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ｐ進数の俳句

Avi Saiei M. T.V.

Like a p-adic ｐ進数 ｐ進整数

One step at a time, still trapped 一桁進めど 加法でも

In the unit ball 単位球 単位球
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Overview on non-Archimedean Gröbner bases computations

p-adic precision

CRV14 Tracking p-adic precision, X.Caruso, D.Roe and T.Vaccon

Various takes on GB computations

Classical GB including joint works with G. Renault (ANSSI, France), 2014-2016
Tropical GB including joint works with Y. Ishihara (Rikkyo University and Tokyo

University of Science, Japan), T. Verron (JKU Linz, Austria) and K.
Yokoyama (Rikkyo University, Japan), 2015-2018

Tate algebras joint works with X. Caruso (Univ. Bordeaux, France) and T. Verron
(JKU Linz, Austria), 2019-2021
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Solving polynomial systems

Diversity of the methods
To solve a (zero-dimensional) polynomial system, many methods have been
developped: RUR, eigenvalues, numerical homotopy, . . . How they can be applied to
non-archimedean settings has been seldom considered.

Reduction to shape position, over K[x1, . . . , xn], K a field

Solving using Gröbner bases (GB) often relies on performing a random change of
variables so that a (reduced) lex GB is of the form:

x1 − h1(xn)
...

x2 − h2(xn) xn−1 − hn−1(xn)
... hn(xn)

My personal motivation (long-term, loosely related)

Computing (some) moduli spaces of p-adic Galois representations.
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Context and notations

p refers to a prime number

Finite-precision p-adics
Elements of Qp can be written

∑+∞
i=l aipi, with ai ∈ J0, p− 1K, l ∈ Z and p a prime

number.
Working with a computer, we usually only can consider the beginning of this power

series expansion: we only consider elements of the form
∑d−1

i=l aipi + O(pd) , with
l ∈ Z.

Definition
The order, or the absolute precision of

∑d−1
i=l aipi + O(pd) is d.

Example
The order of . . . 654.3 = 3 ∗ 7−1 + 4 ∗ 70 + 5 ∗ 71 + 6 ∗ 72 + O(73) is 3.
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But...

Question: Compute the determinant of 


Answer:

(no pivoting strategy) just expand: . . . 4400000

(partial choice of pivot) Hermite + expand: . . . 34400000

(total choice of pivot) SNF + expand: . . . 234400000

What is the optimal precision?
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The Main lemma of p-adic differential precision

Lemma (CRV14)

Let f : Qn
p → Qm

p be a strictly differentiable mapping.

Let x ∈ Qn
p. We assume that f ′(x) is surjective.

Then for any ball B = B(0, r) small enough,

f(x + B) = f(x) + f ′(x) · B.
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Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Adj(M) · dM).

Consequence on precision

▶ Loss/gain in precision: coefficient of Adj(M) with smallest valuation.
▶ Corresponds to the product of the first n− 1 invariant factors.
▶ Approximate SNF is optimal.

Linear equations
One can easily prove that SNF is also optimal to solve linear equations.

Relation with the condition number
The condition number is given by the first and last invariant factors.



12

Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Adj(M) · dM).

Consequence on precision

▶ Loss/gain in precision: coefficient of Adj(M) with smallest valuation.

▶ Corresponds to the product of the first n− 1 invariant factors.
▶ Approximate SNF is optimal.

Linear equations
One can easily prove that SNF is also optimal to solve linear equations.

Relation with the condition number
The condition number is given by the first and last invariant factors.



12

Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Adj(M) · dM).

Consequence on precision

▶ Loss/gain in precision: coefficient of Adj(M) with smallest valuation.
▶ Corresponds to the product of the first n− 1 invariant factors.

▶ Approximate SNF is optimal.

Linear equations
One can easily prove that SNF is also optimal to solve linear equations.

Relation with the condition number
The condition number is given by the first and last invariant factors.



12

Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Adj(M) · dM).

Consequence on precision

▶ Loss/gain in precision: coefficient of Adj(M) with smallest valuation.
▶ Corresponds to the product of the first n− 1 invariant factors.
▶ Approximate SNF is optimal.

Linear equations
One can easily prove that SNF is also optimal to solve linear equations.

Relation with the condition number
The condition number is given by the first and last invariant factors.



12

Looking back to the case of the determinant

Differential of the determinant
It is well known:

det ′(M) : dM 7→ Tr(Adj(M) · dM).

Consequence on precision

▶ Loss/gain in precision: coefficient of Adj(M) with smallest valuation.
▶ Corresponds to the product of the first n− 1 invariant factors.
▶ Approximate SNF is optimal.

Linear equations
One can easily prove that SNF is also optimal to solve linear equations.

Relation with the condition number
The condition number is given by the first and last invariant factors.



13

Table of contents

1. Computing with p-adics
▶ Finite precision
▶ Differential precision

2. Classical Gröbner bases
▶ Algorithms and precision
▶ Using signatures
▶ FGLM for shape position
▶ Differential of Gröbner bases

3. Tropical Gröbner bases

4. Tate algebras



14

Table of contents

1. Computing with p-adics
▶ Finite precision
▶ Differential precision

2. Classical Gröbner bases
▶ Algorithms and precision
▶ Using signatures
▶ FGLM for shape position
▶ Differential of Gröbner bases

3. Tropical Gröbner bases

4. Tate algebras



15

Classical strategy to compute shape position bases

Change of ordering and FGLM

FGLM
F Ggrevlex Mult. matrices Shape basis0-dim
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Buchberger’s algorithm: no choice for pivot

Algorithm 1: Buchberger’s algorithm
input : Polynomials f1, . . . , fm
output: a GB G of the ideal spanned by the fi’s

1 G← {f1, . . . , fm};
2 B← {(fi, fj), 1 ≤ i < j ≤ m};
3 while B 6= ∅ do
4 (f, g)← element of B; B← B ∖ {(f, g)};
5 h← S-polynomial of f and g;
6 _, r← division(h,G);
7 if r 6= 0 then
8 B← B ∪ {(g, r) for g ∈ G};
9 G← G ∪ {r} ;

10 Return G;



18

Classical strategy to compute shape position bases

Change of ordering and FGLM

Buchberger FGLM
F Ggrevlex Mult. matrices Shape basis

no pivot choice

0-dim
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Macaulay’s matrices

We can reduce the computations to linear algebra using so-called Macaulay matrices.

Definition (Macaulay matrix)

For polynomials (h1, . . . , ht), we denote by Mac(h1, . . . , ht) the matrix :

xα1 > . . . > . . . > xαl

h1

...

hi
...

ht


hi written in the basis of the xα∗


.
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Faugère’s F4 idea: partial pivot choice

Algorithm 2: F4 algorithm
input : Polynomials f1, . . . , fm
output: a GB G of the ideal spanned by the fi’s

1 G← {f1, . . . , fm};
2 B← {(fi, fj), 1 ≤ i < j ≤ m};
3 while B 6= ∅ do
4 d← min(u,v)∈B deg lcm(LT(u), LT(v));
5 P receives the pop of the pairs of degree d in B;
6 M is calculated as a Macaulay matrix representing the pairs in P along with

their reducers ;
7 M← row reduction of M (choice of pivot on every column);
8 Add to G all the polynomials obtained from M that provide new leading terms;
9 Add to B the corresponding new pairs;

10 Return G;
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The position of the leading terms ideals

Problem with testing nullity
A major issue can happen when dealing with finite-precision numbers : not being
able to decide whether there is no non-zero pivot on a column or whether the
precision is not enough.

Being able to compute the leading terms ideals

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

1 + O(pk) 1 + O(pk) 0 1 + O(pk)


 L2 ← L2 −

M2,1
M1,1

L1
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The position of the leading terms ideals

Problem with testing nullity
A major issue can happen when dealing with finite-precision numbers : not being
able to decide whether there is no non-zero pivot on a column or whether the
precision is not enough.

Being able to compute the leading terms ideals

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

0 O(pk) −1 + O(pk) 1 + O(pk)




L2 ← L2 − (1 + O(pk))L1

What is the leading term for the second row ?
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On signature-based GB computations

Origin and history:
▶ In Buchberger’s algorithm, most of the time is spent reducing polynomials to
zero

▶ Using signatures, Faugère’s F5 algorithm from 2002 avoids many such
reductions

▶ Used to be very hard to understand and is still hard to implement. Simplest
(easy to prove) version of F5 is the GVW variant using the cover criterion.

Basic idea:
▶ We can work with a module of s + 1-tuples of the form:

(a1, . . . , as, f), s.t.
s∑

i=1

aifi = f

▶ A reduction to zero corresponds to a syzygy:

(b1, . . . , bs, 0), meaning
s∑

i=1

bifi = 0
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Faugère’s criterion

Detecting syzygies:
▶ We already know well the "trivial" syzygies, with i < j:

(0, ..., 0, fj, 0, . . . , 0,−fi, 0, . . . , 0), meaning fj × fi − fi × fj = 0

▶ F5 criterion: if u = (a1, . . . , ai, 0, . . . , 0, f) is such that LT(ai) ∈ LT(〈f1, . . . , fi−1〉)
then u is redundant, will be reduced to zero.

Consequences:
▶ With some constraints on the reductions, it is possible to work using only
couples of the form:

(xαei, f)

▶ Basic F5 algorithm is: Buchberger (with some special orders on the couples)
along with the F5 criterion. In advanced F5 algorithms, one uses Macaulay
matrices

▶ In an F5 algorithm, all syzygies generated by trivial syzygies are avoided
▶ If (f1, . . . , fs) is a "regular sequence" and one uses an F5 algorithm, then no
reduction to zero will happen → all matrices are injective
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F5 and finite precision

Row-echelon computation problems

1 + O(pk) 1 + O(pk) 1 + O(pk) 0

1 + O(pk) 1 + O(pk) 0 1 + O(pk)

3 + O(pk) 3 + O(pk) 2 + O(pk) 1 + O(pk)

Injectivity problem
With the F5-criterion and F being a regular sequence, no problem with injectivity
(Faugère 2002, Bardet, Faugère, Salvy 2014).

Position problem
If 〈f1, . . . , fs〉 generates a weakly-grevlex ideals, no position problem. This is generic,
if the Moreno-Socias conjecture is true.

Still, we only have partial choice of pivot. . . (one per column)
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Classical strategy to compute shape position bases

Change of ordering and FGLM: generic entries

F5 FGLM
F Ggrevlex Mult. matrices Shape basis

part. pivot choice

0-dim
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Classical strategy to compute shape position bases

Change of ordering and FGLM

F5 ?? FGLM
F Ggrevlex Mult. matrices Shape basis

partial pivot choice ?? ??

0-dim
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Shape position

Shape position
For an ideal in general position, the reduced lex GB of a 0-dimensional ideal is a
shape position basis:

x1 − h1(xn)
...

x2 − h2(xn) xn−1 − hn−1(xn)
... hn(xn)

Over a field of char. zero, a generic/random linear change of variable is enough for an
ideal to be put in general position.



30

FGLM for shape position

The FGLM strategy (for grevlex to shape position)

Let A = Qp[x1, . . . , xn]. We assume that G1 is a GB for grevlex of an ideal I of dim.
zero, in general position.
Let B be the basis of A/I given by the monomials not in LM(I), δ the dimension of
A/I.

1. Compute v1 := x1 mod G1, . . . , vn := xn mod G1 written over B
2. Compute Tn, the matrix of the multiplication by xn in A/I, written over B
3. Iterate Tn to obtain the matrix M :=

(
xδ−1
n mod I, . . . , 1 mod I

)
4. Compute M−1 (with SNF, total choice of pivot)
5. Read hn from the coefficients of −M−1 ·

(
xδ
n mod I

)
6. Read the hi’s from the coefficients of M−1 · vi
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Classical strategy to compute shape position bases

Change of ordering and FGLM: generic entries

F5 from Ggrevlex FGLM

F Ggrevlex Mult. matrices Shape basis

partial pivot free total pivot

0-dim
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Back to GB

Differential of reduced GB
Let (f1, . . . , fs) be in "general position."

Let (g1, . . . , gt) be the corresponding reduced
Gröbner basis.
We may write

(g1, . . . , gt) = (f1, . . . , fs)×A.

We can then differentiate,
(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)×A by (g1, . . . , gt).
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Differential of reduced GB
Let (f1, . . . , fs) be in "general position." Let (g1, . . . , gt) be the corresponding reduced
Gröbner basis.
We may write

(g1, . . . , gt) = (f1, . . . , fs)×A.

We can then differentiate,

(δg1, . . . , δgt) = (δf1, . . . , δfs)×A mod (g1, . . . , gt) .

(δg1, . . . , δgt) is the remainder of the divisions of (δf1, . . . , δfs)×A by (g1, . . . , gt).

Going further
It is possible to extend further the previous formula to shape position bases, . . . but
the formulae are less engaging.
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Definitions coming from tropical geometry

Change of ordering and FGLM: generic entries

F5 from Ggrevlex FGLM

F Ggrevlex Mult. matrices Shape basis

partial pivot free total pivot
choice

0-dim

Homogeneous case: total choice of pivot
For homogeneous entry polynomials, tropical geometry provides definitions allowing
the best choice of pivots for Step 1.



36

Tropical GB

Definition (Tropical term ordering)

Let ω ∈ Rn. Let <mon be a monomial order on Qp[X1, . . . ,Xn].

Then we can define an order on the terms of Qp[X1, . . . ,Xn] : if a, b ∈ Qp, xα and xβ

be two monomials of Qp[X1, . . . ,Xn], we write axα > bxβ if

val(a) + ω · α < val(b) + ω · β,

or
val(a) + ω · α = val(b) + ω · β and xα >mon xβ .

We can define in(I) accordingly. Then Gröbner bases are defined accordingly.
For ω = 0: valuation first.

Connection with tropical geometry
This definition was first designed so that a trop. GB for weight ω can decide whether
ω is in Vtrop(I).
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Tropical reduction of Macaulay matrices

Tropical Macaulay-matrix reduction

Macd(f1, . . . , fs) ≃

xd1 > · · · > xdj > . . . > x
d( n−1

n+d−1
)

m1,1 m1,m

m2,1 m2,m

mi,j

mn,1 mn,m




We take as pivot the coefficient mi,j with the smallest (val(mi,j) + ω · dj), put it on
the first row first column by swapping two rows and two columns.

When ω = 0

This is the SNF computation algorithm.
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This is the SNF computation algorithm.
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Tropical reduction of Macaulay matrices

Tropical Macaulay-matrix reduction

Macd(f1, . . . , fs) ≃

xdj . . . xd1 . . . x
d( n−1

n+d−1
)

mi,j mi,1 m1,m

m2,j m2,2 m2,1 m2,m

m1,j m1,1

mn,j mn,1 mn,m




We can pivot with mi,j . The loss in precision is val(mi,j).

When ω = 0

This is the SNF computation algorithm.
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Conclusion on using Tropical GB

F5
One can plug the tropical Macaulay-matrix reduction into the F4/F5 algorithms.

Change of ordering and FGLM: tropical GB for homogeneous entries?

F5trop lifting FGLM
F Gω=0 Mult. matrices Shape basis

total pivot lifting total pivot

0-dim

Precision problem
For homogeneous entry polynomials, using ω = 0, we get the best choice of pivots, no
position problem (when precision is enough), and no rank problem for generic entries.

Problem
This strategy is flawed as the target here is an affine problem...
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Two ways to extend to the affine case

Using polynomials
One can extend the definition of tropical term ordering using: first total degree, then
a tropical term ordering.

▶ Benefit: F4 and F5 work well
▶ Problem: possibility of accumulation of loss in precision (no more always the
best choice of pivot)

Another approach
Keeping "valuation first." It will lead us to Tate algebras.
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Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



41

Difficulty of the division

Example
We use "valuation first" to divide X by [X + Y,Y + 2X]. The steps are:

▶ f = −Y, r = 0, divisor used: X + Y.

▶ f = 2X, r = 0, divisor used: Y + 2X.

▶ f = −2Y, r = 0, divisor used: X + Y.

▶ f = 4X, r = 0, divisor used: Y + 2X.

▶ f = −4Y, r = 0, divisor used: X + Y.

▶ f = 8X, r = 0, divisor used: Y + 2X.

▶ . . .

The process does not terminate, but we see here that f → 0, at a rather slow rate.
Hence, we need completeness.



42

Tate series

Definitions
▶ Tate algebra Qp{X1, . . . ,Xn; r1, . . . , rn } = Qp{X; r}

▶ Set of series
∑
α∈Nn

aαXα1
1 · · ·X

αn
n with val(aα)−

∑
rjαj →∞

▶ “Convergent for substitutions by xi’s with val(xi) ≥ −ri”
▶ smaller ri ⇐⇒ smaller convergence radius ⇐⇒ larger algebra
▶ Convention: ri =∞ if finitely many terms in Xi (polynomial)

r ∈ Qn: convergence (log)-radii

Examples
▶ Polynomials are Tate series for all radii (finite sums)

▶ f =
∞∑

i,j=0

πiXi = 1 + πX + π2X2 + π3X3 + · · ·

▶ f ∈ Qp{X} = Qp{X; 0}
▶ f /∈ Qp{X; 1} : for all terms, val(πα)− α = 0 6→ ∞

▶ exp(x), log(x) ∈ Qp{x;−1}
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Gröbner bases over Tate algebras

Construction for Tate series
▶ Require a term ordering compatible with the topology
▶ First compare val(aα)−

∑
rjαj and break ties with a monomial order

· · · > 1Xi1 > π Xi2 > π · 1 > π2 Xi3 > · · ·
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Gröbner bases for Tate series

▶ Standard definition once the term order is defined:

G is a Gröbner basis of I ⇐⇒ for all f ∈ I, there is g ∈ G s.t. LT(g) divides LT(f)

▶ Standard equivalent characterizations:
1. G is a Gröbner basis of I
2. for all f ∈ I, f is reducible modulo G
3. for all f ∈ I, f reduces to zero modulo G

4. (over Qp{X; 0}) G is a (classical) Gröbner basis of I over Fp[X]

▶ Non-terminating reductions, division algorithm
▶ Theory: replace "terminating" with "convergent" everywhere
▶ Practice: we always work with bounded precision

▶ Standard algorithms can be adapted: Buchberger, F4, F5, FGLM
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Changing log-radii: what happens to the staircase?

Example (over Qp)

▶ K[x, y]: r = (∞,∞) ▶ K{x, y}: u = (0, 0)

▶ I = 〈px2 − y2, py3 − x〉 ▶ J = 〈y2 − px2, x− py3〉

▶ B1 = {1, x, y, y2, xy, xy2}, degree 6 ▶ B2 = {1, y}, degree 2!

▶ Why does x disappear from the staircase?
We have in the old quotient x− p5x5 = 0 so x(1− p5x4) = 0 and 1− p5x4 is
invertible in the new quotient, and then x = 0 in the new quotient

▶ In general, we have to be careful with the new invertibles.
The solutions of big norms / small valuations are erased.
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Tate algebra strategy to compute shape position bases

Change of ordering and FGLM using Tate algebra

F5 lifting FGLM
F Gω=0,Tate Mult. matrices Shape basis

total pivot lifting total pivot

0-dim

Pros
▶ Best pivot strategy everywhere.

Cons
▶ Computing GB over Tate algebras is very, very, very slow.
▶ Solutions of big norms / small valuations are lost.
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Conclusion

Summary

▶ Classical GB, Tropical GB and Tate algebra GB strategies to compute shape
position bases

▶ Trade-off between speed and precision
▶ Note: loss in precision for the shape basis can be enormous

Future works
▶ Complete implementation in SageMath
▶ Implementation of rigid varieties
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Thank you for your attention

Thank you

x + B

f

B

f ′(x)

f(x) + f ′(x) · B

f ′(x) · B

f̃

x

x + O(pN′
) y + O(pM′

) ⊂ f(x) + O(pN)
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