,
semialgebraic and dense in OC" .
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Duality ) example A

The previous result is NOT an “if and only if"!

Example: lemon and strawberry ice cream

K={a?4+1?-1<0,42420-1<0,2— (1+2V2)y—2<0},
Ko=conv{x2+y2—150,(x—1)2+y2—1go,{(%,—%—\/i)}}.
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Extreme points ) recall the basics J2

We say that a point x € 0K is an extreme point of the convex set K if
x=ty+ (1 —1t)z implies z =y = z.

Theorem (Krein—Milman)

Let K C R™ be a compact convex set, then K is the convex hull of its extreme points.

Analogously for closed pointed convex cones, with extreme rays.

Notation:

Ex,(K): is the Zariski closure in C™ of the union of the extreme points of the convex
semialgebraic set K C R".

Exr,(C): is the Zariski closure in C"*! of the union of the extreme rays of the convex
semialgebraic cone C' c R™**!
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Extreme points) algebraic boundary 2

“It's enough to look at extreme points”
Let C ¢ R"" be a pointed, closed, semialgebraic cone with non—empty interior.

Result 1.
The dual variety to the algebraic boundary of C' is contained in the Zariski closure of
the extreme rays of the dual convex cone:

(PO,C)* C PExr,(CY).

Result 2.
The dual variety to the Zariski closure of the extreme rays of C'is contained in the
algebraic boundary of the dual convex cone:

(PExr,(C))* C PO,C".
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Extreme points ) warning A

Corollary

(PO,C)* = PExr(CY)  BUT (PExro (CY))* # PO,C

Example: strawberry ice cream

Consider the convex body K = conv {x2 +y2—-1<0,{(0, _g)}}
Its dual body is K° = {z® +y> -1 <0,y > —3}.
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Extreme points ) irreducible components /2

Do you want to know more about the irreducible components?
Take a look at
@ Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets,
Research in the Mathematical Sciences, 2, No. 1 (2015)

Do you want to know more about duality?
Take a look at

[@ Philipp Rostalski and Bernd Sturmfels,
Dualities in convex algebraic geometry ,
Rendiconti di Mathematica, Serie VII, 30, 285-327 (2010)
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_The convex hull
and its algebraic boundary



Convex hull ) setting and aim 2

Let X be a compact variety in R™. In this section we assume

K = conv(X).

How can we describe 9,K7?
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Convex hull ) plane curve 2

Example: the trefoil
Consider the plane curve C = {(z? + y?)? = x(2? — 3y?)}.
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Convex hull ) plane curve A

Example: the trefoil
Consider the plane curve C = {(2? + y?)? = x(2? — 3y?)}.

Its algebraic boundary is given by the curve itself, together with three lines.
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Convex hull ) bitangent lines

A line is said to be bitangent to C C PZ if it is tangent to C at two distinct points.

Plucker formula

Let C be a generic smooth plane curve of degree d > 2. Then the number of
bitangents of C is

(d — 3)(d — 2)d(d + 3)
. .

Therefore we can give a bound to the degree of the algebraic boundary of
K = conv(C), namely
(d—3)(d—2)d(d+3)

degd, K < d+ 5 .
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PN

Convex hull ) space curve

[From Ranestad, Sturmfels (2012)]

tritangent planes

_l’_

edge surface
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Convex hull ) the edge surface 2

Consider a curve C' C R3. Any two distinct points py,p2 € C span a so called bisecant
line. Such line is called a stationary bisecant line if the tangent lines to C' at p; and po
lie in a common plane.

Definition
The union of all stationary bisecant lines is called the edge surface of C.
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Convex hull ) back to previous example =

C={2?—y*—22=0n{z— 42>+ 3z =0}
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Convex hull ) example: elliptic space curve

Consider two ellipsoids given by the zero loci of ¢ = 422 + 4y + 2> — 4 and

g2 = (v — 1)%2 4+ 2y? 4+ 22 — 2. Let C be the curve obtained as their intersection:

C={q =0}n{g=0}

The pink curve C' is a quartic elliptic space curve.
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Convex hull ) example: elliptic space curve J

Consider the pencil of quadrics given by g1 + tga.
Let @1, Q2 be the 4 x 4 symmetric matrices associated to g1, g2. The univariate
polynomial f(t) = det(Q1 + tQ2) has generically 4 distinct roots t1, ..., 4.

Each of these values corresponds to a singular quadric ¢; + ¢;qo of the pencil.

FACT:

The edge surface is the union of the 4 singular quadratic surfaces V(q1 + tiq2).
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In practice the equation of the edge surface can be computed as

resultant; (f(t), (q1 + tg2)(x,y, 2)).

In our case we obtain the polynomial

—1922®% — 3202%y° — 3202*y* — 12827y° + 1442527 4 322°y* 2% + 64y°2°

—108z*2* + 24%y%2* + 64yt 2 + 422225 + 28¢%2° — 8962”7 — 6402°y>
—5122%y* — 256zy° + 864x°2% — 1282°y%2% — 320wy*2? — 480x° 2" — 208zy>z"
+2822° — 12802° 4 7042y + 8962°y" + 128y° + 14242 2% + 5122%y% 2>
—32y*2% — 56222 — 24y%2* — 422° + 1284° + 7682%y% + 5122y” — 8324°%27
+128zy%2% + 480zz* + 1920z* — 704z°%y* — 320y* — 14242%2% — 1082*
—1282% — 640zy® + 864zz> — 1280z + 320y — 1442° + 896z — 192
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Convex hull ) example: elliptic space curve A

Only two components contribute to the actual convex hull:
2% — 22 +406—-2=0 32?2 +22+2:-3=0
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Convex hull ) how to compute it in general? J

Outline of the algorithm:

Consider the corresponding complex projective curve C' C P2, whose points can be
expressed as

[Fo(xo,x1), F1(xo, 1), Fo(zo, 1), F3(x0, 21)].

The bisecant line between p = (po, p1) and ¢ = (qo, q1) is stationary if the determinant
of the following matrix vanishes:

o) S8 B2 ()
G ) G G
) %) (@) B
) 38 () SE(9)
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Convex hull ) how to compute it in general? J

Outline of the algorithm:

IP’% with coordinates pg, p1, o, q1

1
P¢
1
Gr(2,4)
1

our P2,

@ Kristian Ranestad and Bernd Sturmfels,
The Convex Hull of a Space Curve,
Advances in Geometry, 12, 157-178 (2012)
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Convex hull ) trigonometric curves J

A trigonometric space curve of degree d is a curve in R? parametrized by three degree
d trigonometric polynomials of the form

d/2 /2

Z a; cos(i6) + Z b; sin(i0) + c.
i=1 i=1

Using the change of coordinates

2 2
Th— X 2xo0x
cos(f) = 7(; ; sin(f) = 5——5 i 12
xh + xf xh + x]

and clearing denominators, we obtain a polynomial parametrization of C, which is
rational and, for generic a;, b;, ¢, smooth.

We can use the algorithm!
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Convex hull ) example 2

C = {(cos(6), sin(8) + cos(20),sin(20)) € B* | ¢ € [0, 2]}
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Convex hull ) example 2

C = {(cos(6), sin(8) + cos(20),sin(20)) € B* | ¢ € [0, 2]}

The edge surface is the irreducible sextic 162° — 322%9* + 162%y* — 962°2 — 16023y* 2+
192z%2% + 1622y 2% — 1282323 + 2162ty + 482%y> — 8y® + T2x3yz + 88xy3z — T2x2y2? — 8y32°% +
T2xyz> — 207zt — 1382%y? — 23y* + 180232 + 60zy?z — 1262222 — 54y%2% + 108z2° — 272 —
3622y + 4y® — 36zyz + 10822 4 36y — 108zz + 272% = 0.
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Convex hull ) degree of the edge surface =

Theorem

Let C be a general smooth space curve of degree d and genus g. The degree of its
edge surface is 2(d — 3)(d+ g — 1).

Sanity check with previous examples:

curve ‘ degree ‘ genus ‘ edge surface
elliptic space curve 4 1 8
trigonometric space curve 4 0 6
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Convex hull ) tritangent planes B

A plane H is a tritangent plane of C' C P if it is tangent to C at three or more points.

Theorem

Let C be a general smooth space curve of degree d and genus g. The number of
tritangent planes is

d+g—1
8( +§ >—8(d+g—4)(d+2g—2)+8g—8.

Sanity check with previous examples:

curve ‘ degree ‘ genus ‘ tritangent planes
elliptic space curve 4 1 0
trigonometric space curve 4 0 0
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Convex hull ) variety in R

Let's try to generalize! Goal: 9, (conv(X))

Let X be a variety in R™, that spans the whole space. Fix k£ € N and define a variety
XK of (PZ)* as follows: it is the Zariski closure of the set of hyperplanes that are
tangent to X at k regular points which span a (k — 1)—plane in Pg.

Remark: X1 = x*

Theorem
Under reasonable assumptions,

By (conv(X)) C Lnj (xH)°
k=1
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Convex hull ) variety in R” 2

Do you want to know more?
Take a look at

@ Kristian Ranestad and Bernd Sturmfels,
The Convex Hull of a Variety,
"Notions of Positivity and the Geometry of Polynomials", Trends in Mathematics,
Springer Verlag, Basel, pp. 331-344 (2011)

@ Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets,
PhD thesis, Universitat Konstanz (2014)
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Patches ) intuition 2N

f—vector ~ patches
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Patches ) intuition 2

Let K C R"™, hence dimdK = n — 1 and its patches are (n — 1 — k)—dimensional
families of k—faces (4 some technical conditions).
Key word: normal cycle

Do you want to know more?
Take a look at

@ Daniel Plaumann, Rainer Sinn and Jannik Lennart Wesner,
Families of Faces and the Normal Cycle of a Convex Semi-algebraic Set,
Preprint, arXiv:2104.13306 (2021)
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Thank you
and see you at
the exercise session!



