Algebra and Convexity

Chiara Meroni

Minicourse on Convex Geometry MPI MIS Leipzig

 July 14, 2021
Background in algebraic geometry

Algebraic background \rangle ideals and varieties

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.

Definition

The variety associated to I is the set

$$
\mathcal{V}(I)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=0 \forall f \in I\right\} .
$$

If $I=\left\langle f_{1}, \ldots, f_{k}\right\rangle$ then we will also write $\mathcal{V}(I)=\mathcal{V}\left(f_{1}, \ldots, f_{k}\right)$.

Definition

A variety $\mathcal{V}(I)$ is called irreducible if it cannot be written as a union of two proper subvarieties in \mathbb{C}^{n}. Namely,

$$
\mathcal{V}(I)=\mathcal{V}\left(J_{1}\right) \cup \mathcal{V}\left(J_{2}\right) \quad \Longrightarrow \quad \mathcal{V}(I)=\mathcal{V}\left(J_{1}\right) \text { or } \mathcal{V}(I)=\mathcal{V}\left(J_{2}\right)
$$

Algebraic background \rangle hypersurfaces

When $I=\langle f\rangle$, the associated variety is called a hypersurface.

Remarks:

- irreducible hypersurface \longleftrightarrow irreducible polynomial;
- degree of the hypersurface \longleftrightarrow degree of the (reduced) polynomial.

Algebraic background $>$ our Zariski topology

Today we are going to use the following topology on \mathbb{C}^{n}.

Definition

Declare the sets $\mathcal{V}(I)$, for every ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, to be closed. They form a basis of a topology. Such a topology is called the \mathbb{R}-Zariski topology of \mathbb{C}^{n}.

Algebraic boundary

Let $S \subset \mathbb{R}^{n}$ be a semialgebraic set and denote by ∂S its Euclidean boundary.

Definition

The algebraic boundary of S, denoted $\partial_{a} S$, is the closure in \mathbb{C}^{n}, with respect to the Zariski topology, of ∂S.

If $K \subset \mathbb{R}^{n}$ is a semialgebraic convex body with non-empty interior, then $\partial_{a} K$ is a hypersurface.

Proposition

A convex body with non-empty interior is semialgebraic if and only if its algebraic boundary is a hypersurface.

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y^{2}\left(x^{2}+y^{2}+z^{2}-1\right) \leq 0, z^{2}\left(x^{2}+y^{2}+z^{2}-1\right) \leq 0\right\}
$$

$$
\partial_{a} S=\mathcal{V}\left(x^{2}+y^{2}+z^{2}-1\right) \cup \mathcal{V}(y, z)
$$

Consider the spectrahedron associated to the matrix

$$
M=\left(\begin{array}{ccccc}
1 & x & y & 0 & 0 \\
x & 1 & 0 & 0 & z \\
y & 0 & 1 & x+y & 0 \\
0 & 0 & x+y & 1 & 0 \\
0 & z & 0 & 0 & 1
\end{array}\right)
$$

Its algebraic boundary is the vanishing locus $\mathcal{V}(\operatorname{det} M)$, namely

$$
x^{4}+2 x^{3} y+x^{2} y^{2}+x^{2} z^{2}+2 x y z^{2}+2 y^{2} z^{2}-2 x^{2}-2 x y-2 y^{2}-z^{2}+1=0
$$

Algebraic boundary > example: a discotope

$$
K=\left\{x=0, y^{2}+z^{2} \leq 1\right\}+\left\{y=0, x^{2}+z^{2} \leq 4\right\}+\left\{z=0, x^{2}+y^{2} \leq 9\right\}
$$

$$
x^{24}+4 x^{22} y^{2}+\ldots \ldots
$$

$$
+110075314176=0
$$

together with 6 hyperplanes

A subset $C \subset \mathbb{R}^{n}$ is called (convex) cone if (it is convex and) for all $\lambda \geq 0$ and all $x \in C, \lambda x \in C$.

Some definitions:

- The conic hull of a set $D \subset \mathbb{R}^{n}$ is

$$
\operatorname{cone}(D)=\left\{\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k} \mid k \in \mathbb{N}, \lambda_{i} \geq 0, x_{i} \in D\right\}
$$

- A ray is a set of the form $\mathbb{R}_{\geq 0} x$;
- We say that a cone is pointed if it contains no lines;
- A basis of a cone C is its intersection $C \cap H$ with an hyperplane non containing the origin, such that

$$
\operatorname{cone}(C \cap H)=C
$$

C has a compact basis if and only if C is pointed and closed.

Algebraic boundary $>$ homogenization

Convex body \leadsto Convex cone
Let $K \subset \mathbb{R}^{n}$ be a convex body and consider the map $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ such that $x \mapsto(1, x)$. Then $C_{K}=\operatorname{cone}(\phi(K))$ is a closed pointed cone, with non-empty interior.
This procedure gives a bijection between the faces of K and C_{K}.

Algebraic boundary

$$
\begin{array}{rll}
\partial_{a} K & \rightsquigarrow & \partial_{a} C_{K} \\
\partial_{a}(\text { compact basis of } C) & \longleftrightarrow & \partial_{a}(C, \text { pointed and closed })
\end{array}
$$

A point $(1, x)$ belongs to the boundary of C_{K} if and only if $x \in \partial K$. Therefore

$$
\partial_{a}\left(C_{K}\right)=\widehat{X}
$$

where X is the closure of $\partial_{a} K$ in $\mathbb{P}_{\mathbb{C}}^{n}$ and \widehat{X} is the affine cone over X.
More precisely: $\partial_{a} K \subset \mathbb{C}^{n} \hookrightarrow \mathbb{P}_{\mathbb{C}}^{n}$, with the usual embedding $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left[1, x_{1}, \ldots, x_{n}\right]$, and

$$
\widehat{X}=\left\{x \in \mathbb{C}^{n+1} \mid \text { the line through } x \text { and the origin is in } X\right\} .
$$

Algebraic boundary

For all "nice" cones:

Corollary

If $C \subset \mathbb{R}^{n+1}$ is a semialgebraic pointed closed convex cone, its algebraic boundary is a hypersurface and an algebraic cone. In particular it is the affine cone over the projectivization of $\partial_{a} C$ in $\mathbb{P}_{\mathbb{C}}^{n}$.

Meaning: $\partial_{a} C$ is defined by homogeneous equations in \mathbb{C}^{n+1}, so it makes sense to think of it inside $\mathbb{P}_{\mathbb{C}}^{n}$. Then take the affine cone over this projective variety: you get $\partial_{a} C$ back!

Duality

For a convex set $K \subset \mathbb{R}^{n}$ we define the polar/dual convex set as

$$
K^{\circ}=\left\{\ell \in\left(\mathbb{R}^{n}\right)^{*} \mid \ell(x) \leq 1 \forall x \in K\right\}
$$

In the case of a convex cone $C \subset \mathbb{R}^{n+1}$, the definition above is equivalent to

$$
\left\{\ell \in\left(\mathbb{R}^{n+1}\right)^{*} \mid \ell(x) \leq 0 \forall x \in C\right\}
$$

and we will denote the dual convex cone by C^{\vee} in order to emphasize that it is a cone.

- $\left(K^{\circ}\right)^{\circ}=\mathrm{cl}(\operatorname{conv}(K \cup 0))$. In particular if K is a convex body containing the origin, $\left(K^{\circ}\right)^{\circ}=K$. If C is a closed convex cone, then $\left(C^{\vee}\right)^{\vee}=C$.
- $K_{1} \subset K_{2} \Longrightarrow K_{2}^{\circ} \subset K_{1}^{\circ}$;
- $\left(K_{1} \cap K_{2}\right)^{\circ}=\operatorname{conv}\left(K_{1}^{\circ} \cup K_{2}^{\circ}\right)$;
- for all $g \in G L_{n}(\mathbb{R}),(g \cdot K)^{\circ}=g^{-T} \cdot K^{\circ}$;
- let K be the unit ball of the L^{p}-norm, then K° is the unit ball of the L^{q}-norm, with $\frac{1}{p}+\frac{1}{q}=1$;
- let P be a polytope with the origin in its interior, then P° is a polytope as well.

Duality \rangle basic example

$$
P=\operatorname{conv}\{(\pm 1, \pm 1, \pm 1)\} \quad \leadsto \quad P^{\circ}=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3}\right\}
$$

$$
\begin{gathered}
\partial_{a} P=\mathcal{V}\left(\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right)\right) \\
\partial_{a} P^{\circ}=\mathcal{V}\left(\prod(1-x \pm y \pm z) \prod(1+x \pm y \pm z)\right)
\end{gathered}
$$

Duality \rangle dual face

Let F be a face of a convex set $K \subset \mathbb{R}^{n}$, we define the dual face F° as the set of linear functionals $\ell \in\left(\mathbb{R}^{n}\right)^{*}$ that attain the maximum over K on F.

Remarks:

- F° is an exposed face of K°;
- if K is a convex body containing the origin, then

$$
F^{\circ}=\left\{\ell \in K^{\circ} \mid \ell(x)=1 \forall x \in F\right\} ;
$$

- analogously, for a convex cone C we have that

$$
F^{\circ}=\left\{\ell \in C^{\vee} \mid \ell(x)=0 \forall x \in F\right\} ;
$$

- "biduality": if F is an exposed face of K, the dual of $F^{\circ} \subset K^{\circ}$ is exactly F.

Duality \rangle dual face

exposed extreme point of $K \leadsto$ inclusion maximal face of K° inclusion maximal face of $K \Longrightarrow$ exposed extreme point of K°

Example

Consider the convex body $K=\left\{y^{2}-2 x-1 \leq 0, y^{2}+2 x-1 \leq 0\right\}$.
Its dual convex body is $K^{\circ}=\operatorname{conv}\left\{(x-1)^{2}+y^{2}=1,(x+1)^{2}+y^{2}=1\right\}$.

Duality $>$ homogenization

"homogenization commutes with duality"

Recall that $C_{K}=\operatorname{cone}(\phi(K))$, where

$$
\begin{aligned}
\phi: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n+1} \\
x & \mapsto(1, x)
\end{aligned}
$$

then $\left(C_{K}\right)^{\vee}=C_{K^{\circ}}$.

Duality \rangle toward algebraic geometry

$$
\begin{array}{cc}
K: & K^{\circ}: \\
x^{2}+y^{2}+\frac{1}{4} z^{2} \leq 1 & \leadsto
\end{array} \begin{array}{cc}
x^{2}+y^{2}+4 z^{2} \leq 1
\end{array}
$$

Dual variety!

Duality \rangle the dual variety

Let $I \subset \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal and consider $X=\mathcal{V}(I) \subset \mathbb{P}_{\mathbb{C}}^{n}$. Then, if $c=\operatorname{codim} X$, the singular locus $\operatorname{Sing}(X)$ is a subvariety of X defined by the vanishing of the $c \times c$ minors of the Jacobian matrix $J(X)$.

If $I=\left\langle p_{1}, \ldots, p_{k}\right\rangle$, then $J(X)=\left(\frac{\partial p_{i}}{\partial x_{j}}\right)_{i, j}$ is a $k \times(n+1)$ matrix.

Definition

The regular points of X are $X_{\text {reg }}=X \backslash \operatorname{Sing}(X)$.

Duality \rangle example

Consider the plane cubic curve $X=\mathcal{V}\left(-y^{3}+x^{2}+y^{2}+y-1\right)$. We are in the case $n=k=c=1$. The Jacobian matrix is just the gradient of the defining polynomial:

$$
\left(2 x,-3 y^{2}+2 y+1\right)
$$

and by definition $\operatorname{Sing}(X)=\mathcal{V}\left(2 x,-3 y^{2}+2 y+1\right) \cap X=\{(0,1)\}$.

Hence $X_{\text {reg }}=X \backslash\{(0,1)\}$.

Duality \rangle the dual variety

$\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*}=$ hyperplanes of $\mathbb{P}_{\mathbb{C}}^{n}$.

The point $v=\left[v_{0}, \ldots, v_{n}\right] \in\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*}$ represents the hyperplane $v_{0} x_{0}+\ldots+v_{n} x_{n}=0$ in $\mathbb{P}_{\mathbb{C}}^{n}$. So v is said to be tangent to X at $x \in X_{\text {reg }}$ if x belongs to the hyperplane associated to v and if the vector $\left(v_{0}, \ldots, v_{n}\right)$ lies in the row span of $J(X)$ at x.

Definition

The conormal variety $\mathrm{CN}(X)$ of X is the closure of the set

$$
\left\{(x, v) \in \mathbb{P}_{\mathbb{C}}^{n} \times\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*} \mid x \in X_{\mathrm{reg}}, v \text { is tangent to } X \text { at } x\right\}
$$

Duality \rangle the dual variety

Consider the projection $\pi: \mathbb{P}_{\mathbb{C}}^{n} \times\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*} \rightarrow\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*}$ onto the second factor. The dual variety of X is $X^{*}=\pi(\mathrm{CN}(X))$. More precisely, it is the closure of the set

$$
\left\{v \in\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*} \mid v \text { is tangent to } X \text { at some regular point }\right\} .
$$

Example

Let $X=\left\{-y^{3}+x^{2}+y^{2}+y-1=0\right\}$.
Its dual curve is $X^{*}=\left\{32 x^{4}+13 x^{2} y^{2}+4 y^{4}-18 x^{2} y+4 y^{3}-27 x^{2}=0\right\}$.

- $\operatorname{dim} X^{*} \leq n-1$;
- If X is a smooth (i.e. $X=X_{\text {reg }}$) hypersurface of degree d, then $\operatorname{deg} X^{*}=d(d-1)^{n-1}$;
- If X is an irreducible projective variety, then $\left(X^{*}\right)^{*}=X$.

Theorem

Let K be a semialgebraic convex body and define $S=\partial K^{\circ} \cap\left(\partial_{a} K^{\circ}\right)_{r e g}$. Then every element $\ell \in S$ supports a point of $\partial K . S$ is open, semialgebraic and dense in ∂K°.

Theorem

Let C be a semialgebraic pointed and closed convex cone with non-empty interior; define $S=\partial C^{\vee} \cap\left(\partial_{a} C^{\vee}\right)_{\text {reg. }}$. Then every element $\ell \in S$ supports a ray. S is open, semialgebraic and dense in ∂C^{\vee}.

Duality \rangle example

The previous result is NOT an "if and only if"!
Example: lemon and strawberry ice cream

$$
\begin{aligned}
& K=\left\{x^{2}+y^{2}-1 \leq 0, y^{2}+2 x-1 \leq 0, x-(1+2 \sqrt{2}) y-2 \leq 0\right\} \\
& K^{\circ}=\operatorname{conv}\left\{x^{2}+y^{2}-1 \leq 0,(x-1)^{2}+y^{2}-1 \leq 0,\left\{\left(\frac{1}{2},-\frac{1}{2}-\sqrt{2}\right)\right\}\right\}
\end{aligned}
$$

Irreducible components

 and extreme points
Extreme points \rangle recall the basics

We say that a point $x \in \partial K$ is an extreme point of the convex set K if $x=t y+(1-t) z$ implies $x=y=z$.

Theorem (Krein-Milman)

Let $K \subset \mathbb{R}^{n}$ be a compact convex set, then K is the convex hull of its extreme points.
Analogously for closed pointed convex cones, with extreme rays.

Notation:

$\mathrm{Ex}_{a}(K)$: is the Zariski closure in \mathbb{C}^{n} of the union of the extreme points of the convex semialgebraic set $K \subset \mathbb{R}^{n}$.
$\operatorname{Exr}_{a}(C)$: is the Zariski closure in \mathbb{C}^{n+1} of the union of the extreme rays of the convex semialgebraic cone $C \subset \mathbb{R}^{n+1}$
"It's enough to look at extreme points"
Let $C \subset \mathbb{R}^{n+1}$ be a pointed, closed, semialgebraic cone with non-empty interior.

Result 1.

The dual variety to the algebraic boundary of C is contained in the Zariski closure of the extreme rays of the dual convex cone:

$$
\left(\mathbb{P} \partial_{a} C\right)^{*} \subset \mathbb{P} \operatorname{Exr}_{a}\left(C^{\vee}\right)
$$

Result 2.

The dual variety to the Zariski closure of the extreme rays of C is contained in the algebraic boundary of the dual convex cone:

$$
\left(\mathbb{P E x r}_{a}(C)\right)^{*} \subset \mathbb{P} \partial_{a} C^{\vee}
$$

Extreme points \rangle warning

Corollary

$$
\left(\mathbb{P} \partial_{a} C\right)^{*}=\mathbb{P E x r}_{a}\left(C^{\vee}\right) \quad \mathrm{BUT} \quad\left(\mathbb{P} \operatorname{Exr}_{a}\left(C^{\vee}\right)\right)^{*} \neq \mathbb{P} \partial_{a} C
$$

Example: strawberry ice cream

Consider the convex body $K=\operatorname{conv}\left\{x^{2}+y^{2}-1 \leq 0,\left\{\left(0,-\frac{5}{3}\right)\right\}\right\}$.
Its dual body is $K^{\circ}=\left\{x^{2}+y^{2}-1 \leq 0, y \geq-\frac{3}{5}\right\}$.

Extreme points \rangle irreducible components

Do you want to know more about the irreducible components?
Take a look at
围 Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets, Research in the Mathematical Sciences, 2, No. 1 (2015)

Do you want to know more about duality?
Take a look at
R Philipp Rostalski and Bernd Sturmfels,
Dualities in convex algebraic geometry , Rendiconti di Mathematica, Serie VII, 30, 285-327 (2010)

The convex hull and its algebraic boundary

Let X be a compact variety in \mathbb{R}^{n}. In this section we assume

$$
K=\operatorname{conv}(X)
$$

How can we describe $\partial_{a} K$?

Convex hull > plane curve

Example: the trefoil

Consider the plane curve $C=\left\{\left(x^{2}+y^{2}\right)^{2}=x\left(x^{2}-3 y^{2}\right)\right\}$.

Convex hull \rangle plane curve

Example: the trefoil

Consider the plane curve $C=\left\{\left(x^{2}+y^{2}\right)^{2}=x\left(x^{2}-3 y^{2}\right)\right\}$.

Its algebraic boundary is given by the curve itself, together with three lines.

Convex hull $>$ bitangent lines

A line is said to be bitangent to $\bar{C} \subset \mathbb{P}_{\mathbb{C}}^{2}$ if it is tangent to \bar{C} at two distinct points.

Plücker formula

Let \bar{C} be a generic smooth plane curve of degree $d \geq 2$. Then the number of bitangents of \bar{C} is

$$
\frac{(d-3)(d-2) d(d+3)}{2} .
$$

Therefore we can give a bound to the degree of the algebraic boundary of $K=\operatorname{conv}(C)$, namely

$$
\operatorname{deg} \partial_{a} K \leq d+\frac{(d-3)(d-2) d(d+3)}{2}
$$

edge surface
$+$
tritangent planes

Convex hull $>$ the edge surface

Consider a curve $C \subset \mathbb{R}^{3}$. Any two distinct points $p_{1}, p_{2} \in C$ span a so called bisecant line. Such line is called a stationary bisecant line if the tangent lines to C at p_{1} and p_{2} lie in a common plane.

Definition

The union of all stationary bisecant lines is called the edge surface of C.

Convex hull \rangle back to previous example

$$
C=\left\{x^{2}-y^{2}-x z=0\right\} \cap\left\{z-4 x^{3}+3 x=0\right\}
$$

Consider two ellipsoids given by the zero loci of $q_{1}=4 x^{2}+4 y^{2}+z^{2}-4$ and $q_{2}=(x-1)^{2}+2 y^{2}+z^{2}-2$. Let C be the curve obtained as their intersection:

$$
C=\left\{q_{1}=0\right\} \cap\left\{q_{2}=0\right\} .
$$

The pink curve C is a quartic elliptic space curve.

Consider the pencil of quadrics given by $q_{1}+t q_{2}$.
Let Q_{1}, Q_{2} be the 4×4 symmetric matrices associated to q_{1}, q_{2}. The univariate polynomial $f(t)=\operatorname{det}\left(Q_{1}+t Q_{2}\right)$ has generically 4 distinct roots t_{1}, \ldots, t_{4}.

Each of these values corresponds to a singular quadric $q_{1}+t_{i} q_{2}$ of the pencil.

FACT:

The edge surface is the union of the 4 singular quadratic surfaces $\mathcal{V}\left(q_{1}+t_{i} q_{2}\right)$.

In practice the equation of the edge surface can be computed as

$$
\text { resultant }_{t}\left(f(t),\left(q_{1}+t q_{2}\right)(x, y, z)\right)
$$

In our case we obtain the polynomial

$$
\begin{aligned}
& -192 x^{8}-320 x^{6} y^{2}-320 x^{4} y^{4}-128 x^{2} y^{6}+144 x^{6} z^{2}+32 x^{2} y^{4} z^{2}+64 y^{6} z^{2} \\
& \quad-108 x^{4} z^{4}+24 x^{2} y^{2} z^{4}+64 y^{4} z^{4}+42 x^{2} z^{6}+28 y^{2} z^{6}-896 x^{7}-640 x^{5} y^{2} \\
& -512 x^{3} y^{4}-256 x y^{6}+864 x^{5} z^{2}-128 x^{3} y^{2} z^{2}-320 x y^{4} z^{2}-480 x^{3} z^{4}-208 x y^{2} z^{4} \\
& +28 x z^{6}-1280 x^{6}+704 x^{4} y^{2}+896 x^{2} y^{4}+128 y^{6}+1424 x^{4} z^{2}+512 x^{2} y^{2} z^{2} \\
& -32 y^{4} z^{2}-56 x^{2} z^{4}-24 y^{2} z^{4}-42 z^{6}+128 x^{5}+768 x^{3} y^{2}+512 x y^{4}-832 x^{3} z^{2} \\
& +128 x y^{2} z^{2}+480 x z^{4}+1920 x^{4}-704 x^{2} y^{2}-320 y^{4}-1424 x^{2} z^{2}-108 z^{4} \\
& \quad-18 x^{3}-640 x y^{2}+86 z^{2}-1280 x^{2}+320 y^{2}-144 z^{2}+896 x-192
\end{aligned}
$$

Only two components contribute to the actual convex hull:

$$
2 x^{2}-z^{2}+4 x-2=0 \quad 3 x^{2}+2 y^{2}+2 x-3=0
$$

Convex hull \rangle how to compute it in general?

Outline of the algorithm:

Consider the corresponding complex projective curve $\bar{C} \subset \mathbb{P}_{\mathbb{C}}^{3}$, whose points can be expressed as

$$
\left[F_{0}\left(x_{0}, x_{1}\right), F_{1}\left(x_{0}, x_{1}\right), F_{2}\left(x_{0}, x_{1}\right), F_{3}\left(x_{0}, x_{1}\right)\right] .
$$

The bisecant line between $p=\left(p_{0}, p_{1}\right)$ and $q=\left(q_{0}, q_{1}\right)$ is stationary if the determinant of the following matrix vanishes:

$$
\left(\begin{array}{llll}
\frac{\partial F_{0}}{\partial x_{0}}(p) & \frac{\partial F_{1}}{\partial x_{0}}(p) & \frac{\partial F_{2}}{\partial x_{0}}(p) & \frac{\partial F_{3}}{\partial x_{0}}(p) \\
\frac{\partial F_{0}}{\partial x_{1}}(p) & \frac{\partial F_{1}}{\partial x_{1}}(p) & \frac{\partial F_{2}}{\partial x_{1}}(p) & \frac{\partial F_{3}}{\partial x_{1}}(p) \\
\frac{\partial F_{0}}{\partial x_{0}}(q) & \frac{\partial F_{1}}{\partial x_{0}}(q) & \frac{\partial F_{2}}{\partial x_{0}}(q) & \frac{\partial F_{3}}{\partial x_{0}}(q) \\
\frac{\partial F_{0}}{\partial x_{1}}(q) & \frac{\partial F_{1}}{\partial x_{1}}(q) & \frac{\partial F_{2}}{\partial x_{1}}(q) & \frac{\partial F_{3}}{\partial x_{1}}(q)
\end{array}\right)
$$

Convex hull \rangle how to compute it in general?

Outline of the algorithm:

$\mathbb{P}_{\mathbb{C}}^{3}$ with coordinates $p_{0}, p_{1}, q_{0}, q_{1}$

围 Kristian Ranestad and Bernd Sturmfels, The Convex Hull of a Space Curve, Advances in Geometry, 12, 157-178 (2012)

Convex hull $>$ trigonometric curves

A trigonometric space curve of degree d is a curve in \mathbb{R}^{3} parametrized by three degree d trigonometric polynomials of the form

$$
\sum_{i=1}^{d / 2} a_{i} \cos (i \theta)+\sum_{i=1}^{d / 2} b_{i} \sin (i \theta)+c
$$

Using the change of coordinates

$$
\cos (\theta)=\frac{x_{0}^{2}-x_{1}^{2}}{x_{0}^{2}+x_{1}^{2}} \quad \sin (\theta)=\frac{2 x_{0} x_{1}}{x_{0}^{2}+x_{1}^{2}}
$$

and clearing denominators, we obtain a polynomial parametrization of \bar{C}, which is rational and, for generic a_{i}, b_{i}, c, smooth.

We can use the algorithm!

$$
C=\left\{(\cos (\theta), \sin (\theta)+\cos (2 \theta), \sin (2 \theta)) \in \mathbb{R}^{3} \mid \theta \in[0,2 \pi]\right\}
$$

Convex hull > example

$$
C=\left\{(\cos (\theta), \sin (\theta)+\cos (2 \theta), \sin (2 \theta)) \in \mathbb{R}^{3} \mid \theta \in[0,2 \pi]\right\}
$$

The edge surface is the irreducible sextic $16 x^{6}-32 x^{4} y^{2}+16 x^{2} y^{4}-96 x^{5} z-160 x^{3} y^{2} z+$ $192 x^{4} z^{2}+16 x^{2} y^{2} z^{2}-128 x^{3} z^{3}+216 x^{4} y+48 x^{2} y^{3}-8 y^{5}+72 x^{3} y z+88 x y^{3} z-72 x^{2} y z^{2}-8 y^{3} z^{2}+$ $72 x y z^{3}-207 x^{4}-138 x^{2} y^{2}-23 y^{4}+180 x^{3} z+60 x y^{2} z-126 x^{2} z^{2}-54 y^{2} z^{2}+108 x z^{3}-27 z^{4}-$ $36 x^{2} y+4 y^{3}-36 x y z+108 x^{2}+36 y^{2}-108 x z+27 z^{2}=0$.

Convex hull \rangle degree of the edge surface

Theorem

Let C be a general smooth space curve of degree d and genus g. The degree of its edge surface is $2(d-3)(d+g-1)$.

Sanity check with previous examples:

curve	degree	genus	edge surface
elliptic space curve	4	1	8
trigonometric space curve	4	0	6

Convex hull $>$ tritangent planes

A plane H is a tritangent plane of $\bar{C} \subset \mathbb{P}_{\mathbb{C}}^{3}$ if it is tangent to \bar{C} at three or more points.

Theorem

Let C be a general smooth space curve of degree d and genus g. The number of tritangent planes is

$$
8\binom{d+g-1}{3}-8(d+g-4)(d+2 g-2)+8 g-8
$$

Sanity check with previous examples:

curve	degree	genus	tritangent planes
elliptic space curve	4	1	0
trigonometric space curve	4	0	0

Convex hull \rangle variety in \mathbb{R}^{n}

Let's try to generalize! Goal: $\partial_{a}(\operatorname{conv}(X))$

Let X be a variety in \mathbb{R}^{n}, that spans the whole space. Fix $k \in \mathbb{N}$ and define a variety $X^{[k]}$ of $\left(\mathbb{P}_{\mathbb{C}}^{n}\right)^{*}$ as follows: it is the Zariski closure of the set of hyperplanes that are tangent to X at k regular points which span a $(k-1)$-plane in $\mathbb{P}_{\mathbb{C}}^{n}$.

Remark: $X^{[1]}=X^{*}$

Theorem

Under reasonable assumptions,

$$
\partial_{a}(\operatorname{conv}(X)) \subset \bigcup_{k=1}^{n}\left(X^{[k]}\right)^{*}
$$

Do you want to know more?
Take a look at

嗇 Kristian Ranestad and Bernd Sturmfels, The Convex Hull of a Variety,
"Notions of Positivity and the Geometry of Polynomials", Trends in Mathematics, Springer Verlag, Basel, pp. 331-344 (2011)

R- Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets, PhD thesis, Universität Konstanz (2014)

The notion of patches

f-vector $\quad \leadsto \quad$ patches

Patches \rangle intuition

Let $K \subset \mathbb{R}^{n}$, hence $\operatorname{dim} \partial K=n-1$ and its patches are $(n-1-k)$-dimensional families of k-faces (+ some technical conditions).
Key word: normal cycle

Do you want to know more?
Take a look at
(R. Daniel Plaumann, Rainer Sinn and Jannik Lennart Wesner, Families of Faces and the Normal Cycle of a Convex Semi-algebraic Set, Preprint, arXiv:2104.13306 (2021)

Thank you

and see you at

the exercise session!

