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Motivation

Forthcoming work of M. Bhargava, J. Cremona, T. Fisher:

* “The density of hyperelliptic curves over Q of genus g that have
points everywhere locally”

Hyperelliptic curves given by (affine equation) C : y2 = f (x),
f ∈ Z[x ].

Simpler question - when C has an affine Weierstrass point locally?

Extend to a fixed number of zeros.

Related work:

* Buhler, Goldstein, Moews, and Rosenberg - p-adic polynomial splitting

* Caruso; Evans; Kulkarni and Lerario; Shmueli (all indenpendently) -
expectations of the number of roots of p-adic polynomials
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Magic of Qp

Theorem (Polynomial Hensel’s lemma)
f ∈ Zp[x ].
Assume that its reduction modulo p, f , factors over Fp[x ] as
f = gh such that
g , h ∈ Fp[x ] are coprime polynomials in Fp[x ], and g is monic.
There exists a factorization f = gh where
g , h ∈ Zp[x ], g and h reduce modulo p to g and h, respectively,
g is monic of degree deg(g) = deg(g).

Theorem (Hensel’s lemma - simple version)

f ∈ Zp[x ].
x0 ∈ Zp is a simple root of f modulo p, i.e., that f (x0) ≡ 0 (mod p)
and f ′(x0) 6≡ 0 (mod p).
There is a unique X0 ∈ Zp such that X0 ≡ x0 (mod p) and f (X0) = 0.
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Haar measure on Zp and probability

Zp possesses the normalized Haar measure µp (µp(Zp) = 1).

For any k ∈ Fp, denote Dk = {x ∈ Zp : x ≡ k (mod p)}.

Hence, µp(Dk) = 1
p , for all k ∈ Fp

Similarly, µp(pmZp + a) = µp(pmZp) = 1
pm , for any a ∈ Zp.

We extend µp to Zn
p for any n ∈ N. Then µp(Zn

p) = 1.

Let V ⊆ Zn
p. Then

∫
V dµp = µp(V ).

The density of V ⊆ Zn
p is µp(V ).

The density of pmZp inside Zp is 1
pm . “Probability” that a random

element a ∈ Zp is divisible by pm is 1
pm = µp(pmZp).

The probability of some event parametrised by Zn
p is the density of the

subset of Zn
p on which this event realises.
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Haar measure on Zp - polynomial probability

Let R be a ring.

R[x ]n = all polynomials in R[x ] of degree at most n.

R[x ]1n = all monic polynomials in R[x ] of degree n.

f = anx
n + · · ·+ a1x + a0 ∈ Zp[x ]n ↔ (an, . . . , a1, a0) ∈ Zn+1

p .

f = xn+an−1x
n−1+· · ·+a1x+a0 ∈ Zp[x ]1n ↔ (an−1, . . . , a1, a0) ∈ Zn

p.

Consider monic polynomials of degree n that have property P.

There is S ∈ Zn
p that corresponds to polynomials with property P.

The probability of property P is then µp(S) as a subset of Zn
p.

Stevan Gajović 03/09/2021 5 / 32



Haar measure on Zp - polynomial probability

Let R be a ring.

R[x ]n = all polynomials in R[x ] of degree at most n.

R[x ]1n = all monic polynomials in R[x ] of degree n.

f = anx
n + · · ·+ a1x + a0 ∈ Zp[x ]n ↔ (an, . . . , a1, a0) ∈ Zn+1

p .

f = xn+an−1x
n−1+· · ·+a1x+a0 ∈ Zp[x ]1n ↔ (an−1, . . . , a1, a0) ∈ Zn

p.

Consider monic polynomials of degree n that have property P.

There is S ∈ Zn
p that corresponds to polynomials with property P.

The probability of property P is then µp(S) as a subset of Zn
p.

Stevan Gajović 03/09/2021 5 / 32



Haar measure on Zp - polynomial probability

Let R be a ring.

R[x ]n = all polynomials in R[x ] of degree at most n.

R[x ]1n = all monic polynomials in R[x ] of degree n.

f = anx
n + · · ·+ a1x + a0 ∈ Zp[x ]n ↔ (an, . . . , a1, a0) ∈ Zn+1

p .

f = xn+an−1x
n−1+· · ·+a1x+a0 ∈ Zp[x ]1n ↔ (an−1, . . . , a1, a0) ∈ Zn

p.

Consider monic polynomials of degree n that have property P.

There is S ∈ Zn
p that corresponds to polynomials with property P.

The probability of property P is then µp(S) as a subset of Zn
p.

Stevan Gajović 03/09/2021 5 / 32



Strategy

Consider a problem to determine the probability that a random monic
f ∈ Zp[x ] of degree n has at least one root in Qp.

Divide monic polynomials f of degree n into three disjoint subsets:

(1) those for which f has no roots over Fp;

(2) those for which f has a simple root over Fp;

(3) those for which f has roots over Fp, but no simple roots.

Then

(1) do not have roots over Qp;

(2) Hensel’s lemma =⇒ have at least one root over Qp;

(3) the hardest case, we do not know the exact answer, needs further
investigation (need Hensel’s lemma for polynomials).
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Strategy

General strategy is

(1) Consider all possible factorisations (=splitting types) of polynomials f
over Fp;

(2) Compute probabilities of each splitting type;

(3) Compute the probability that f has a root in each splitting type.

(4) Sum the products of last two probabilities over all splitting types of
degree n.

αn := the probability that a random monic polynomial of degree n has
a root in Qp (equivalently in Zp).

βn := the same probability under the condition that f ≡ xn (mod p).

Goal: As practise, compute αn, βn.
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Irreducible polynomials over Fp

Theorem
The number of monic irreducible polynomials of degree n in Fp[x ] is equal
to (µ : N→ {0,−1, 1} is the Möbius funciton)

Nn :=

∑
k|n

µ(k)p
n
k

n
.

(*) N1 = p;

(*) Nq = pq−p
q for q a prime number;

(*) Nq2 = pq
2−pq
q2 for q a prime number;

(*) Important: Nn =
pn + o(pn)

n
.
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Factorization probabilities

Splitting type of degree n is a tuple σ = (de1
1 de2

2 · · · d
et
t ) where the dj

and ej are positive integers satisfying
∑

djej = n.

S(n) := the set of all splitting types of degree n.

Fix σ = (de1
1 de2

2 . . . det
t ) ∈ S(n).

A monic polynomial f in Fp[x ] of degree n has splitting type σ if

(1) f factors as f (x) =
∏t

j=1 fj(x)ej ,

(2) fj are distinct irreducible monic polynomials over Fp,

(3) deg(fj) = dj , for all 1 ≤ j ≤ t.

Irreducible factorization of f σ(f )=splitting type of f Degree
x2(x + 1)(x2 + 1)(x3 + 2)4 (34 2 12 1) 17

λ(σ) = the probability that a degree n monic polynomial f ∈ Fp[x ]
has splitting type σ - it is a rational function of p.
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Degrees n = 2 and n = 3 - quickly

Let f ∈ Zp[x ] be a monic polynomial of degree n = 2 - blackboard.

Let f ∈ Zp[x ] be a monic polynomial of degree n = 3.

We make the table of possible splitting types of f over Fp and the
number of them.

(3) N3 = p3−p
3

(2 1) N2N1 = p3−p2

2
(13) N1 = p

(12 1) N1(N1 − 1) = p(p − 1)

(1 1 1)
(N1

3

)
= p(p−1)(p−2)

6

=⇒ α3 =
p3 − p2

2p3 +
p(p − 1)

p3 +
p(p − 1)(p − 2)

6p3 +
p

p3β3.

We want to compute β3 - blackboard.
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Degree n = 4

Table of splitting types of degree 4 with probabilities:

(1) (4) N4 = p4−p2

4 0
(2) (3 1) N3N1 = p4−p2

3 1
(3) (22) N2 = p2−p

2 0
(4) (2 2)

(N2
2

)
= (p2−p)(p2−p−2)

8 0
(5) (2 12) N2N1 = p3−p2

2 β2

(6) (2 1 1) N2
(N1

2

)
= p2(p−1)2

4 1
(7) (14) N1 = p β4

(8) (13 1) N1(N1 − 1) = p(p − 1) 1
(9) (12 12)

(N1
2

)
= p(p−1)

2 1− (1− β2)2

(10) (12 1 1) N1
(N1−1

2

)
= p(p−1)(p−2)

2 1
(11) (1 1 1 1)

(N1
4

)
= p(p−1)(p−2)(p−3)

24 1
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Case n = 4 - continued

Question
Can we in (5) assume that the polynomial which reduces to a square of a
linear polynomial is random?

Question
Can we assume in (9) the same thing? Are these two polynomials
“independent”?

Answers
Yes - by Hensel’s polynomial lemma!

We know how to express β4 in terms of α1, α2, and α4.

=⇒ Compute α4 and β4.
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Definitions

Denote the density of the following subset of polynomials in Zp[x ]
having exactly r (0 ≤ r ≤ n) roots in Qp

(1*) for degree n polynomials f ∈ Zp[x ] by ρ∗(n, r);

(2*) for monic degree n polynomials f ∈ Zp[x ] by α∗(n, r);

(3*) for monic degree n polynomials f ∈ Zp[x ] such that f ≡ xn (mod p)
by β∗(n, r).

Consider, for 0 ≤ d ≤ n

ρ(n, d) =
n∑

r=0

(
r

d

)
ρ∗(n, r).

Recall:
(r
d

)
= the number of subsets of size d of a set of size r .

=⇒ ρ(n, d) = the expected number of sets of size d (d-sets) of
Qp-roots of a random polynomial f ∈ Zp[x ] of degree n.
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Relations

Denote the expected number of sets of size d (d-sets) (0 ≤ d ≤ n) of
Qp-roots of

(1) a random polynomial f ∈ Zp[x ] of degree n by ρ(n, d);

(2) a random monic polynomial f ∈ Zp[x ] of degree n by α(n, d);

(3) a random monic polynomial f ∈ Zp[x ] of degree n that reduces to xn

modulo p by β(n, d).

There is an inversion formula for 0 ≤ r ≤ n

ρ∗(n, r) =
n∑

d=0

(−1)d−r
(
d

r

)
ρ(n, d).

Analogous relations hold for α’s and β’s.

If we can compute all values of ρ or ρ∗, we can compute all values of
the other one.
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Examples - expectations of the number of roots

Results by Caruso; Evans; Kulkarni and Lerario; Shmueli:

α(n, 1) =

 1 if n = 1,
p

p + 1
if n ≥ 2, β(n, 1) =

 1 if n = 1,
1

p + 1
if n ≥ 2,

and
ρ(n, 1) = 1 for all n ≥ 1.
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Examples - small degrees

Note ρ∗(n, n − 1) = α∗(n, n − 1) = β∗(n, n − 1) = 0.

Buhler et al: ρ∗(n, n) = ρ(n, n) and α∗(n, n) = α(n, n).

ρ∗(2, 2) = 1
2 =⇒ ρ∗(2, 0) = 1

2 .

α∗(2, 2) = 1
2

p
p+1 =⇒ α∗(2, 0) = 1

2
p+2
p+1 .

ρ∗(3, 3) = γ, where γ = (p2+1)2
6(p4+p3+p2+p+1) .

ρ∗(3, 0) + ρ∗(3, 1) + ρ∗(3, 3) = 1.

1 = ρ(3, 1) =
(0
1

)
ρ∗(3, 0) +

(1
1

)
ρ∗(3, 1) +

(3
1

)
ρ∗(3, 3).

=⇒ ρ∗(3, 0) = 2γ, ρ∗(3, 1) = 1− 3γ.

α∗(3, 0) = 1
p+1 + 2γ′, α∗(3, 1) = p

p+1 − 3γ′, α∗(3, 3) = γ′, where

γ′ = 1
6

p5−p4+p3

(p+1)(p4+p3+p2+p+1) .
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Measure-preserving bijections

Lemma
(*) Let A ⊂ Zp[x ]1m, B ⊂ Zp[x ]1n, and AB ⊂ Zp[x ]1m+n or
(*) Let A ⊂ Zp[x ]1m, B ⊂ Zp[x ]n, and AB ⊂ Zp[x ]m+n

be measurable subsets such that multiplication induces a bijection

A× B → AB = {ab | a ∈ A, b ∈ B}.

If the resultant of a and b satisfies Res(a, b) ∈ Z∗p for all a ∈ A, b ∈ B ,
then the bijection is measure-preserving.

Proof (sketch-idea).
Change of variables is given by the resultant, which is a unit:∫

(a,b)∈A×B
dµp =

∫
ab∈AB

|Res(a, b)|pdµp =

∫
ab∈AB

dµp.
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Independence of lifts 1

For f ∈ Fp[x ]1n, we define

(1) Pf := {F ∈ Zp[x ]1n,F = f };

(2) Pm
f := {F ∈ Zp[x ]m,F = f } for m ≥ n.

Let f = x2 + 2. Then

(1) Pf := {x2 + pax + (2 + pb) : a, b ∈ Zp};

(2) P4
f := {pax4 +pbx3 + (1+pc)x2 +pdx + (2+pe) : a, b, c , d , e ∈ Zp};

Lemma
Suppose that g , h ∈ Fp[x ] are monic and coprime. Then the multiplication
map Pg × Ph → Pgh is a measure-preserving bijection.

Proof (sketch-idea).
Hensel’s lemma for polynomials =⇒ Pg × Ph → Pgh is a bijection.
Previous lemma =⇒ it is measure preserving.
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Independence of lifts 1

Corollary
Let g , h ∈ Fp[x ] be coprime monic polynomials. For f ∈ Pgh, let π1 and π2
denote the projections of Pgh onto Pg and Ph, respectively, under the
bijection Pgh → Pg × Ph. Then the number of Qp-roots of f ∈ Pgh is
X + Y , where X ,Y : Pgh → {0, 1, 2, . . .} are independent random variables
distributed on f ∈ Pgh as the number of Qp-roots of π1(f ) ∈ Pg and
π2(f ) ∈ Ph, respectively.

f = f1f2, f ∈ Pgh, f1 ∈ Pg , f2 ∈ Ph.

Intuition: Count the number of roots f as a sum of numbers of roots
of f1 and f2, which are independent.
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Independence of lifts 2

Let m ≤ n, and let Bm,n := {f ∈ Zp[x ]n : f ∈ Fp[x ]1m}.

B2,4 = {pax4 + pbx3 + (1 + pc)x2 + dx + e : a, b, c , d , e ∈ Zp}

Note that Qp-roots of polynomials in Pn−m
1 are in Qp\Zp.

Lemma
For n ≥ m, the multiplication map

Zp[x ]1m × Pn−m
1 → Bm,n

is a measure-preserving bijection.
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Independence of lifts 2

Corollary
For f ∈ Bm,n, let ψ1 and ψ2 denote the projections of Bm,n onto Zp[x ]1m
and Pn−m

1 , respectively, under the bijection Bm,n → Zp[x ]1m × Pn−m
1 . Let

X ,Y : Bm,n → {0, 1, 2, . . .} be the random variables giving the numbers of
roots of f ∈ Bm,n in Zp and in Qp \ Zp, respectively. Then X and Y are
independent random variables distributed on f ∈ Bm,n as the number of
Qp-roots of ψ1(f )(x) ∈ Zp[x ]1m and of
ψ2(f )rev(x) := xn−mψ2(f )(1/x) ∈ Pxn−m , respectively.

f = panx
n + · · ·+ pam+1x

m+1 + amx
m + · · ·+ a1x + a0 = f1f2,

f1 = xm + · · ·+ b1x + b0, f2 = pcn−mx
n−m + · · ·+ pc1x + 1.

g2 = xn−m + pc1x
n−m−1 + · · ·+ pcn−m.

Intuition: Count the number of roots f as a sum of numbers of roots
of f1 and g2, which are independent.
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Conditional expectations

(1) Let f ∈ Fp[x ]1n.

α(n, d | f ) = the expected number of d-sets of Qp-roots of a
polynomial in Pf ⊂ Zp[x ]1n.

Note β(n, d) = α(n, d | xn).

(2) Let σ ∈ S(n).

α(n, d | σ) = the expected number of d-sets of Qp-roots of a
polynomial in Zp[x ]1n whose mod p splitting type is σ.
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Writing the α’s in terms of the β’s

Lemma
Let g , h ∈ Fp[x ] be monic and coprime. Then

α(deg(gh), d | gh) =
∑

d1,d2≥0,d1+d2=d

α(deg(g), d1 | g) · α(deg(h), d2 | h).

If h has no roots in Fp, then

α(deg(gh), d | gh) = α(deg(g), d | g).

Proof (sketch-idea).
Independence of lifts 1 + fact
Fact:

(X+Y
d

)
=
∑

d1+d2=d

(X
d1

)(Y
d2

)
for independent random variables

X and Y taking values in N0.
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Writing the α’s in terms of the β’s

Example

α(8, 2 | x2(x + 1)(x2 + 3)(x3 + 2)) = α(3, 2 | x2(x + 1)) =

=α(2,2|x2)α(1,0|x+1)+α(2,1|x2)α(1,1|x+1)+α(2,0|x2)α(1,2|x+1)=

= β(2, 2)β(1, 0) + β(2, 1)β(1, 1) + β(2, 0)β(1, 2) =

= β(2, 2) · 1 +
1

p + 1
· 1 + 1 · 0 =

3
2(p + 1)

Corollary
Let σ = (1n1 · · · 1nk · · · ) ∈ S(n) be a splitting type with exactly k = m1(σ)
powers of 1. Then

α(n, d | σ) =
∑

d1+···+dk=d

k∏
i=1

β(ni , di ).

Stevan Gajović 03/09/2021 24 / 32



Writing the α’s in terms of the β’s

Example

α(8, 2 | x2(x + 1)(x2 + 3)(x3 + 2)) = α(3, 2 | x2(x + 1)) =

=α(2,2|x2)α(1,0|x+1)+α(2,1|x2)α(1,1|x+1)+α(2,0|x2)α(1,2|x+1)=

= β(2, 2)β(1, 0) + β(2, 1)β(1, 1) + β(2, 0)β(1, 2) =

= β(2, 2) · 1 +
1

p + 1
· 1 + 1 · 0 =

3
2(p + 1)

Corollary
Let σ = (1n1 · · · 1nk · · · ) ∈ S(n) be a splitting type with exactly k = m1(σ)
powers of 1. Then

α(n, d | σ) =
∑

d1+···+dk=d

k∏
i=1

β(ni , di ).

Stevan Gajović 03/09/2021 24 / 32



More about the ρ values

Primitive polynomials f ∈ Zp[x ] are those with f 6= 0.

We can restrict to primitive polynomials to compute ρ(n, d).

Let f ∈ Zp[x ] be a primitive polynomial of degree n.

Define m = deg(f ) to be the reduced degree of f .

For 0 ≤ m ≤ n, the density of primitive polynomials f ∈ Zp[x ]n with
reduced degree m is p−1

pn+1−1p
m.

ρ(n, d ,m) = the expected number of d-sets of Qp-roots of f as
f ∈ Zp[x ]n runs over polynomials of degree n with reduced degree m.

Conditioning on the value of m =⇒

Lemma

ρ(n, d) =
p − 1

pn+1 − 1

n∑
m=0

pmρ(n, d ,m).
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Further formulas between α’s, β’s and ρ’s

Lemma (ρ’s in terms of α’s and β’s)
We have

ρ(n, d ,m) =
∑

d1+d2=d

α(m, d1) · β(n −m, d2). (1)

Proof (sketch-idea).
f has reduced degree m =⇒ f = cg , with c ∈ Z∗p and g ∈ Bm,n.
g = g1g2, with (g1, g2) ∈ Zp[x ]1m × Pn−m

1 .
Use: Independence of lifts 2 + fact.

Lemma (β’s in terms of α’s)
Fix d non-negative integer. Then for all n ≥ d we have

β(n, d) = p−(n2)α(n, d) + (p − 1)
∑

0≤s<r<n

p−(r+1
2 )psα(s, d).
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α(m, d1) · β(n −m, d2). (1)

Proof (sketch-idea).
f has reduced degree m =⇒ f = cg , with c ∈ Z∗p and g ∈ Bm,n.
g = g1g2, with (g1, g2) ∈ Zp[x ]1m × Pn−m

1 .
Use: Independence of lifts 2 + fact.

Lemma (β’s in terms of α’s)
Fix d non-negative integer. Then for all n ≥ d we have

β(n, d) = p−(n2)α(n, d) + (p − 1)
∑

0≤s<r<n

p−(r+1
2 )psα(s, d).
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Generating functions

Define the generating functions:

Ad(t) := (1− t)
∞∑
n=0

α(n, d)tn;

Bd(t) := (1− t)
∞∑
n=0

β(n, d)tn;

Rd(t) := (1− t)(1− pt)
∞∑
n=0

(pn + pn−1 + · · ·+ 1)ρ(n, d)tn.

Previous relations can be nicely expressing using these generating
functions.
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Main theorem 1+2

Theorem (BCFG)
We have the following power series identities in two variables t and u:

∞∑
d=0

Ad(pt)ud =

( ∞∑
d=0

Bd(t)ud

)p

;

∞∑
d=0

Rd(t)ud =

( ∞∑
d=0

Ad(pt)ud

)( ∞∑
d=0

Bd(t)ud

)
=

( ∞∑
d=0

Bd(t)ud

)p+1

;

Bd(t)− tBd(t/p) = Φ (Ad(t)− tAd(pt)) ,

where Φ(
∑

n≥0 cnt
n) =

∑
n≥0 cnp

−(n2)tn.

Theorem (BCFG)
α(n, d), β(n, d) and ρ(n, d) are rational functions of p.
ρ(n, d)(p) = ρ(n, d)(1/p); α(n, d)(p) = β(n, d)(1/p).
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Main theorem 3

Theorem (BCFG)
Ad , Bd and Rd are polynomials of degree at most 2d .
α(n, d), β(n, d), and ρ(n, d) are independent of n provided that n is
sufficiently large relative to d .

Proof - Idea.
Denote the subset of polynomials in Zp[x ]1d that split completely by
Zp[x ]1d

split.
Consider the multiplication map Zp[x ]1d

split × Zp[x ]1n−d → Zp[x ]1n.
α(n, d) is the p-adic measure of the image of the multiplication map,
viewed as a multiset.

=⇒ α(n, d) =

∫
g∈Zp [x]1d

split

∫
h∈Zp [x]1n−d

|Res(g , h)|p dh dg .

The inner integral is independent of n ≥ 2d .
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The density of p-adic polynomials with a root

1− ρ∗(n, 0) = the probability that a random polynomial of degree n
over Zp has at least one root over Qp.

ρ∗(n, 0) =
∑n

d=0(−1)dρ(n, d), likewise for the α’s and β’s.

Then

A∗(t) := (1− t)
∞∑
n=0

α∗(n, 0)tn =
∞∑
d=0

(−1)dAd(t),

B∗(t) := (1− t)
∞∑
n=0

β∗(n, 0)tn =
∞∑
d=0

(−1)dBd(t),

R∗(t) := (1− t)(1− pt)
∞∑
n=0

pn+1 − 1
p − 1

ρ∗(n, 0)tn =
∞∑
d=0

(−1)dRd(t).
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More results

Our theorem specialises to (by setting u = −1)

Theorem

A∗(pt) = B∗(t)p,

R∗(t) = A∗(pt)B∗(t) = B∗(t)p+1,

B∗(t)− tB∗(t/p) = Φ(A∗(t)− tB∗(pt)),

where Φ is as before.
The same symmetry in p holds.

Asymptotic results when p →∞ and n→∞.
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The end

Thank you for your attention!

Question
Any questions?
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Asymptotic results when p →∞

Proposition
(a) Let 0 ≤ d ≤ n be integers. Then

lim
p→∞

α(n, d) = lim
p→∞

ρ(n, d) =
1
d!
.

(b) Let 0 ≤ r ≤ n be integers. Then

lim
p→∞

ρ∗(n, r) = lim
p→∞

α∗(n, r) =
n∑

d=0

(−1)d−r
(
d

r

)
1
d!

=
1
r !

n−r∑
d=0

(−1)d
1
d!
.

Hence, if we also let n→∞, we obtain

lim
n→∞

lim
p→∞

ρ∗(n, r) = lim
n→∞

lim
p→∞

α∗(n, r) =
1
r !
e−1.
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