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Background in
algebraic geometry



Algebraic background ideals and varieties

Let I ⊂ C[x1, . . . , xn] be an ideal.

Definition
The variety associated to I is the set

V(I) = {(x1, . . . , xn) ∈ Cn | f(x1, . . . , xn) = 0∀f ∈ I}.

If I = 〈f1, . . . , fk〉 then we will also write V(I) = V(f1, . . . , fk).

Definition
A variety V(I) is called irreducible if it cannot be written as a union of two proper
subvarieties in Cn. Namely,

V(I) = V(J1) ∪ V(J2) =⇒ V(I) = V(J1) or V(I) = V(J2).
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Algebraic background hypersurfaces

When I = 〈f〉, the associated variety is called a hypersurface.

Remarks:
• irreducible hypersurface ←→ irreducible polynomial;
• degree of the hypersurface ←→ degree of the (reduced) polynomial.
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Algebraic background our Zariski topology

Today we are going to use the following topology on Cn.

Definition
Declare the sets V(I), for every ideal I ⊂ R[x1, . . . , xn], to be closed. They form a
basis of a topology. Such a topology is called the R–Zariski topology of Cn.

5/56



Algebraic boundary



Algebraic boundary setting and definition

Let S ⊂ Rn be a semialgebraic set and denote by ∂S its Euclidean boundary.

Definition
The algebraic boundary of S, denoted ∂aS, is the closure in Cn, with respect to the
Zariski topology, of ∂S.

If K ⊂ Rn is a semialgebraic convex body with non–empty interior, then ∂aK is a
hypersurface.

Proposition
A convex body with non–empty interior is semialgebraic if and only if its algebraic
boundary is a hypersurface.
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Algebraic boundary warning

S =
{

(x, y, z) ∈ R3 | y2(x2 + y2 + z2 − 1) ≤ 0, z2(x2 + y2 + z2 − 1) ≤ 0
}

∂aS = V(x2 + y2 + z2 − 1) ∪ V(y, z)
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Algebraic boundary example: a spectrahedron

Consider the spectrahedron associated to the matrix

M =


1 x y 0 0
x 1 0 0 z
y 0 1 x+ y 0
0 0 x+ y 1 0
0 z 0 0 1


Its algebraic boundary is the vanishing locus V(detM),
namely

x4+2x3y+x2y2+x2z2+2xyz2+2y2z2−2x2−2xy−2y2−z2+1 = 0
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Algebraic boundary example: a discotope

K = {x = 0, y2 + z2 ≤ 1}+ {y = 0, x2 + z2 ≤ 4}+ {z = 0, x2 + y2 ≤ 9}

x24 + 4x22y2 + . . . . . .

. . . . . .+ 110075314176 = 0

together with 6 hyperplanes
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Algebraic boundary convex cones

A subset C ⊂ Rn is called (convex) cone if (it is convex and) for all λ ≥ 0 and all
x ∈ C, λx ∈ C.

Some definitions:
• The conic hull of a set D ⊂ Rn is

cone(D) = {λ1x1 + . . .+ λkxk | k ∈ N, λi ≥ 0, xi ∈ D} ;

• A ray is a set of the form R≥0x;
• We say that a cone is pointed if it contains no lines;
• A basis of a cone C is its intersection C ∩H with an hyperplane non containing
the origin, such that

cone(C ∩H) = C.

C has a compact basis if and only if C is pointed and closed.
11/56



Algebraic boundary homogenization

Convex body  Convex cone
Let K ⊂ Rn be a convex body and consider the map φ : Rn → Rn+1 such that
x 7→ (1, x). Then CK = cone (φ(K)) is a closed pointed cone, with non–empty
interior.
This procedure gives a bijection between the faces of K and CK .
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Algebraic boundary

∂aK  ∂aCK

∂a(compact basis of C)  ∂a(C, pointed and closed)

A point (1, x) belongs to the boundary of CK if and only if x ∈ ∂K. Therefore

∂a(CK) = X̂

where X is the closure of ∂aK in Pn
C and X̂ is the affine cone over X.

More precisely: ∂aK ⊂ Cn ↪→ Pn
C, with the usual embedding

(x1, . . . , xn) 7→ [1, x1, . . . , xn], and

X̂ =
{
x ∈ Cn+1 | the line through x and the origin is in X

}
.
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Algebraic boundary

For all “nice” cones:

Corollary
If C ⊂ Rn+1 is a semialgebraic pointed closed convex cone, its algebraic boundary is a
hypersurface and an algebraic cone. In particular it is the affine cone over the
projectivization of ∂aC in Pn

C.

Meaning: ∂aC is defined by homogeneous equations in Cn+1, so it makes sense to
think of it inside Pn

C. Then take the affine cone over this projective variety: you get
∂aC back!
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Duality



Duality dual body

For a convex set K ⊂ Rn we define the polar/dual convex set as

K◦ = {` ∈ (Rn)∗ | `(x) ≤ 1 ∀x ∈ K} .

In the case of a convex cone C ⊂ Rn+1, the definition above is equivalent to{
` ∈

(
Rn+1

)∗
| `(x) ≤ 0 ∀x ∈ C

}
and we will denote the dual convex cone by C∨ in order to emphasize that it is a cone.
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Duality basic properties

• (K◦)◦ = cl (conv(K ∪ 0)). In particular if K is a convex body containing the
origin, (K◦)◦ = K. If C is a closed convex cone, then (C∨)∨ = C.

• K1 ⊂ K2 =⇒ K◦2 ⊂ K◦1 ;

• (K1 ∩K2)◦ = conv(K◦1 ∪K◦2 );

• for all g ∈ GLn(R), (g ·K)◦ = g−T ·K◦;

• let K be the unit ball of the Lp–norm, then K◦ is the unit ball of the Lq–norm,
with 1

p + 1
q = 1;

• let P be a polytope with the origin in its interior, then P ◦ is a polytope as well.
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Duality basic example

P = conv{(±1,±1,±1)}  P ◦ = conv{±e1,±e2,±e3}

∂aP = V
(
(x2 − 1)(y2 − 1)(z2 − 1)

)
∂aP

◦ = V
(∏

(1− x± y ± z)
∏

(1 + x± y ± z)
)
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Duality dual face

Let F be a face of a convex set K ⊂ Rn, we define the dual face F ◦ as the set of
linear functionals ` ∈ (Rn)∗ that attain the maximum over K on F .

Remarks:
• F ◦ is an exposed face of K◦;
• if K is a convex body containing the origin, then

F ◦ = {` ∈ K◦ | `(x) = 1 ∀x ∈ F} ;

• analogously, for a convex cone C we have that

F ◦ =
{
` ∈ C∨ | `(x) = 0 ∀x ∈ F

}
;

• “biduality”: if F is an exposed face of K, the dual of F ◦ ⊂ K◦ is exactly F .
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Duality dual face

exposed extreme point of K  inclusion maximal face of K◦
inclusion maximal face of K ��XX exposed extreme point of K◦

Example
Consider the convex body K = {y2 − 2x− 1 ≤ 0, y2 + 2x− 1 ≤ 0}.
Its dual convex body is K◦ = conv{(x− 1)2 + y2 = 1, (x+ 1)2 + y2 = 1}.
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Duality homogenization

“homogenization commutes with duality”

Recall that CK = cone(φ(K)), where

φ : Rn → Rn+1

x 7→ (1, x)

then (CK)∨ = CK◦ .
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Duality toward algebraic geometry

K :

x2 + y2 + 1
4z

2 ≤ 1
 

K◦ :

x2 + y2 + 4z2 ≤ 1

Dual variety!
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Duality the dual variety

Let I ⊂ R[x0, . . . , xn] be a homogeneous ideal and consider X = V(I) ⊂ Pn
C. Then, if

c = codimX, the singular locus Sing(X) is a subvariety of X defined by the vanishing
of the c× c minors of the Jacobian matrix J(X).

If I = 〈p1, . . . , pk〉, then J(X) =
(

∂pi
∂xj

)
i,j

is a k × (n+ 1) matrix.

Definition
The regular points of X are Xreg = X \ Sing(X).
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Duality example

Consider the plane cubic curve X = V(−y3 + x2 + y2 + y − 1). We are in the case
n = k = c = 1. The Jacobian matrix is just the gradient of the defining polynomial:

(2x,−3y2 + 2y + 1)

and by definition Sing(X) = V(2x,−3y2 + 2y + 1) ∩X = {(0, 1)}.

Hence Xreg = X \ {(0, 1)}.
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Duality the dual variety

(Pn
C)∗ = hyperplanes of Pn

C.

The point v = [v0, . . . , vn] ∈ (Pn
C)∗ represents the hyperplane v0x0 + . . .+ vnxn = 0 in

Pn
C. So v is said to be tangent to X at x ∈ Xreg if x belongs to the hyperplane

associated to v and if the vector (v0, . . . , vn) lies in the row span of J(X) at x.

Definition
The conormal variety CN(X) of X is the closure of the set{

(x, v) ∈ Pn
C × (Pn

C)∗ | x ∈ Xreg, v is tangent to X at x
}
.
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Duality the dual variety

Consider the projection π : Pn
C × (Pn

C)∗ → (Pn
C)∗ onto the second factor. The dual

variety of X is X∗ = π (CN(X)). More precisely, it is the closure of the set

{v ∈ (Pn
C)∗ | v is tangent to X at some regular point} .

Example
Let X = {−y3 + x2 + y2 + y − 1 = 0}.
Its dual curve is X∗ = {32x4 + 13x2y2 + 4y4 − 18x2y + 4y3 − 27x2 = 0}.
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Duality the dual variety: some properties

• dimX∗ ≤ n− 1;

• If X is a smooth (i.e. X = Xreg) hypersurface of degree d, then
degX∗ = d(d− 1)n−1;

• If X is an irreducible projective variety, then (X∗)∗ = X.
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Duality back to the algebraic boundary

Theorem
Let K be a semialgebraic convex body and define S = ∂K◦ ∩ (∂aK

◦)reg. Then every
element ` ∈ S supports a point of ∂K. S is open, semialgebraic and dense in ∂K◦.

Theorem
Let C be a semialgebraic pointed and closed convex cone with non–empty interior;
define S = ∂C∨ ∩ (∂aC

∨)reg. Then every element ` ∈ S supports a ray. S is open,
semialgebraic and dense in ∂C∨.
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Duality example

The previous result is NOT an “if and only if”!

Example: lemon and strawberry ice cream
K = {x2 + y2 − 1 ≤ 0, y2 + 2x− 1 ≤ 0, x− (1 + 2

√
2)y − 2 ≤ 0},

K◦ = conv
{
x2 + y2 − 1 ≤ 0, (x− 1)2 + y2 − 1 ≤ 0, {(1

2 ,−
1
2 −
√

2)}
}
.
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Irreducible components
and extreme points



Extreme points recall the basics

We say that a point x ∈ ∂K is an extreme point of the convex set K if
x = ty + (1− t)z implies x = y = z.

Theorem (Krein–Milman)
Let K ⊂ Rn be a compact convex set, then K is the convex hull of its extreme points.

Analogously for closed pointed convex cones, with extreme rays.

Notation:
Exa(K): is the Zariski closure in Cn of the union of the extreme points of the convex
semialgebraic set K ⊂ Rn.
Exra(C): is the Zariski closure in Cn+1 of the union of the extreme rays of the convex
semialgebraic cone C ⊂ Rn+1
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Extreme points algebraic boundary

“It’s enough to look at extreme points”

Let C ⊂ Rn+1 be a pointed, closed, semialgebraic cone with non–empty interior.

Result 1.
The dual variety to the algebraic boundary of C is contained in the Zariski closure of
the extreme rays of the dual convex cone:

(P∂aC)∗ ⊂ PExra(C∨).

Result 2.
The dual variety to the Zariski closure of the extreme rays of C is contained in the
algebraic boundary of the dual convex cone:

(PExra(C))∗ ⊂ P∂aC
∨.

32/56



Extreme points warning

Corollary

(P∂aC)∗ = PExra(C∨) BUT
(
PExra(C∨)

)∗ 6= P∂aC

Example: strawberry ice cream
Consider the convex body K = conv

{
x2 + y2 − 1 ≤ 0, {(0,−5

3)}
}
.

Its dual body is K◦ = {x2 + y2 − 1 ≤ 0, y ≥ −3
5}.
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Extreme points irreducible components

Do you want to know more about the irreducible components?
Take a look at

Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets,
Research in the Mathematical Sciences, 2, No. 1 (2015)

Do you want to know more about duality?
Take a look at

Philipp Rostalski and Bernd Sturmfels,
Dualities in convex algebraic geometry ,
Rendiconti di Mathematica, Serie VII, 30, 285-327 (2010)
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The convex hull
and its algebraic boundary



Convex hull setting and aim

Let X be a compact variety in Rn. In this section we assume

K = conv(X).

How can we describe ∂aK?
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Convex hull plane curve

Example: the trefoil
Consider the plane curve C = {(x2 + y2)2 = x(x2 − 3y2)}.
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Convex hull plane curve

Example: the trefoil
Consider the plane curve C = {(x2 + y2)2 = x(x2 − 3y2)}.

Its algebraic boundary is given by the curve itself, together with three lines.
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Convex hull bitangent lines

A line is said to be bitangent to C ⊂ P2
C if it is tangent to C at two distinct points.

Plücker formula
Let C be a generic smooth plane curve of degree d ≥ 2. Then the number of
bitangents of C is

(d− 3)(d− 2)d(d+ 3)
2 .

Therefore we can give a bound to the degree of the algebraic boundary of
K = conv(C), namely

deg ∂aK ≤ d+ (d− 3)(d− 2)d(d+ 3)
2 .
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Convex hull space curve

[From Ranestad, Sturmfels (2012)]

edge surface + tritangent planes
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Convex hull the edge surface

Consider a curve C ⊂ R3. Any two distinct points p1, p2 ∈ C span a so called bisecant
line. Such line is called a stationary bisecant line if the tangent lines to C at p1 and p2
lie in a common plane.

Definition
The union of all stationary bisecant lines is called the edge surface of C.
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Convex hull back to previous example

C = {x2 − y2 − xz = 0} ∩ {z − 4x3 + 3x = 0}
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Convex hull example: elliptic space curve

Consider two ellipsoids given by the zero loci of q1 = 4x2 + 4y2 + z2 − 4 and
q2 = (x− 1)2 + 2y2 + z2 − 2. Let C be the curve obtained as their intersection:

C = {q1 = 0} ∩ {q2 = 0}.

The pink curve C is a quartic elliptic space curve.
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Convex hull example: elliptic space curve

Consider the pencil of quadrics given by q1 + tq2.
Let Q1, Q2 be the 4× 4 symmetric matrices associated to q1, q2. The univariate
polynomial f(t) = det(Q1 + tQ2) has generically 4 distinct roots t1, . . . , t4.

Each of these values corresponds to a singular quadric q1 + tiq2 of the pencil.

FACT:
The edge surface is the union of the 4 singular quadratic surfaces V(q1 + tiq2).
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In practice the equation of the edge surface can be computed as

resultantt(f(t), (q1 + tq2)(x, y, z)).

In our case we obtain the polynomial

−192x8 − 320x6y2 − 320x4y4 − 128x2y6 + 144x6z2 + 32x2y4z2 + 64y6z2

−108x4z4 + 24x2y2z4 + 64y4z4 + 42x2z6 + 28y2z6 − 896x7 − 640x5y2

−512x3y4 − 256xy6 + 864x5z2 − 128x3y2z2 − 320xy4z2 − 480x3z4 − 208xy2z4

+28xz6 − 1280x6 + 704x4y2 + 896x2y4 + 128y6 + 1424x4z2 + 512x2y2z2

−32y4z2 − 56x2z4 − 24y2z4 − 42z6 + 128x5 + 768x3y2 + 512xy4 − 832x3z2

+128xy2z2 + 480xz4 + 1920x4 − 704x2y2 − 320y4 − 1424x2z2 − 108z4

−128x3 − 640xy2 + 864xz2 − 1280x2 + 320y2 − 144z2 + 896x − 192
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Convex hull example: elliptic space curve

Only two components contribute to the actual convex hull:
2x2 − z2 + 4x− 2 = 0 3x2 + 2y2 + 2x− 3 = 0
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Convex hull how to compute it in general?

Outline of the algorithm:

Consider the corresponding complex projective curve C ⊂ P3
C, whose points can be

expressed as
[F0(x0, x1), F1(x0, x1), F2(x0, x1), F3(x0, x1)].

The bisecant line between p = (p0, p1) and q = (q0, q1) is stationary if the determinant
of the following matrix vanishes:

∂F0
∂x0

(p) ∂F1
∂x0

(p) ∂F2
∂x0

(p) ∂F3
∂x0

(p)
∂F0
∂x1

(p) ∂F1
∂x1

(p) ∂F2
∂x1

(p) ∂F3
∂x1

(p)
∂F0
∂x0

(q) ∂F1
∂x0

(q) ∂F2
∂x0

(q) ∂F3
∂x0

(q)
∂F0
∂x1

(q) ∂F1
∂x1

(q) ∂F2
∂x1

(q) ∂F3
∂x1

(q)


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Convex hull how to compute it in general?

Outline of the algorithm:

P3
C with coordinates p0, p1, q0, q1

↓
P2
C

↓
Gr(2, 4)
↓

our P3
C

Kristian Ranestad and Bernd Sturmfels,
The Convex Hull of a Space Curve,
Advances in Geometry, 12, 157-178 (2012)
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Convex hull trigonometric curves

A trigonometric space curve of degree d is a curve in R3 parametrized by three degree
d trigonometric polynomials of the form

d/2∑
i=1

ai cos(iθ) +
d/2∑
i=1

bi sin(iθ) + c.

Using the change of coordinates

cos(θ) = x2
0 − x2

1
x2

0 + x2
1

sin(θ) = 2x0x1
x2

0 + x2
1

and clearing denominators, we obtain a polynomial parametrization of C, which is
rational and, for generic ai, bi, c, smooth.

We can use the algorithm!
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Convex hull example

C =
{

(cos(θ), sin(θ) + cos(2θ), sin(2θ)) ∈ R3 | θ ∈ [0, 2π]
}
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Convex hull example

C =
{

(cos(θ), sin(θ) + cos(2θ), sin(2θ)) ∈ R3 | θ ∈ [0, 2π]
}

The edge surface is the irreducible sextic 16x6 − 32x4y2 + 16x2y4 − 96x5z − 160x3y2z+
192x4z2 + 16x2y2z2 − 128x3z3 + 216x4y + 48x2y3 − 8y5 + 72x3yz + 88xy3z − 72x2yz2 − 8y3z2 +
72xyz3 − 207x4 − 138x2y2 − 23y4 + 180x3z + 60xy2z − 126x2z2 − 54y2z2 + 108xz3 − 27z4 −
36x2y + 4y3 − 36xyz + 108x2 + 36y2 − 108xz + 27z2 = 0.
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Convex hull degree of the edge surface

Theorem
Let C be a general smooth space curve of degree d and genus g. The degree of its
edge surface is 2(d− 3)(d+ g − 1).

Sanity check with previous examples:

curve degree genus edge surface
elliptic space curve 4 1 8

trigonometric space curve 4 0 6
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Convex hull tritangent planes

A plane H is a tritangent plane of C ⊂ P3
C if it is tangent to C at three or more points.

Theorem
Let C be a general smooth space curve of degree d and genus g. The number of
tritangent planes is

8
(
d+ g − 1

3

)
− 8(d+ g − 4)(d+ 2g − 2) + 8g − 8.

Sanity check with previous examples:
curve degree genus tritangent planes

elliptic space curve 4 1 0
trigonometric space curve 4 0 0
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Convex hull variety in Rn

Let’s try to generalize! Goal: ∂a (conv(X))

Let X be a variety in Rn, that spans the whole space. Fix k ∈ N and define a variety
X [k] of (Pn

C)∗ as follows: it is the Zariski closure of the set of hyperplanes that are
tangent to X at k regular points which span a (k − 1)–plane in Pn

C.

Remark: X [1] = X∗

Theorem
Under reasonable assumptions,

∂a (conv(X)) ⊂
n⋃

k=1

(
X [k]

)∗

51/56



Convex hull variety in Rn

Do you want to know more?
Take a look at

Kristian Ranestad and Bernd Sturmfels,
The Convex Hull of a Variety,
"Notions of Positivity and the Geometry of Polynomials", Trends in Mathematics,
Springer Verlag, Basel, pp. 331-344 (2011)

Rainer Sinn,
Algebraic Boundaries of Convex Semi-algebraic Sets,
PhD thesis, Universität Konstanz (2014)
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The notion of patches



Patches intuition

f–vector  patches
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Patches intuition

Let K ⊂ Rn, hence dim ∂K = n− 1 and its patches are (n− 1− k)–dimensional
families of k–faces (+ some technical conditions).
Key word: normal cycle

Do you want to know more?
Take a look at

Daniel Plaumann, Rainer Sinn and Jannik Lennart Wesner,
Families of Faces and the Normal Cycle of a Convex Semi-algebraic Set,
Preprint, arXiv:2104.13306 (2021)
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Thank you
and see you at

the exercise session!


