The density of polynomials of degree n over \mathbb{Z}_p having exactly r roots in \mathbb{Q}_p

Stevan Gajović (University of Groningen)

Joint work with Manjul Bhargava (Princeton University), John Cremona (University of Warwick), and Tom Fisher (University of Cambridge)

Branching from number theory: *p*-adics in the sciences, Max Planck Institute for Mathematics in the Sciences in Leipzig, 03/09/2021

Motivation

- Forthcoming work of M. Bhargava, J. Cremona, T. Fisher:
- * "The density of hyperelliptic curves over $\mathbb Q$ of genus g that have points everywhere locally"
- Hyperelliptic curves given by (affine equation) $C: y^2 = f(x)$, $f \in \mathbb{Z}[x]$.
- Simpler question when C has an affine Weierstrass point locally?
- Extend to a fixed number of zeros.
- Related work:
- * Buhler, Goldstein, Moews, and Rosenberg p-adic polynomial splitting
- * Caruso; Evans; Kulkarni and Lerario; Shmueli (all indenpendently) expectations of the number of roots of *p*-adic polynomials

Magic of \mathbb{Q}_p

Theorem (Polynomial Hensel's lemma)

- $f \in \mathbb{Z}_p[x]$.
- Assume that its reduction modulo p, \overline{f} , factors over $\mathbb{F}_p[x]$ as
- $\overline{f} = \overline{g}\overline{h}$ such that
- $\overline{g}, \overline{h} \in \mathbb{F}_p[x]$ are coprime polynomials in $\mathbb{F}_p[x]$, and g is monic.
- There exists a factorization f = gh where
- $g, h \in \mathbb{Z}_p[x]$, g and h reduce modulo p to \overline{g} and \overline{h} , respectively,
- g is monic of degree $deg(g) = deg(\overline{g})$.

Magic of \mathbb{Q}_p

Theorem (Polynomial Hensel's lemma)

- $f \in \mathbb{Z}_p[x]$.
- Assume that its reduction modulo p, \overline{f} , factors over $\mathbb{F}_p[x]$ as
- $\overline{f} = \overline{g}\overline{h}$ such that
- $\overline{g}, \overline{h} \in \mathbb{F}_p[x]$ are coprime polynomials in $\mathbb{F}_p[x]$, and g is monic.
- There exists a factorization f = gh where
- $g, h \in \mathbb{Z}_p[x]$, g and h reduce modulo p to \overline{g} and \overline{h} , respectively,
- g is monic of degree $deg(g) = deg(\overline{g})$.

Theorem (Hensel's lemma - simple version)

- $f \in \mathbb{Z}_p[x]$.
- $x_0 \in \mathbb{Z}_p$ is a simple root of f modulo p, i.e., that $f(x_0) \equiv 0 \pmod{p}$ and $f'(x_0) \not\equiv 0 \pmod{p}$.
- There is a unique $X_0 \in \mathbb{Z}_p$ such that $X_0 \equiv x_0 \pmod{p}$ and $f(X_0) = 0$.

• \mathbb{Z}_p possesses the normalized Haar measure μ_p ($\mu_p(\mathbb{Z}_p) = 1$).

- \mathbb{Z}_p possesses the normalized Haar measure μ_p ($\mu_p(\mathbb{Z}_p) = 1$).
- For any $k \in \mathbb{F}_p$, denote $D_k = \{x \in \mathbb{Z}_p : x \equiv k \pmod p\}$.
- Hence, $\mu_p(D_k) = \frac{1}{p}$, for all $k \in \mathbb{F}_p$
- Similarly, $\mu_p(p^m\mathbb{Z}_p + a) = \mu_p(p^m\mathbb{Z}_p) = \frac{1}{p^m}$, for any $a \in \mathbb{Z}_p$.

- \mathbb{Z}_p possesses the normalized Haar measure μ_p ($\mu_p(\mathbb{Z}_p) = 1$).
- For any $k \in \mathbb{F}_p$, denote $D_k = \{x \in \mathbb{Z}_p : x \equiv k \pmod p\}$.
- Hence, $\mu_p(D_k) = \frac{1}{p}$, for all $k \in \mathbb{F}_p$
- Similarly, $\mu_p(p^m\mathbb{Z}_p + a) = \mu_p(p^m\mathbb{Z}_p) = \frac{1}{p^m}$, for any $a \in \mathbb{Z}_p$.
- We extend μ_p to \mathbb{Z}_p^n for any $n \in \mathbb{N}$. Then $\mu_p(\mathbb{Z}_p^n) = 1$.

- \mathbb{Z}_p possesses the normalized Haar measure μ_p ($\mu_p(\mathbb{Z}_p) = 1$).
- For any $k \in \mathbb{F}_p$, denote $D_k = \{x \in \mathbb{Z}_p : x \equiv k \pmod p\}$.
- Hence, $\mu_{p}(D_{k})=rac{1}{p}$, for all $k\in\mathbb{F}_{p}$
- Similarly, $\mu_p(p^m\mathbb{Z}_p + a) = \mu_p(p^m\mathbb{Z}_p) = \frac{1}{p^m}$, for any $a \in \mathbb{Z}_p$.
- We extend μ_p to \mathbb{Z}_p^n for any $n \in \mathbb{N}$. Then $\mu_p(\mathbb{Z}_p^n) = 1$.
- Let $V \subseteq \mathbb{Z}_p^n$. Then $\int_V d\mu_p = \mu_p(V)$.

- \mathbb{Z}_p possesses the normalized Haar measure μ_p ($\mu_p(\mathbb{Z}_p) = 1$).
- For any $k \in \mathbb{F}_p$, denote $D_k = \{x \in \mathbb{Z}_p : x \equiv k \pmod p\}$.
- Hence, $\mu_p(D_k) = \frac{1}{p}$, for all $k \in \mathbb{F}_p$
- Similarly, $\mu_p(p^m\mathbb{Z}_p + a) = \mu_p(p^m\mathbb{Z}_p) = \frac{1}{p^m}$, for any $a \in \mathbb{Z}_p$.
- We extend μ_p to \mathbb{Z}_p^n for any $n \in \mathbb{N}$. Then $\mu_p(\mathbb{Z}_p^n) = 1$.
- Let $V \subseteq \mathbb{Z}_p^n$. Then $\int_V d\mu_p = \mu_p(V)$.
- The density of $V \subseteq \mathbb{Z}_p^n$ is $\mu_p(V)$.
- The density of $p^m \mathbb{Z}_p$ inside \mathbb{Z}_p is $\frac{1}{p^m}$. "Probability" that a random element $a \in \mathbb{Z}_p$ is divisible by p^m is $\frac{1}{p^m} = \mu_p(p^m \mathbb{Z}_p)$.
- The probability of some event parametrised by \mathbb{Z}_p^n is the density of the subset of \mathbb{Z}_p^n on which this event realises.

Stevan Gajović 03/09/2021

4/32

Haar measure on \mathbb{Z}_p - polynomial probability

- Let R be a ring.
- $R[x]_n$ = all polynomials in R[x] of degree at most n.
- $R[x]_n^1 = \text{all monic polynomials in } R[x] \text{ of degree } n.$

Haar measure on \mathbb{Z}_p - polynomial probability

- Let R be a ring.
- $R[x]_n$ = all polynomials in R[x] of degree at most n.
- $R[x]_n^1 = \text{all monic polynomials in } R[x] \text{ of degree } n$.
- $f = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}_p[x]_n \leftrightarrow (a_n, \ldots, a_1, a_0) \in \mathbb{Z}_p^{n+1}$.
- $f = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}_p[x]_n^1 \leftrightarrow (a_{n-1}, \dots, a_1, a_0) \in \mathbb{Z}_p^n$

Haar measure on \mathbb{Z}_p - polynomial probability

- Let R be a ring.
- $R[x]_n$ = all polynomials in R[x] of degree at most n.
- $R[x]_n^1 = \text{all monic polynomials in } R[x] \text{ of degree } n$.
- $\bullet \ f = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}_p[x]_n \leftrightarrow (a_n, \ldots, a_1, a_0) \in \mathbb{Z}_p^{n+1}.$
- $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}_p[x]_n^1 \leftrightarrow (a_{n-1}, \dots, a_1, a_0) \in \mathbb{Z}_p^n$
- Consider monic polynomials of degree n that have property \mathcal{P} .
- There is $S \in \mathbb{Z}_p^n$ that corresponds to polynomials with property \mathcal{P} .
- The probability of property \mathcal{P} is then $\mu_p(S)$ as a subset of \mathbb{Z}_p^n .

• Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials f of degree n into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials f of degree n into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;
 - (2) those for which \overline{f} has a simple root over \mathbb{F}_p ;

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials *f* of degree *n* into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;
 - (2) those for which \overline{f} has a simple root over \mathbb{F}_p ;
 - (3) those for which \overline{f} has roots over \mathbb{F}_p , but no simple roots.

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials *f* of degree *n* into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;
 - (2) those for which \overline{f} has a simple root over \mathbb{F}_p ;
 - (3) those for which \overline{f} has roots over \mathbb{F}_p , but no simple roots.
- Then
 - (1) do not have roots over \mathbb{Q}_p ;

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials *f* of degree *n* into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;
 - (2) those for which \overline{f} has a simple root over \mathbb{F}_p ;
 - (3) those for which \overline{f} has roots over \mathbb{F}_p , but no simple roots.
- Then
 - (1) do not have roots over \mathbb{Q}_p ;
 - (2) Hensel's lemma \implies have at least one root over \mathbb{Q}_p ;

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_p[x]$ of degree n has at least one root in \mathbb{Q}_p .
- Divide monic polynomials *f* of degree *n* into three disjoint subsets:
 - (1) those for which \overline{f} has no roots over \mathbb{F}_p ;
 - (2) those for which \overline{f} has a simple root over \mathbb{F}_p ;
 - (3) those for which \overline{f} has roots over \mathbb{F}_p , but no simple roots.
- Then
 - (1) do not have roots over \mathbb{Q}_p ;
 - (2) Hensel's lemma \implies have at least one root over \mathbb{Q}_p ;
 - (3) the hardest case, we do not know the exact answer, needs further investigation (need Hensel's lemma for polynomials).

- General strategy is
- (1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_p ;

 Stevan Gajović
 03/09/2021
 7/32

- General strategy is
- (1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_p ;
- (2) Compute probabilities of each splitting type;

- General strategy is
- (1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_p ;
- (2) Compute probabilities of each splitting type;
- (3) Compute the probability that f has a root in each splitting type.

- General strategy is
- (1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_p ;
- (2) Compute probabilities of each splitting type;
- (3) Compute the probability that f has a root in each splitting type.
- (4) Sum the products of last two probabilities over all splitting types of degree n.

- General strategy is
- (1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_p ;
- (2) Compute probabilities of each splitting type;
- (3) Compute the probability that f has a root in each splitting type.
- (4) Sum the products of last two probabilities over all splitting types of degree n.
 - $\alpha_n :=$ the probability that a random monic polynomial of degree n has a root in \mathbb{Q}_p (equivalently in \mathbb{Z}_p).
 - $\beta_n :=$ the same probability under the condition that $f \equiv x^n \pmod{p}$.
 - Goal: As practise, compute α_n , β_n .

Irreducible polynomials over \mathbb{F}_p

Theorem

The number of monic irreducible polynomials of degree n in $\mathbb{F}_p[x]$ is equal to $(\mu : \mathbb{N} \to \{0, -1, 1\})$ is the Möbius function

$$N_n := \frac{\sum_{k|n} \mu(k) p^{\frac{n}{k}}}{n}.$$

- (*) $N_1 = p$:
- (*) $N_q = \frac{p^q p}{q}$ for q a prime number;
- (*) $N_{q^2}=rac{p^{q^2}-p^q}{q^2}$ for q a prime number;
- (*) Important: $N_n = \frac{p^n + o(p^n)}{n}$.

Stevan Gajović 03/09/2021

8 / 32

• Splitting type of degree n is a tuple $\sigma = (d_1^{e_1} d_2^{e_2} \cdots d_t^{e_t})$ where the d_j and e_i are positive integers satisfying $\sum d_i e_i = n$.

- Splitting type of degree n is a tuple $\sigma = (d_1^{e_1} d_2^{e_2} \cdots d_t^{e_t})$ where the d_j and e_j are positive integers satisfying $\sum d_j e_j = n$.
- S(n) := the set of all splitting types of degree n.
- Fix $\sigma = (d_1^{e_1} \ d_2^{e_2} \ \dots \ d_t^{e_t}) \in \mathcal{S}(n)$.

- Splitting type of degree n is a tuple $\sigma = (d_1^{e_1} d_2^{e_2} \cdots d_t^{e_t})$ where the d_j and e_j are positive integers satisfying $\sum d_j e_j = n$.
- S(n) := the set of all splitting types of degree n.
- Fix $\sigma = (d_1^{e_1} d_2^{e_2} \dots d_t^{e_t}) \in \mathcal{S}(n)$.
- A monic polynomial f in $\mathbb{F}_p[x]$ of degree n has splitting type σ if
- (1) f factors as $f(x) = \prod_{j=1}^t f_j(x)^{e_j}$,
- (2) f_j are distinct irreducible monic polynomials over \mathbb{F}_p ,
- (3) $\deg(f_j) = d_j$, for all $1 \le j \le t$.

- Splitting type of degree n is a tuple $\sigma = (d_1^{e_1} d_2^{e_2} \cdots d_t^{e_t})$ where the d_j and e_j are positive integers satisfying $\sum d_j e_j = n$.
- S(n) := the set of all splitting types of degree n.
- Fix $\sigma = (d_1^{e_1} d_2^{e_2} \dots d_t^{e_t}) \in \mathcal{S}(n)$.
- A monic polynomial f in $\mathbb{F}_p[x]$ of degree n has splitting type σ if
- (1) f factors as $f(x) = \prod_{j=1}^t f_j(x)^{e_j}$,
- (2) f_j are distinct irreducible monic polynomials over \mathbb{F}_p ,
- (3) $\deg(f_j) = d_j$, for all $1 \le j \le t$.

Irreducible factorization of f	$\sigma(f)$ =splitting type of f	Degree
$x^{2}(x+1)(x^{2}+1)(x^{3}+2)^{4}$	$(3^4 \ 2 \ 1^2 \ 1)$	17

• $\lambda(\sigma)$ = the probability that a degree n monic polynomial $f \in \mathbb{F}_p[x]$ has splitting type σ - it is a rational function of p.

Stevan Gajović 03/09/2021

9 / 32

• Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 2 - blackboard.

- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 2 blackboard.
- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 3.
- We make the table of possible splitting types of \overline{f} over \mathbb{F}_p and the number of them.

(3)	$N_3 = \frac{p^3 - p}{3}$
(21)	$N_2N_1=rac{p^3-p^2}{2}$
(1^3)	$N_1 = p$
$(1^2 1)$	$N_1(N_1-1)=p(p-1)$
(111)	$\binom{N_1}{3} = \frac{p(p-1)(p-2)}{6}$

- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 2 blackboard.
- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 3.
- We make the table of possible splitting types of \overline{f} over \mathbb{F}_p and the number of them.

(3)	$N_3 = \frac{p^3 - p}{3}$
(21)	$N_2N_1=rac{p^3-p^2}{2}$
(1^3)	$N_1 = p$
$(1^2 1)$	$ N_1(N_1-1)=p(p-1) $
(111)	$\binom{N_1}{3} = \frac{p(p-1)(p-2)}{6}$

$$\implies \alpha_3 = \frac{p^3 - p^2}{2p^3} + \frac{p(p-1)}{p^3} + \frac{p(p-1)(p-2)}{6p^3} + \frac{p}{p^3}\beta_3.$$

- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 2 blackboard.
- Let $f \in \mathbb{Z}_p[x]$ be a monic polynomial of degree n = 3.
- We make the table of possible splitting types of \overline{f} over \mathbb{F}_p and the number of them.

(3)	$N_3 = \frac{p^3 - p}{3}$
(21)	$N_2N_1=rac{p^3-p^2}{2}$
(1^3)	$N_1 = p$
$(1^2 1)$	$ N_1(N_1-1)=p(p-1) $
(111)	$\binom{N_1}{3} = \frac{p(p-1)(p-2)}{6}$

$$\implies \alpha_3 = \frac{p^3 - p^2}{2p^3} + \frac{p(p-1)}{p^3} + \frac{p(p-1)(p-2)}{6p^3} + \frac{p}{p^3}\beta_3.$$

• We want to compute β_3 - blackboard.

Stevan Gajović 03/09/2021

10 / 32

Degree n = 4

• Table of splitting types of degree 4 with probabilities:

(1)	(4)	$N_4 = \frac{p^4 - p^2}{4}$	0
(2)	(31)	$N_3N_1=\frac{p^4-p^2}{3}$	1
(3)	(2^2)	$N_2 = \frac{p^2 - p}{2}$	0
(4)	(22)	$\binom{N_2}{2} = \frac{(p^2 - p)(p^2 - p - 2)}{8}$	0
(5)	(21^2)	$N_2N_1=rac{p^3-p^2}{2}$	β_2
(6)	(211)	$N_2\binom{N_1}{2} = \frac{p^2(p-1)^2}{4}$	1
(7)	(1^4)	$N_1 = p$	β_4
(8)	$(1^3 1)$	$N_1(N_1-1)=p(p-1)$	1
(9)	$(1^2 1^2)$	$\binom{N_1}{2} = \frac{p(p-1)}{2}$	$1-(1-\beta_2)^2$
(10)	$(1^2 11)$	$N_1\binom{N_1-1}{2} = \frac{p(p-1)(p-2)}{2}$	1
(11)	(1111)	$\binom{N_1}{4} = \frac{p(p-1)(p-2)(p-3)}{24}$	1

Case n = 4 - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a linear polynomial is random?

Question

Can we assume in (9) the same thing? Are these two polynomials "independent"?

Case n = 4 - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a linear polynomial is random?

Question

Can we assume in (9) the same thing? Are these two polynomials "independent"?

Answers

Yes - by Hensel's polynomial lemma!

- We know how to express β_4 in terms of α_1 , α_2 , and α_4 .
- \Longrightarrow Compute α_4 and β_4 .

Definitions

- Denote the density of the following subset of polynomials in $\mathbb{Z}_p[x]$ having exactly $r \ (0 \le r \le n)$ roots in \mathbb{Q}_p
- (1*) for degree n polynomials $f \in \mathbb{Z}_p[x]$ by $\rho^*(n,r)$;
- (2*) for monic degree n polynomials $f \in \mathbb{Z}_p[x]$ by $\alpha^*(n, r)$;
- (3*) for monic degree n polynomials $f \in \mathbb{Z}_p[x]$ such that $f \equiv x^n \pmod p$ by $\beta^*(n,r)$.

Stevan Gajović 03/09/2021 13/32

Definitions

- Denote the density of the following subset of polynomials in $\mathbb{Z}_p[x]$ having exactly $r \ (0 \le r \le n)$ roots in \mathbb{Q}_p
- (1*) for degree n polynomials $f \in \mathbb{Z}_p[x]$ by $\rho^*(n, r)$;
- (2*) for monic degree n polynomials $f \in \mathbb{Z}_p[x]$ by $\alpha^*(n,r)$;
- (3*) for monic degree n polynomials $f \in \mathbb{Z}_p[x]$ such that $f \equiv x^n \pmod p$ by $\beta^*(n,r)$.
 - Consider, for $0 \le d \le n$

$$\rho(n,d) = \sum_{r=0}^{n} {r \choose d} \rho^*(n,r).$$

- Recall: $\binom{r}{d}$ = the number of subsets of size d of a set of size r.
- $\Longrightarrow \rho(n,d)$ = the expected number of sets of size d (d-sets) of \mathbb{Q}_p -roots of a random polynomial $f \in \mathbb{Z}_p[x]$ of degree n.

Stevan Gajović 03/09/2021

13 / 32

Relations

- Denote the expected number of sets of size d (d-sets) ($0 \le d \le n$) of \mathbb{Q}_p -roots of
- (1) a random polynomial $f \in \mathbb{Z}_p[x]$ of degree n by $\rho(n, d)$;
- (2) a random monic polynomial $f \in \mathbb{Z}_p[x]$ of degree n by $\alpha(n, d)$;
- (3) a random monic polynomial $f \in \mathbb{Z}_p[x]$ of degree n that reduces to x^n modulo p by $\beta(n,d)$.

Stevan Gajović 03/09/2021 14/32

Relations

- Denote the expected number of sets of size d (d-sets) ($0 \le d \le n$) of \mathbb{Q}_p -roots of
- (1) a random polynomial $f \in \mathbb{Z}_p[x]$ of degree n by $\rho(n, d)$;
- (2) a random monic polynomial $f \in \mathbb{Z}_p[x]$ of degree n by $\alpha(n, d)$;
- (3) a random monic polynomial $f \in \mathbb{Z}_p[x]$ of degree n that reduces to x^n modulo p by $\beta(n,d)$.
 - There is an inversion formula for $0 \le r \le n$

$$\rho^*(n,r) = \sum_{d=0}^{n} (-1)^{d-r} \binom{d}{r} \rho(n,d).$$

- Analogous relations hold for α 's and β 's.
- If we can compute all values of ρ or ρ^* , we can compute all values of the other one.

Stevan Gajović 03/09/2021

14 / 32

Examples - expectations of the number of roots

Results by Caruso; Evans; Kulkarni and Lerario; Shmueli:

$$\alpha(n,1) = \begin{cases} 1 & \text{if } n = 1, \\ \frac{p}{p+1} & \text{if } n \geq 2, \end{cases} \quad \beta(n,1) = \begin{cases} 1 & \text{if } n = 1, \\ \frac{1}{p+1} & \text{if } n \geq 2, \end{cases}$$

and

$$\rho(n,1)=1$$
 for all $n\geq 1$.

Stevan Gajović 03/09/2021 15/32

- Note $\rho^*(n, n-1) = \alpha^*(n, n-1) = \beta^*(n, n-1) = 0$.
- Buhler et al: $\rho^*(n, n) = \rho(n, n)$ and $\alpha^*(n, n) = \alpha(n, n)$.

Stevan Gajović 03/09/2021 16 / 32

- Note $\rho^*(n, n-1) = \alpha^*(n, n-1) = \beta^*(n, n-1) = 0$.
- Buhler et al: $\rho^*(n, n) = \rho(n, n)$ and $\alpha^*(n, n) = \alpha(n, n)$.
- $\rho^*(2,2) = \frac{1}{2} \implies \rho^*(2,0) = \frac{1}{2}$.
- $\alpha^*(2,2) = \frac{1}{2} \frac{p}{p+1} \implies \alpha^*(2,0) = \frac{1}{2} \frac{p+2}{p+1}$.

Stevan Gajović 03/09/2021 16/32

- Note $\rho^*(n, n-1) = \alpha^*(n, n-1) = \beta^*(n, n-1) = 0$.
- Buhler et al: $\rho^*(n,n) = \rho(n,n)$ and $\alpha^*(n,n) = \alpha(n,n)$.
- $\rho^*(2,2) = \frac{1}{2} \implies \rho^*(2,0) = \frac{1}{2}$
- $\alpha^*(2,2) = \frac{1}{2} \frac{p}{p+1} \implies \alpha^*(2,0) = \frac{1}{2} \frac{p+2}{p+1}$.
- $\rho^*(3,3) = \gamma$, where $\gamma = \frac{(\rho^2+1)^2}{6(\rho^4+\rho^3+\rho^2+\rho+1)}$.
- $\rho^*(3,0) + \rho^*(3,1) + \rho^*(3,3) = 1.$
- $1 = \rho(3,1) = \binom{0}{1} \rho^*(3,0) + \binom{1}{1} \rho^*(3,1) + \binom{3}{1} \rho^*(3,3)$.
- $\implies \rho^*(3,0) = 2\gamma, \ \rho^*(3,1) = 1 3\gamma.$

Stevan Gajović 03/09/2021 16 / 32

- Note $\rho^*(n, n-1) = \alpha^*(n, n-1) = \beta^*(n, n-1) = 0$.
- Buhler et al: $\rho^*(n,n) = \rho(n,n)$ and $\alpha^*(n,n) = \alpha(n,n)$.
- $\rho^*(2,2) = \frac{1}{2} \implies \rho^*(2,0) = \frac{1}{2}$
- $\alpha^*(2,2) = \frac{1}{2} \frac{p}{p+1} \implies \alpha^*(2,0) = \frac{1}{2} \frac{p+2}{p+1}$.
- $\rho^*(3,3) = \gamma$, where $\gamma = \frac{(\rho^2+1)^2}{6(\rho^4+\rho^3+\rho^2+\rho+1)}$.
- $\rho^*(3,0) + \rho^*(3,1) + \rho^*(3,3) = 1$.
- $1 = \rho(3,1) = \binom{0}{1} \rho^*(3,0) + \binom{1}{1} \rho^*(3,1) + \binom{3}{1} \rho^*(3,3)$.
- $\implies \rho^*(3,0) = 2\gamma, \ \rho^*(3,1) = 1 3\gamma.$
- $\alpha^*(3,0) = \frac{1}{n+1} + 2\gamma'$, $\alpha^*(3,1) = \frac{p}{n+1} 3\gamma'$, $\alpha^*(3,3) = \gamma'$, where

Stevan Gajović 03/09/2021 16 / 32

Measure-preserving bijections

Lemma

- (*) Let $A \subset \mathbb{Z}_p[x]_m^1$, $B \subset \mathbb{Z}_p[x]_n^1$, and $AB \subset \mathbb{Z}_p[x]_{m+n}^1$ or
- (*) Let $A \subset \mathbb{Z}_p[x]_m^1$, $B \subset \mathbb{Z}_p[x]_n$, and $AB \subset \mathbb{Z}_p[x]_{m+n}$ be measurable subsets such that multiplication induces a bijection

$$A \times B \rightarrow AB = \{ab \mid a \in A, b \in B\}.$$

If the resultant of a and b satisfies $\operatorname{Res}(a,b) \in \mathbb{Z}_p^*$ for all $a \in A, b \in B$, then the bijection is measure-preserving.

Stevan Gajović 03/09/2021 17/32

Measure-preserving bijections

Lemma

- (*) Let $A \subset \mathbb{Z}_p[x]_m^1$, $B \subset \mathbb{Z}_p[x]_n^1$, and $AB \subset \mathbb{Z}_p[x]_{m+n}^1$ or
- (*) Let $A \subset \mathbb{Z}_p[x]_m^1$, $B \subset \mathbb{Z}_p[x]_n$, and $AB \subset \mathbb{Z}_p[x]_{m+n}$ be measurable subsets such that multiplication induces a bijection

$$A \times B \rightarrow AB = \{ab \mid a \in A, b \in B\}.$$

If the resultant of a and b satisfies $\operatorname{Res}(a,b) \in \mathbb{Z}_p^*$ for all $a \in A, b \in B$, then the bijection is measure-preserving.

Proof (sketch-idea).

Change of variables is given by the resultant, which is a unit:

$$\int_{(a,b)\in A\times B} d\mu_p = \int_{ab\in AB} |\operatorname{Res}(a,b)|_p d\mu_p = \int_{ab\in AB} d\mu_p.$$

Stevan Gajović 03/09/2021

• For $f \in \mathbb{F}_p[x]_n^1$, we define

(1)
$$P_f := \{ F \in \mathbb{Z}_p[x]_n^1, \overline{F} = f \};$$

(2)
$$P_f^m := \{ F \in \mathbb{Z}_p[x]_m, \overline{F} = f \} \text{ for } m \geq n.$$

Stevan Gajović 03/09/2021 18 / 32

- For $f \in \mathbb{F}_p[x]_p^1$, we define
- (1) $P_f := \{ F \in \mathbb{Z}_p[x]_p^1, \overline{F} = f \};$
- (2) $P_f^m := \{ F \in \mathbb{Z}_p[x]_m, \overline{F} = f \}$ for $m \ge n$.
 - Let $f = x^2 + 2$. Then
- (1) $P_f := \{x^2 + pax + (2 + pb) : a, b \in \mathbb{Z}_p\};$
- (2) $P_{\epsilon}^4 := \{pax^4 + pbx^3 + (1+pc)x^2 + pdx + (2+pe) : a, b, c, d, e \in \mathbb{Z}_p\};$

03/09/2021 18 / 32

- For $f \in \mathbb{F}_p[x]_n^1$, we define
- (1) $P_f := \{ F \in \mathbb{Z}_p[x]_n^1, \overline{F} = f \};$
- (2) $P_f^m := \{ F \in \mathbb{Z}_p[x]_m, \overline{F} = f \}$ for $m \ge n$.
 - Let $f = x^2 + 2$. Then
- (1) $P_f := \{x^2 + pax + (2 + pb) : a, b \in \mathbb{Z}_p\};$
- (2) $P_f^4 := \{pax^4 + pbx^3 + (1+pc)x^2 + pdx + (2+pe) : a, b, c, d, e \in \mathbb{Z}_p\};$

Lemma

Suppose that $g, h \in \mathbb{F}_p[x]$ are monic and coprime. Then the multiplication map $P_g \times P_h \to P_{gh}$ is a measure-preserving bijection.

Stevan Gajović 03/09/2021 18/32

- For $f \in \mathbb{F}_p[x]_n^1$, we define
- (1) $P_f := \{ F \in \mathbb{Z}_p[x]_n^1, \overline{F} = f \};$
- (2) $P_f^m := \{ F \in \mathbb{Z}_p[x]_m, \overline{F} = f \}$ for $m \ge n$.
 - Let $f = x^2 + 2$. Then
- (1) $P_f := \{x^2 + pax + (2 + pb) : a, b \in \mathbb{Z}_p\};$
- (2) $P_f^4 := \{pax^4 + pbx^3 + (1+pc)x^2 + pdx + (2+pe) : a, b, c, d, e \in \mathbb{Z}_p\};$

Lemma

Suppose that $g, h \in \mathbb{F}_p[x]$ are monic and coprime. Then the multiplication map $P_g \times P_h \to P_{gh}$ is a measure-preserving bijection.

Proof (sketch-idea).

- Hensel's lemma for polynomials $\implies P_g \times P_h \to P_{gh}$ is a bijection.
- ullet Previous lemma \Longrightarrow it is measure preserving.

Stevan Gajović 03/09/2021

18 / 32

Corollary

Let $g,h\in\mathbb{F}_p[x]$ be coprime monic polynomials. For $f\in P_{gh}$, let π_1 and π_2 denote the projections of P_{gh} onto P_g and P_h , respectively, under the bijection $P_{gh}\to P_g\times P_h$. Then the number of \mathbb{Q}_p -roots of $f\in P_{gh}$ is X+Y, where $X,Y:P_{gh}\to\{0,1,2,\ldots\}$ are independent random variables distributed on $f\in P_{gh}$ as the number of \mathbb{Q}_p -roots of $\pi_1(f)\in P_g$ and $\pi_2(f)\in P_h$, respectively.

- $f = f_1 f_2$, $f \in P_{gh}$, $f_1 \in P_g$, $f_2 \in P_h$.
- Intuition: Count the number of roots f as a sum of numbers of roots of f_1 and f_2 , which are independent.

Stevan Gajović 03/09/2021 19/32

• Let $m \le n$, and let $B_{m,n} := \{ f \in \mathbb{Z}_p[x]_n : \overline{f} \in \mathbb{F}_p[x]_m^1 \}$.

Stevan Gajović 03/09/2021 20/32

- Let $m \le n$, and let $B_{m,n} := \{ f \in \mathbb{Z}_p[x]_n : \overline{f} \in \mathbb{F}_p[x]_m^1 \}.$
- $B_{2,4} = \{pax^4 + pbx^3 + (1+pc)x^2 + dx + e : a, b, c, d, e \in \mathbb{Z}_p\}$
- Note that \mathbb{Q}_p -roots of polynomials in P_1^{n-m} are in $\mathbb{Q}_p \setminus \mathbb{Z}_p$.

Stevan Gajović 03/09/2021 20 / 32

- Let $m \leq n$, and let $B_{m,n} := \{ f \in \mathbb{Z}_p[x]_n : \overline{f} \in \mathbb{F}_p[x]_m^1 \}.$
- $B_{2,4} = \{pax^4 + pbx^3 + (1+pc)x^2 + dx + e : a, b, c, d, e \in \mathbb{Z}_p\}$
- Note that \mathbb{Q}_p -roots of polynomials in P_1^{n-m} are in $\mathbb{Q}_p \backslash \mathbb{Z}_p$.

Lemma

For $n \ge m$, the multiplication map

$$\mathbb{Z}_p[x]_m^1 \times P_1^{n-m} \to B_{m,n}$$

is a measure-preserving bijection.

Stevan Gajović 03/09/2021 20 / 32

Corollary

For $f \in B_{m,n}$, let ψ_1 and ψ_2 denote the projections of $B_{m,n}$ onto $\mathbb{Z}_p[x]_m^1$ and P_1^{n-m} , respectively, under the bijection $B_{m,n} \to \mathbb{Z}_p[x]_m^1 \times P_1^{n-m}$. Let $X, Y: B_{m,n} \to \{0,1,2,\ldots\}$ be the random variables giving the numbers of roots of $f \in B_{m,n}$ in \mathbb{Z}_p and in $\mathbb{Q}_p \setminus \mathbb{Z}_p$, respectively. Then X and Y are independent random variables distributed on $f \in B_{m,n}$ as the number of \mathbb{Q}_p -roots of $\psi_1(f)(x) \in \mathbb{Z}_p[x]_m^1$ and of $\psi_2(f)^{\text{rev}}(x) := x^{n-m}\psi_2(f)(1/x) \in P_{x^{n-m}}$, respectively.

•
$$f = pa_nx^n + \cdots + pa_{m+1}x^{m+1} + a_mx^m + \cdots + a_1x + a_0 = f_1f_2$$
,

•
$$f_1 = x^m + \cdots + b_1 x + b_0$$
, $f_2 = pc_{n-m} x^{n-m} + \cdots + pc_1 x + 1$.

•
$$g_2 = x^{n-m} + pc_1x^{n-m-1} + \cdots + pc_{n-m}$$
.

• Intuition: Count the number of roots f as a sum of numbers of roots of f_1 and g_2 , which are independent.

Stevan Gajović 03/09/2021

21/32

Conditional expectations

- (1) Let $f \in \mathbb{F}_p[x]_n^1$.
 - $\alpha(n, d \mid f)$ = the expected number of d-sets of \mathbb{Q}_p -roots of a polynomial in $P_f \subset \mathbb{Z}_p[x]_n^1$.
 - Note $\beta(n, d) = \alpha(n, d \mid x^n)$.

Stevan Gajović 03/09/2021 22/32

Conditional expectations

- (1) Let $f \in \mathbb{F}_p[x]_n^1$.
 - $\alpha(n, d \mid f)$ = the expected number of d-sets of \mathbb{Q}_p -roots of a polynomial in $P_f \subset \mathbb{Z}_p[x]_n^1$.
 - Note $\beta(n, d) = \alpha(n, d \mid x^n)$.
- (2) Let $\sigma \in \mathcal{S}(n)$.
 - $\alpha(n, d \mid \sigma)$ = the expected number of d-sets of \mathbb{Q}_p -roots of a polynomial in $\mathbb{Z}_p[x]_n^1$ whose mod p splitting type is σ .

Stevan Gajović 03/09/2021 22/32

Lemma

Let $g, h \in \mathbb{F}_p[x]$ be monic and coprime. Then

$$\alpha(\deg(gh),d\mid gh) = \sum_{d_1,d_2 \geq 0, d_1+d_2=d} \alpha(\deg(g),d_1\mid g) \cdot \alpha(\deg(h),d_2\mid h).$$

If h has no roots in \mathbb{F}_p , then

$$\alpha(\deg(gh), d \mid gh) = \alpha(\deg(g), d \mid g).$$

Stevan Gajović 03/09/2021 23 / 32

Lemma

Let $g, h \in \mathbb{F}_p[x]$ be monic and coprime. Then

$$\alpha(\deg(gh), d \mid gh) = \sum_{d_1, d_2 \geq 0, d_1 + d_2 = d} \alpha(\deg(g), d_1 \mid g) \cdot \alpha(\deg(h), d_2 \mid h).$$

If h has no roots in \mathbb{F}_p , then

$$\alpha(\deg(gh), d \mid gh) = \alpha(\deg(g), d \mid g).$$

Proof (sketch-idea).

- Independence of lifts 1 + fact
- Fact: $\binom{X+Y}{d} = \sum_{d_1+d_2=d} \binom{X}{d_1} \binom{Y}{d_2}$ for independent random variables X and Y taking values in \mathbb{N}_0 .

Stevan Gajović 03/09/2021 23/32

Example

$$\alpha(8,2 \mid x^{2}(x+1)(x^{2}+3)(x^{3}+2)) = \alpha(3,2 \mid x^{2}(x+1)) =$$

$$=\alpha(2,2|x^{2})\alpha(1,0|x+1) + \alpha(2,1|x^{2})\alpha(1,1|x+1) + \alpha(2,0|x^{2})\alpha(1,2|x+1) =$$

$$=\beta(2,2)\beta(1,0) + \beta(2,1)\beta(1,1) + \beta(2,0)\beta(1,2) =$$

$$=\beta(2,2) \cdot 1 + \frac{1}{p+1} \cdot 1 + 1 \cdot 0 = \frac{3}{2(p+1)}$$

Stevan Gajović 03/09/2021 24/32

Example

$$\alpha(8,2 \mid x^{2}(x+1)(x^{2}+3)(x^{3}+2)) = \alpha(3,2 \mid x^{2}(x+1)) =$$

$$=\alpha(2,2|x^{2})\alpha(1,0|x+1) + \alpha(2,1|x^{2})\alpha(1,1|x+1) + \alpha(2,0|x^{2})\alpha(1,2|x+1) =$$

$$=\beta(2,2)\beta(1,0) + \beta(2,1)\beta(1,1) + \beta(2,0)\beta(1,2) =$$

$$=\beta(2,2) \cdot 1 + \frac{1}{p+1} \cdot 1 + 1 \cdot 0 = \frac{3}{2(p+1)}$$

Corollary

Let $\sigma = (1^{n_1} \cdots 1^{n_k} \cdots) \in \mathcal{S}(n)$ be a splitting type with exactly $k = m_1(\sigma)$ powers of 1. Then

$$\alpha(n,d \mid \sigma) = \sum_{d_1 + \cdots + d_{\nu} = d} \prod_{i=1}^{k} \beta(n_i,d_i).$$

Stevan Gajović 03/09/2021

24 / 32

More about the ρ values

- Primitive polynomials $f \in \mathbb{Z}_p[x]$ are those with $\overline{f} \neq 0$.
- We can restrict to primitive polynomials to compute $\rho(n, d)$.
- Let $f \in \mathbb{Z}_p[x]$ be a primitive polynomial of degree n.
- Define $m = \deg(\overline{f})$ to be the reduced degree of f.
- For $0 \le m \le n$, the density of primitive polynomials $f \in \mathbb{Z}_p[x]_n$ with reduced degree m is $\frac{p-1}{p^{n+1}-1}p^m$.

Stevan Gajović 03/09/2021 25 / 32

More about the ρ values

- Primitive polynomials $f \in \mathbb{Z}_p[x]$ are those with $\overline{f} \neq 0$.
- We can restrict to primitive polynomials to compute $\rho(n, d)$.
- Let $f \in \mathbb{Z}_p[x]$ be a primitive polynomial of degree n.
- Define $m = \deg(\overline{f})$ to be the reduced degree of f.
- For $0 \le m \le n$, the density of primitive polynomials $f \in \mathbb{Z}_p[x]_n$ with reduced degree m is $\frac{p-1}{p^{n+1}-1}p^m$.
- $\rho(n,d,m)=$ the expected number of d-sets of \mathbb{Q}_p -roots of f as $f\in\mathbb{Z}_p[x]_n$ runs over polynomials of degree n with reduced degree m.
- Conditioning on the value of $m \implies$

Lemma

$$\rho(n,d) = \frac{p-1}{p^{n+1}-1} \sum_{m=0}^{n} p^{m} \rho(n,d,m).$$

Stevan Gajović 03/09/2021 25 / 32

Further formulas between α 's, β 's and ρ 's

Lemma (ρ 's in terms of α 's and β 's)

We have

$$\rho(n,d,m) = \sum_{d_1+d_2=d} \alpha(m,d_1) \cdot \beta(n-m,d_2). \tag{1}$$

Stevan Gajović 03/09/2021 26 / 32

Further formulas between α 's, β 's and ρ 's

Lemma (ρ 's in terms of α 's and β 's)

We have

$$\rho(n,d,m) = \sum_{d_1+d_2=d} \alpha(m,d_1) \cdot \beta(n-m,d_2). \tag{1}$$

Proof (sketch-idea).

- f has reduced degree $m \implies f = cg$, with $c \in \mathbb{Z}_p^*$ and $g \in B_{m,n}$.
- $g = g_1g_2$, with $(g_1, g_2) \in \mathbb{Z}_p[x]_m^1 \times P_1^{n-m}$.
- Use: Independence of lifts 2 + fact.

Stevan Gajović 03/09/2021 26 / 32

Further formulas between α 's, β 's and ρ 's

Lemma (ρ 's in terms of α 's and β 's)

We have

$$\rho(n,d,m) = \sum_{d_1+d_2=d} \alpha(m,d_1) \cdot \beta(n-m,d_2). \tag{1}$$

Proof (sketch-idea).

- ullet f has reduced degree $m \implies f = cg$, with $c \in \mathbb{Z}_p^*$ and $g \in B_{m,n}$.
- $g = g_1g_2$, with $(g_1, g_2) \in \mathbb{Z}_p[x]_m^1 \times P_1^{n-m}$.
- Use: Independence of lifts 2 + fact.

Lemma (β 's in terms of α 's)

Fix d non-negative integer. Then for all $n \ge d$ we have

$$\beta(n,d) = p^{-\binom{n}{2}}\alpha(n,d) + (p-1)\sum_{s \in \{-r\}} p^{-\binom{r+1}{2}}p^s\alpha(s,d).$$

 Stevan Gajović
 03/09/2021

26 / 32

Generating functions

• Define the generating functions:

$$\mathcal{A}_d(t) := (1-t) \sum_{n=0}^{\infty} \alpha(n,d) t^n;$$
 $\mathcal{B}_d(t) := (1-t) \sum_{n=0}^{\infty} \beta(n,d) t^n;$
 $\mathcal{R}_d(t) := (1-t) (1-pt) \sum_{n=0}^{\infty} (p^n + p^{n-1} + \dots + 1) \rho(n,d) t^n.$

 Previous relations can be nicely expressing using these generating functions.

Stevan Gajović 03/09/2021 27 / 32

Main theorem 1+2

Theorem (BCFG)

We have the following power series identities in two variables t and u:

$$\sum_{d=0}^{\infty}\mathcal{A}_d(pt)u^d=\left(\sum_{d=0}^{\infty}\mathcal{B}_d(t)u^d\right)^p;$$

$$\sum_{d=0}^{\infty} \mathcal{R}_d(t) u^d = \left(\sum_{d=0}^{\infty} \mathcal{A}_d(\rho t) u^d\right) \left(\sum_{d=0}^{\infty} \mathcal{B}_d(t) u^d\right) = \left(\sum_{d=0}^{\infty} \mathcal{B}_d(t) u^d\right)^{\rho+1};$$

$$\mathcal{B}_d(t) - t\mathcal{B}_d(t/p) = \Phi\left(\mathcal{A}_d(t) - t\mathcal{A}_d(pt)\right),$$

where $\Phi(\sum_{n>0} c_n t^n) = \sum_{n>0} c_n p^{-\binom{n}{2}} t^n$.

Theorem (BCFG)

- $\alpha(n,d)$, $\beta(n,d)$ and $\rho(n,d)$ are rational functions of p.
- $\rho(n,d)(p) = \rho(n,d)(1/p); \ \alpha(n,d)(p) = \beta(n,d)(1/p).$

Main theorem 3

Theorem (BCFG)

- A_d , B_d and R_d are polynomials of degree at most 2d.
- $\alpha(n,d)$, $\beta(n,d)$, and $\rho(n,d)$ are independent of n provided that n is sufficiently large relative to d.

Stevan Gajović 03/09/2021 29 / 32

Main theorem 3

Theorem (BCFG)

- A_d , B_d and R_d are polynomials of degree at most 2d.
- $\alpha(n,d)$, $\beta(n,d)$, and $\rho(n,d)$ are independent of n provided that n is sufficiently large relative to d.

Proof - Idea.

- Denote the subset of polynomials in $\mathbb{Z}_p[x]_d^1$ that split completely by $\mathbb{Z}_p[x]_d^{1 \text{ split}}$.
- Consider the multiplication map $\mathbb{Z}_p[x]_d^{1 \text{split}} \times \mathbb{Z}_p[x]_{n-d}^1 \to \mathbb{Z}_p[x]_n^1$.
- $\alpha(n, d)$ is the *p*-adic measure of the image of the multiplication map, viewed as a multiset.

$$\implies \alpha(n,d) = \int_{g \in \mathbb{Z}_p[x]_d^{1 \text{ split}}} \int_{h \in \mathbb{Z}_p[x]_a^{1}} |\operatorname{Res}(g,h)|_p \ dh \ dg.$$

29 / 32

• The inner integral is independent of $n \ge 2d$.

Stevan Gajović 03/09/2021

The density of p-adic polynomials with a root

- $1 \rho^*(n, 0) =$ the probability that a random polynomial of degree n over \mathbb{Z}_p has at least one root over \mathbb{Q}_p .
- $\rho^*(n,0) = \sum_{d=0}^n (-1)^d \rho(n,d)$, likewise for the α 's and β 's.

Stevan Gajović 03/09/2021 30 / 32

The density of p-adic polynomials with a root

- $1 \rho^*(n, 0) =$ the probability that a random polynomial of degree n over \mathbb{Z}_p has at least one root over \mathbb{Q}_p .
- $\rho^*(n,0) = \sum_{d=0}^n (-1)^d \rho(n,d)$, likewise for the α 's and β 's.
- Then

$$A^*(t) := (1-t)\sum_{n=0}^{\infty} \alpha^*(n,0)t^n = \sum_{d=0}^{\infty} (-1)^d A_d(t),$$

$$\mathcal{B}^*(t) := (1-t)\sum_{n=0}^{\infty} \beta^*(n,0)t^n = \sum_{d=0}^{\infty} (-1)^d \mathcal{B}_d(t),$$

$$\mathcal{R}^*(t) := (1-t)(1-pt)\sum_{n=0}^{\infty} rac{p^{n+1}-1}{p-1}
ho^*(n,0)t^n = \sum_{d=0}^{\infty} (-1)^d \mathcal{R}_d(t).$$

Stevan Gajović 03/09/2021 30 / 32

More results

• Our theorem specialises to (by setting u = -1)

Theorem

$$egin{align} \mathcal{A}^*(extit{p}t) &= \mathcal{B}^*(t)^p, \ \mathcal{R}^*(t) &= \mathcal{A}^*(extit{p}t)\mathcal{B}^*(t) &= \mathcal{B}^*(t)^{p+1}, \ \mathcal{B}^*(t) - t\mathcal{B}^*(t/p) &= \Phi(\mathcal{A}^*(t) - t\mathcal{B}^*(extit{p}t)), \ \end{pmatrix}$$

where Φ is as before.

The same symmetry in p holds.

Stevan Gajović 03/09/2021 31/32

More results

• Our theorem specialises to (by setting u = -1)

Theorem

$$egin{align} \mathcal{A}^*(extit{pt}) &= \mathcal{B}^*(t)^p, \ \mathcal{R}^*(t) &= \mathcal{A}^*(extit{pt}) \mathcal{B}^*(t) &= \mathcal{B}^*(t)^{p+1}, \ \mathcal{B}^*(t) &- t \mathcal{B}^*(t/p) &= \Phi(\mathcal{A}^*(t) - t \mathcal{B}^*(extit{pt})), \ \end{pmatrix}$$

where Φ is as before.

The same symmetry in p holds.

• Asymptotic results when $p \to \infty$ and $n \to \infty$.

Stevan Gajović 03/09/2021 31/32

The end

Thank you for your attention!

Question

Any questions?

Stevan Gajović 03/09/2021 32 / 32

Asymptotic results when $p o \infty$

Proposition

(a) Let $0 \le d \le n$ be integers. Then

$$\lim_{p\to\infty}\alpha(n,d)=\lim_{p\to\infty}\rho(n,d)=\frac{1}{d!}.$$

(b) Let $0 \le r \le n$ be integers. Then

$$\lim_{p \to \infty} \rho^*(n,r) = \lim_{p \to \infty} \alpha^*(n,r) = \sum_{d=0}^n (-1)^{d-r} \binom{d}{r} \frac{1}{d!} = \frac{1}{r!} \sum_{d=0}^{n-r} (-1)^d \frac{1}{d!}.$$

Hence, if we also let $n \to \infty$, we obtain

$$\lim_{n\to\infty}\lim_{p\to\infty}\rho^*(n,r)=\lim_{n\to\infty}\lim_{p\to\infty}\alpha^*(n,r)=\frac{1}{r!}e^{-1}.$$

 Stevan Gajović
 03/09/2021
 32 / 32