The density of polynomials of degree n over \mathbb{Z}_{p} having exactly r roots in \mathbb{Q}_{p}

Stevan Gajović (University of Groningen)
Joint work with Manjul Bhargava (Princeton University), John Cremona (University of Warwick), and Tom Fisher (University of Cambridge)

Branching from number theory: p-adics in the sciences, Max Planck Institute for Mathematics in the Sciences in Leipzig, 03/09/2021

university of groningen

Motivation

- Forthcoming work of M. Bhargava, J. Cremona, T. Fisher:
* "The density of hyperelliptic curves over \mathbb{Q} of genus g that have points everywhere locally"
- Hyperelliptic curves given by (affine equation) $C: y^{2}=f(x)$, $f \in \mathbb{Z}[x]$.
- Simpler question - when C has an affine Weierstrass point locally?
- Extend to a fixed number of zeros.
- Related work:
* Buhler, Goldstein, Moews, and Rosenberg - p-adic polynomial splitting
* Caruso; Evans; Kulkarni and Lerario; Shmueli (all indenpendently) expectations of the number of roots of p-adic polynomials

Magic of \mathbb{Q}_{p}

Theorem (Polynomial Hensel's lemma)

- $f \in \mathbb{Z}_{p}[x]$.
- Assume that its reduction modulo p, \bar{f}, factors over $\mathbb{F}_{p}[x]$ as
- $\bar{f}=\bar{g} \bar{h}$ such that
- $\bar{g}, \bar{h} \in \mathbb{F}_{p}[x]$ are coprime polynomials in $\mathbb{F}_{p}[x]$, and g is monic.
- There exists a factorization $f=g h$ where
- $g, h \in \mathbb{Z}_{p}[x], g$ and h reduce modulo p to \bar{g} and \bar{h}, respectively,
- g is monic of degree $\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$.

Magic of \mathbb{Q}_{p}

Theorem (Polynomial Hensel's lemma)

- $f \in \mathbb{Z}_{p}[x]$.
- Assume that its reduction modulo p, \bar{f}, factors over $\mathbb{F}_{p}[x]$ as
- $\bar{f}=\bar{g} \bar{h}$ such that
- $\bar{g}, \bar{h} \in \mathbb{F}_{p}[x]$ are coprime polynomials in $\mathbb{F}_{p}[x]$, and g is monic.
- There exists a factorization $f=g h$ where
- $g, h \in \mathbb{Z}_{p}[x], g$ and h reduce modulo p to \bar{g} and \bar{h}, respectively,
- g is monic of degree $\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$.

Theorem (Hensel's lemma - simple version)

- $f \in \mathbb{Z}_{p}[x]$.
- $x_{0} \in \mathbb{Z}_{p}$ is a simple root of f modulo p, i.e., that $f\left(x_{0}\right) \equiv 0(\bmod p)$ and $f^{\prime}\left(x_{0}\right) \not \equiv 0(\bmod p)$.
- There is a unique $X_{0} \in \mathbb{Z}_{p}$ such that $X_{0} \equiv x_{0}(\bmod p)$ and $f\left(X_{0}\right)=0$.

Haar measure on \mathbb{Z}_{p} and probability

- \mathbb{Z}_{p} possesses the normalized Haar measure $\mu_{p}\left(\mu_{p}\left(\mathbb{Z}_{p}\right)=1\right)$.

Haar measure on \mathbb{Z}_{p} and probability

- \mathbb{Z}_{p} possesses the normalized Haar measure $\mu_{p}\left(\mu_{p}\left(\mathbb{Z}_{p}\right)=1\right)$.
- For any $k \in \mathbb{F}_{p}$, denote $D_{k}=\left\{x \in \mathbb{Z}_{p}: x \equiv k(\bmod p)\right\}$.
- Hence, $\mu_{p}\left(D_{k}\right)=\frac{1}{p}$, for all $k \in \mathbb{F}_{p}$
- Similarly, $\mu_{p}\left(p^{m} \mathbb{Z}_{p}+a\right)=\mu_{p}\left(p^{m} \mathbb{Z}_{p}\right)=\frac{1}{p^{m}}$, for any $a \in \mathbb{Z}_{p}$.

Haar measure on \mathbb{Z}_{p} and probability

- \mathbb{Z}_{p} possesses the normalized Haar measure $\mu_{p}\left(\mu_{p}\left(\mathbb{Z}_{p}\right)=1\right)$.
- For any $k \in \mathbb{F}_{p}$, denote $D_{k}=\left\{x \in \mathbb{Z}_{p}: x \equiv k(\bmod p)\right\}$.
- Hence, $\mu_{p}\left(D_{k}\right)=\frac{1}{p}$, for all $k \in \mathbb{F}_{p}$
- Similarly, $\mu_{p}\left(p^{m} \mathbb{Z}_{p}+a\right)=\mu_{p}\left(p^{m} \mathbb{Z}_{p}\right)=\frac{1}{p^{m}}$, for any $a \in \mathbb{Z}_{p}$.
- We extend μ_{p} to \mathbb{Z}_{p}^{n} for any $n \in \mathbb{N}$. Then $\mu_{p}\left(\mathbb{Z}_{p}^{n}\right)=1$.

Haar measure on \mathbb{Z}_{p} and probability

- \mathbb{Z}_{p} possesses the normalized Haar measure $\mu_{p}\left(\mu_{p}\left(\mathbb{Z}_{p}\right)=1\right)$.
- For any $k \in \mathbb{F}_{p}$, denote $D_{k}=\left\{x \in \mathbb{Z}_{p}: x \equiv k(\bmod p)\right\}$.
- Hence, $\mu_{p}\left(D_{k}\right)=\frac{1}{p}$, for all $k \in \mathbb{F}_{p}$
- Similarly, $\mu_{p}\left(p^{m} \mathbb{Z}_{p}+a\right)=\mu_{p}\left(p^{m} \mathbb{Z}_{p}\right)=\frac{1}{p^{m}}$, for any $a \in \mathbb{Z}_{p}$.
- We extend μ_{p} to \mathbb{Z}_{p}^{n} for any $n \in \mathbb{N}$. Then $\mu_{p}\left(\mathbb{Z}_{p}^{n}\right)=1$.
- Let $V \subseteq \mathbb{Z}_{p}^{n}$. Then $\int_{V} d \mu_{p}=\mu_{p}(V)$.

Haar measure on \mathbb{Z}_{p} and probability

- \mathbb{Z}_{p} possesses the normalized Haar measure $\mu_{p}\left(\mu_{p}\left(\mathbb{Z}_{p}\right)=1\right)$.
- For any $k \in \mathbb{F}_{p}$, denote $D_{k}=\left\{x \in \mathbb{Z}_{p}: x \equiv k(\bmod p)\right\}$.
- Hence, $\mu_{p}\left(D_{k}\right)=\frac{1}{p}$, for all $k \in \mathbb{F}_{p}$
- Similarly, $\mu_{p}\left(p^{m} \mathbb{Z}_{p}+a\right)=\mu_{p}\left(p^{m} \mathbb{Z}_{p}\right)=\frac{1}{p^{m}}$, for any $a \in \mathbb{Z}_{p}$.
- We extend μ_{p} to \mathbb{Z}_{p}^{n} for any $n \in \mathbb{N}$. Then $\mu_{p}\left(\mathbb{Z}_{p}^{n}\right)=1$.
- Let $V \subseteq \mathbb{Z}_{p}^{n}$. Then $\int_{V} d \mu_{p}=\mu_{p}(V)$.
- The density of $V \subseteq \mathbb{Z}_{p}^{n}$ is $\mu_{p}(V)$.
- The density of $p^{m} \mathbb{Z}_{p}$ inside \mathbb{Z}_{p} is $\frac{1}{p^{m}}$. "Probability" that a random element $a \in \mathbb{Z}_{p}$ is divisible by p^{m} is $\frac{1}{p^{m}}=\mu_{p}\left(p^{m} \mathbb{Z}_{p}\right)$.
- The probability of some event parametrised by \mathbb{Z}_{p}^{n} is the density of the subset of \mathbb{Z}_{p}^{n} on which this event realises.

Haar measure on \mathbb{Z}_{p} - polynomial probability

- Let R be a ring.
- $R[x]_{n}=$ all polynomials in $R[x]$ of degree at most n.
- $R[x]_{n}^{1}=$ all monic polynomials in $R[x]$ of degree n.

Haar measure on \mathbb{Z}_{p} - polynomial probability

- Let R be a ring.
- $R[x]_{n}=$ all polynomials in $R[x]$ of degree at most n.
- $R[x]_{n}^{1}=$ all monic polynomials in $R[x]$ of degree n.
- $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[x]_{n} \leftrightarrow\left(a_{n}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}_{p}^{n+1}$.
- $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[x]_{n}^{1} \leftrightarrow\left(a_{n-1}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}_{p}^{n}$.

Haar measure on \mathbb{Z}_{p} - polynomial probability

- Let R be a ring.
- $R[x]_{n}=$ all polynomials in $R[x]$ of degree at most n.
- $R[x]_{n}^{1}=$ all monic polynomials in $R[x]$ of degree n.
- $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[x]_{n} \leftrightarrow\left(a_{n}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}_{p}^{n+1}$.
- $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[x]_{n}^{1} \leftrightarrow\left(a_{n-1}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}_{p}^{n}$.
- Consider monic polynomials of degree n that have property \mathcal{P}.
- There is $S \in \mathbb{Z}_{p}^{n}$ that corresponds to polynomials with property \mathcal{P}.
- The probability of property \mathcal{P} is then $\mu_{p}(S)$ as a subset of \mathbb{Z}_{p}^{n}.

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};
(2) those for which \bar{f} has a simple root over \mathbb{F}_{p};

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};
(2) those for which \bar{f} has a simple root over \mathbb{F}_{p};
(3) those for which \bar{f} has roots over \mathbb{F}_{p}, but no simple roots.

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};
(2) those for which \bar{f} has a simple root over \mathbb{F}_{p};
(3) those for which \bar{f} has roots over \mathbb{F}_{p}, but no simple roots.
- Then
(1) do not have roots over \mathbb{Q}_{p};

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};
(2) those for which \bar{f} has a simple root over \mathbb{F}_{p};
(3) those for which \bar{f} has roots over \mathbb{F}_{p}, but no simple roots.
- Then
(1) do not have roots over \mathbb{Q}_{p};
(2) Hensel's lemma \Longrightarrow have at least one root over \mathbb{Q}_{p};

Strategy

- Consider a problem to determine the probability that a random monic $f \in \mathbb{Z}_{p}[x]$ of degree n has at least one root in \mathbb{Q}_{p}.
- Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which \bar{f} has no roots over \mathbb{F}_{p};
(2) those for which \bar{f} has a simple root over \mathbb{F}_{p};
(3) those for which \bar{f} has roots over \mathbb{F}_{p}, but no simple roots.
- Then
(1) do not have roots over \mathbb{Q}_{p};
(2) Hensel's lemma \Longrightarrow have at least one root over \mathbb{Q}_{p};
(3) the hardest case, we do not know the exact answer, needs further investigation (need Hensel's lemma for polynomials).

Strategy

- General strategy is
(1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_{p};

Strategy

- General strategy is
(1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_{p};
(2) Compute probabilities of each splitting type;

Strategy

- General strategy is
(1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_{p};
(2) Compute probabilities of each splitting type;
(3) Compute the probability that f has a root in each splitting type.

Strategy

- General strategy is
(1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_{p};
(2) Compute probabilities of each splitting type;
(3) Compute the probability that f has a root in each splitting type.
(4) Sum the products of last two probabilities over all splitting types of degree n.

Strategy

- General strategy is
(1) Consider all possible factorisations (=splitting types) of polynomials f over \mathbb{F}_{p};
(2) Compute probabilities of each splitting type;
(3) Compute the probability that f has a root in each splitting type.
(4) Sum the products of last two probabilities over all splitting types of degree n.
- $\alpha_{n}:=$ the probability that a random monic polynomial of degree n has a root in \mathbb{Q}_{p} (equivalently in \mathbb{Z}_{p}).
- $\beta_{n}:=$ the same probability under the condition that $f \equiv x^{n}(\bmod p)$.
- Goal: As practise, compute α_{n}, β_{n}.

Irreducible polynomials over \mathbb{F}_{p}

Theorem

The number of monic irreducible polynomials of degree n in $\mathbb{F}_{p}[x]$ is equal to ($\mu: \mathbb{N} \rightarrow\{0,-1,1\}$ is the Möbius funciton)

$$
N_{n}:=\frac{\sum_{k \mid n} \mu(k) p^{\frac{n}{k}}}{n} .
$$

(*) $N_{1}=p$;
(*) $N_{q}=\frac{p^{q}-p}{q}$ for q a prime number;
$\left(^{*}\right) N_{q^{2}}=\frac{p^{q^{2}}-p^{q}}{q^{2}}$ for q a prime number;
$\left(^{*}\right)$ Important: $N_{n}=\frac{p^{n}+o\left(p^{n}\right)}{n}$.

Factorization probabilities

- Splitting type of degree n is a tuple $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \cdots d_{t}^{e_{t}}\right)$ where the d_{j} and e_{j} are positive integers satisfying $\sum d_{j} e_{j}=n$.

Factorization probabilities

- Splitting type of degree n is a tuple $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \cdots d_{t}^{e_{t}}\right)$ where the d_{j} and e_{j} are positive integers satisfying $\sum d_{j} e_{j}=n$.
- $\mathcal{S}(n):=$ the set of all splitting types of degree n.
- Fix $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \ldots d_{t}^{e_{t}}\right) \in \mathcal{S}(n)$.

Factorization probabilities

- Splitting type of degree n is a tuple $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \cdots d_{t}^{e_{t}}\right)$ where the d_{j} and e_{j} are positive integers satisfying $\sum d_{j} e_{j}=n$.
- $\mathcal{S}(n):=$ the set of all splitting types of degree n.
- Fix $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \ldots d_{t}^{e_{t}}\right) \in \mathcal{S}(n)$.
- A monic polynomial f in $\mathbb{F}_{p}[x]$ of degree n has splitting type σ if
(1) f factors as $f(x)=\prod_{j=1}^{t} f_{j}(x)^{e_{j}}$,
(2) f_{j} are distinct irreducible monic polynomials over \mathbb{F}_{p},
(3) $\operatorname{deg}\left(f_{j}\right)=d_{j}$, for all $1 \leq j \leq t$.

Factorization probabilities

- Splitting type of degree n is a tuple $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \cdots d_{t}^{e_{t}}\right)$ where the d_{j} and e_{j} are positive integers satisfying $\sum d_{j} e_{j}=n$.
- $\mathcal{S}(n):=$ the set of all splitting types of degree n.
- Fix $\sigma=\left(d_{1}^{e_{1}} d_{2}^{e_{2}} \ldots d_{t}^{e_{t}}\right) \in \mathcal{S}(n)$.
- A monic polynomial f in $\mathbb{F}_{p}[x]$ of degree n has splitting type σ if
(1) f factors as $f(x)=\prod_{j=1}^{t} f_{j}(x)^{e_{j}}$,
(2) f_{j} are distinct irreducible monic polynomials over \mathbb{F}_{p},
(3) $\operatorname{deg}\left(f_{j}\right)=d_{j}$, for all $1 \leq j \leq t$.

Irreducible factorization of f	$\sigma(f)=$ splitting type of f	Degree
$x^{2}(x+1)\left(x^{2}+1\right)\left(x^{3}+2\right)^{4}$	$\left(3^{4} 21^{2} 1\right)$	17

- $\lambda(\sigma)=$ the probability that a degree n monic polynomial $f \in \mathbb{F}_{p}[x]$ has splitting type σ - it is a rational function of p.

Degrees $n=2$ and $n=3$ - quickly

- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=2$ - blackboard.

Degrees $n=2$ and $n=3$ - quickly

- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=2$ - blackboard.
- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=3$.
- We make the table of possible splitting types of \bar{f} over \mathbb{F}_{p} and the number of them.

(3)	$N_{3}=\frac{p^{3}-p}{3}$
(21)	$N_{2} N_{1}=\frac{p^{3}-p^{2}}{2}$
$\left(1^{3}\right)$	$N_{1}=p$
$\left(1^{2} 1\right)$	$N_{1}\left(N_{1}-1\right)=p(p-1)$
(111)	$\binom{N_{1}}{3}=\frac{p(p-1)(p-2)}{6}$

Degrees $n=2$ and $n=3$ - quickly

- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=2$ - blackboard.
- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=3$.
- We make the table of possible splitting types of \bar{f} over \mathbb{F}_{p} and the number of them.

Degrees $n=2$ and $n=3$ - quickly

- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=2$ - blackboard.
- Let $f \in \mathbb{Z}_{p}[x]$ be a monic polynomial of degree $n=3$.
- We make the table of possible splitting types of \bar{f} over \mathbb{F}_{p} and the number of them.

$$
\begin{aligned}
& \begin{array}{|l|r|}
\hline(3) & N_{3}=\frac{p^{3}-p}{3} \\
\hline(21) & N_{2} N_{1}=\frac{p^{3}-p^{2}}{2} \\
\hline\left(1^{3}\right) & N_{1}=p \\
\hline\left(1^{2} 1\right) & N_{1}\left(N_{1}-1\right)=p(p-1) \\
\hline(111) & \binom{N_{1}}{3}=\frac{p(p-1)(p-2)}{6} \\
\hline
\end{array} \\
& \Longrightarrow \alpha_{3}=\frac{p^{3}-p^{2}}{2 p^{3}}+\frac{p(p-1)}{p^{3}}+\frac{p(p-1)(p-2)}{6 p^{3}}+\frac{p}{p^{3}} \beta_{3} .
\end{aligned}
$$

- We want to compute β_{3} - blackboard.

Degree $n=4$

- Table of splitting types of degree 4 with probabilities:

(1)	(4)	$N_{4}=\frac{p^{4}-p^{2}}{4}$	0
(2)	(31)	$N_{3} N_{1}=\frac{p^{4}-p^{2}}{3}$	1
(3)	$\left(2^{2}\right)$	$N_{2}=\frac{p^{2}-p}{2}$	0
(4)	(22)	$\binom{N_{2}}{2}=\frac{\left(p^{2}-p\right)\left(p^{2}-p-2\right)}{8}$	0
(5)	$\left(21^{2}\right)$	$N_{2} N_{1}=\frac{p^{3}-p^{2}}{2}$	β_{2}
(6)	(211)	$N_{2}\binom{N_{1}}{2}=\frac{p^{2}(p-1)^{2}}{4}$	1
(7)	$\left(1^{4}\right)$	$N_{1}=p$	β_{4}
(8)	$\left(1^{3} 1\right)$	$N_{1}\left(N_{1}-1\right)=p(p-1)$	1
(9)	$\left(1^{2} 1^{2}\right)$	$\binom{N_{1}}{2}=\frac{p(p-1)}{2}$	$1-\left(1-\beta_{2}\right)^{2}$
(10)	$\left(1^{2} 11\right)$	$N_{1}\binom{N_{1}-1}{2}=\frac{p(p-1)(p-2)}{2}$	1
(11)	(1111)	$\binom{N_{1}}{4}=\frac{p(p-1)(p-2)(p-3)}{24}$	1

Case $n=4$ - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a linear polynomial is random?

Question

Can we assume in (9) the same thing? Are these two polynomials "independent"?

Case $n=4$ - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a linear polynomial is random?

Question

Can we assume in (9) the same thing? Are these two polynomials "independent"?

Answers

Yes - by Hensel's polynomial lemma!

- We know how to express β_{4} in terms of α_{1}, α_{2}, and α_{4}.
- \Longrightarrow Compute α_{4} and β_{4}.

Definitions

- Denote the density of the following subset of polynomials in $\mathbb{Z}_{p}[x]$ having exactly $r(0 \leq r \leq n)$ roots in \mathbb{Q}_{p}
$\left(1^{*}\right)$ for degree n polynomials $f \in \mathbb{Z}_{p}[x]$ by $\rho^{*}(n, r)$;
$\left(2^{*}\right)$ for monic degree n polynomials $f \in \mathbb{Z}_{p}[x]$ by $\alpha^{*}(n, r)$;
$\left(3^{*}\right)$ for monic degree n polynomials $f \in \mathbb{Z}_{p}[x]$ such that $f \equiv x^{n}(\bmod p)$ by $\beta^{*}(n, r)$.

Definitions

- Denote the density of the following subset of polynomials in $\mathbb{Z}_{p}[x]$ having exactly $r(0 \leq r \leq n)$ roots in \mathbb{Q}_{p}
$\left(1^{*}\right)$ for degree n polynomials $f \in \mathbb{Z}_{p}[x]$ by $\rho^{*}(n, r)$;
$\left(2^{*}\right)$ for monic degree n polynomials $f \in \mathbb{Z}_{p}[x]$ by $\alpha^{*}(n, r)$;
$\left(3^{*}\right)$ for monic degree n polynomials $f \in \mathbb{Z}_{p}[x]$ such that $f \equiv x^{n}(\bmod p)$ by $\beta^{*}(n, r)$.
- Consider, for $0 \leq d \leq n$

$$
\rho(n, d)=\sum_{r=0}^{n}\binom{r}{d} \rho^{*}(n, r) .
$$

- Recall: $\binom{r}{d}=$ the number of subsets of size d of a set of size r.
- $\Longrightarrow \rho(n, d)=$ the expected number of sets of size d (d-sets) of \mathbb{Q}_{p}-roots of a random polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n.

Relations

- Denote the expected number of sets of size d (d-sets) $(0 \leq d \leq n)$ of \mathbb{Q}_{p}-roots of
(1) a random polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n by $\rho(n, d)$;
(2) a random monic polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n by $\alpha(n, d)$;
(3) a random monic polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n that reduces to x^{n} modulo p by $\beta(n, d)$.

Relations

- Denote the expected number of sets of size d (d-sets) $(0 \leq d \leq n)$ of \mathbb{Q}_{p}-roots of
(1) a random polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n by $\rho(n, d)$;
(2) a random monic polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n by $\alpha(n, d)$;
(3) a random monic polynomial $f \in \mathbb{Z}_{p}[x]$ of degree n that reduces to x^{n} modulo p by $\beta(n, d)$.
- There is an inversion formula for $0 \leq r \leq n$

$$
\rho^{*}(n, r)=\sum_{d=0}^{n}(-1)^{d-r}\binom{d}{r} \rho(n, d)
$$

- Analogous relations hold for α 's and β 's.
- If we can compute all values of ρ or ρ^{*}, we can compute all values of the other one.

Examples - expectations of the number of roots

- Results by Caruso; Evans; Kulkarni and Lerario; Shmueli:

$$
\alpha(n, 1)=\left\{\begin{array}{cl}
1 & \text { if } n=1, \\
\frac{p}{p+1} & \text { if } n \geq 2,
\end{array} \quad \beta(n, 1)=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
\frac{1}{p+1} & \text { if } n \geq 2
\end{array}\right.\right.
$$

and

$$
\rho(n, 1)=1 \text { for all } n \geq 1
$$

Examples - small degrees

- Note $\rho^{*}(n, n-1)=\alpha^{*}(n, n-1)=\beta^{*}(n, n-1)=0$.
- Buhler et al: $\rho^{*}(n, n)=\rho(n, n)$ and $\alpha^{*}(n, n)=\alpha(n, n)$.

Examples - small degrees

- Note $\rho^{*}(n, n-1)=\alpha^{*}(n, n-1)=\beta^{*}(n, n-1)=0$.
- Buhler et al: $\rho^{*}(n, n)=\rho(n, n)$ and $\alpha^{*}(n, n)=\alpha(n, n)$.
- $\rho^{*}(2,2)=\frac{1}{2} \Longrightarrow \rho^{*}(2,0)=\frac{1}{2}$.
- $\alpha^{*}(2,2)=\frac{1}{2} \frac{p}{p+1} \Longrightarrow \alpha^{*}(2,0)=\frac{1}{2} \frac{p+2}{p+1}$.

Examples - small degrees

- Note $\rho^{*}(n, n-1)=\alpha^{*}(n, n-1)=\beta^{*}(n, n-1)=0$.
- Buhler et al: $\rho^{*}(n, n)=\rho(n, n)$ and $\alpha^{*}(n, n)=\alpha(n, n)$.
- $\rho^{*}(2,2)=\frac{1}{2} \Longrightarrow \rho^{*}(2,0)=\frac{1}{2}$.
- $\alpha^{*}(2,2)=\frac{1}{2} \frac{p}{p+1} \Longrightarrow \alpha^{*}(2,0)=\frac{1}{2} \frac{p+2}{p+1}$.
- $\rho^{*}(3,3)=\gamma$, where $\gamma=\frac{\left(p^{2}+1\right)^{2}}{6\left(p^{4}+p^{3}+p^{2}+p+1\right)}$.
- $\rho^{*}(3,0)+\rho^{*}(3,1)+\rho^{*}(3,3)=1$.
- $1=\rho(3,1)=\binom{0}{1} \rho^{*}(3,0)+\binom{1}{1} \rho^{*}(3,1)+\binom{3}{1} \rho^{*}(3,3)$.
- $\Longrightarrow \rho^{*}(3,0)=2 \gamma, \rho^{*}(3,1)=1-3 \gamma$.

Examples - small degrees

- Note $\rho^{*}(n, n-1)=\alpha^{*}(n, n-1)=\beta^{*}(n, n-1)=0$.
- Buhler et al: $\rho^{*}(n, n)=\rho(n, n)$ and $\alpha^{*}(n, n)=\alpha(n, n)$.
- $\rho^{*}(2,2)=\frac{1}{2} \Longrightarrow \rho^{*}(2,0)=\frac{1}{2}$.
- $\alpha^{*}(2,2)=\frac{1}{2} \frac{p}{p+1} \Longrightarrow \alpha^{*}(2,0)=\frac{1}{2} \frac{p+2}{p+1}$.
- $\rho^{*}(3,3)=\gamma$, where $\gamma=\frac{\left(p^{2}+1\right)^{2}}{6\left(p^{4}+p^{3}+p^{2}+p+1\right)}$.
- $\rho^{*}(3,0)+\rho^{*}(3,1)+\rho^{*}(3,3)=1$.
- $1=\rho(3,1)=\binom{0}{1} \rho^{*}(3,0)+\binom{1}{1} \rho^{*}(3,1)+\binom{3}{1} \rho^{*}(3,3)$.
- $\Longrightarrow \rho^{*}(3,0)=2 \gamma, \rho^{*}(3,1)=1-3 \gamma$.
- $\alpha^{*}(3,0)=\frac{1}{p+1}+2 \gamma^{\prime}, \alpha^{*}(3,1)=\frac{p}{p+1}-3 \gamma^{\prime}, \alpha^{*}(3,3)=\gamma^{\prime}$, where
- $\gamma^{\prime}=\frac{1}{6} \frac{p^{5}-p^{4}+p^{3}}{(p+1)\left(p^{4}+p^{3}+p^{2}+p+1\right)}$.

Measure-preserving bijections

Lemma

$\left(^{*}\right)$ Let $A \subset \mathbb{Z}_{p}[x]_{m}^{1}, B \subset \mathbb{Z}_{p}[x]_{n}^{1}$, and $A B \subset \mathbb{Z}_{p}[x]_{m+n}^{1}$ or
$\left(^{*}\right)$ Let $A \subset \mathbb{Z}_{p}[x]_{m}^{1}, B \subset \mathbb{Z}_{p}[x]_{n}$, and $A B \subset \mathbb{Z}_{p}[x]_{m+n}$ be measurable subsets such that multiplication induces a bijection

$$
A \times B \rightarrow A B=\{a b \mid a \in A, b \in B\}
$$

If the resultant of a and b satisfies $\operatorname{Res}(a, b) \in \mathbb{Z}_{p}^{*}$ for all $a \in A, b \in B$, then the bijection is measure-preserving.

Measure-preserving bijections

Lemma

(*) Let $A \subset \mathbb{Z}_{p}[x]_{m}^{1}, B \subset \mathbb{Z}_{p}[x]_{n}^{1}$, and $A B \subset \mathbb{Z}_{p}[x]_{m+n}^{1}$ or
$\left(^{*}\right)$ Let $A \subset \mathbb{Z}_{p}[x]_{m}^{1}, B \subset \mathbb{Z}_{p}[x]_{n}$, and $A B \subset \mathbb{Z}_{p}[x]_{m+n}$ be measurable subsets such that multiplication induces a bijection

$$
A \times B \rightarrow A B=\{a b \mid a \in A, b \in B\}
$$

If the resultant of a and b satisfies $\operatorname{Res}(a, b) \in \mathbb{Z}_{p}^{*}$ for all $a \in A, b \in B$, then the bijection is measure-preserving.

Proof (sketch-idea).

Change of variables is given by the resultant, which is a unit:

$$
\int_{(a, b) \in A \times B} d \mu_{p}=\int_{a b \in A B}|\operatorname{Res}(a, b)|_{p} d \mu_{p}=\int_{a b \in A B} d \mu_{p} .
$$

Independence of lifts 1

- For $f \in \mathbb{F}_{p}[x]_{n}^{1}$, we define
(1) $P_{f}:=\left\{F \in \mathbb{Z}_{p}[x]_{n}^{1}, \bar{F}=f\right\}$;
(2) $P_{f}^{m}:=\left\{F \in \mathbb{Z}_{p}[x]_{m}, \bar{F}=f\right\}$ for $m \geq n$.

Independence of lifts 1

- For $f \in \mathbb{F}_{p}[x]_{n}^{1}$, we define
(1) $P_{f}:=\left\{F \in \mathbb{Z}_{p}[x]_{n}^{1}, \bar{F}=f\right\}$;
(2) $P_{f}^{m}:=\left\{F \in \mathbb{Z}_{p}[x]_{m}, \bar{F}=f\right\}$ for $m \geq n$.
- Let $f=x^{2}+2$. Then
(1) $P_{f}:=\left\{x^{2}+p a x+(2+p b): a, b \in \mathbb{Z}_{p}\right\}$;
(2) $P_{f}^{4}:=\left\{p a x^{4}+p b x^{3}+(1+p c) x^{2}+p d x+(2+p e): a, b, c, d, e \in \mathbb{Z}_{p}\right\}$;

Independence of lifts 1

- For $f \in \mathbb{F}_{p}[x]_{n}^{1}$, we define
(1) $P_{f}:=\left\{F \in \mathbb{Z}_{p}[x]_{n}^{1}, \bar{F}=f\right\}$;
(2) $P_{f}^{m}:=\left\{F \in \mathbb{Z}_{p}[x]_{m}, \bar{F}=f\right\}$ for $m \geq n$.
- Let $f=x^{2}+2$. Then
(1) $P_{f}:=\left\{x^{2}+p a x+(2+p b): a, b \in \mathbb{Z}_{p}\right\}$;
(2) $P_{f}^{4}:=\left\{p a x^{4}+p b x^{3}+(1+p c) x^{2}+p d x+(2+p e): a, b, c, d, e \in \mathbb{Z}_{p}\right\}$;

Lemma

Suppose that $g, h \in \mathbb{F}_{p}[x]$ are monic and coprime. Then the multiplication map $P_{g} \times P_{h} \rightarrow P_{g h}$ is a measure-preserving bijection.

Independence of lifts 1

- For $f \in \mathbb{F}_{p}[x]_{n}^{1}$, we define
(1) $P_{f}:=\left\{F \in \mathbb{Z}_{p}[x]_{n}^{1}, \bar{F}=f\right\}$;
(2) $P_{f}^{m}:=\left\{F \in \mathbb{Z}_{p}[x]_{m}, \bar{F}=f\right\}$ for $m \geq n$.
- Let $f=x^{2}+2$. Then
(1) $P_{f}:=\left\{x^{2}+p a x+(2+p b): a, b \in \mathbb{Z}_{p}\right\}$;
(2) $P_{f}^{4}:=\left\{p a x^{4}+p b x^{3}+(1+p c) x^{2}+p d x+(2+p e): a, b, c, d, e \in \mathbb{Z}_{p}\right\}$;

Lemma

Suppose that $g, h \in \mathbb{F}_{p}[x]$ are monic and coprime. Then the multiplication map $P_{g} \times P_{h} \rightarrow P_{g h}$ is a measure-preserving bijection.

Proof (sketch-idea).

- Hensel's lemma for polynomials $\Longrightarrow P_{g} \times P_{h} \rightarrow P_{g h}$ is a bijection.
- Previous lemma \Longrightarrow it is measure preserving.

Independence of lifts 1

Corollary

Let $g, h \in \mathbb{F}_{p}[x]$ be coprime monic polynomials. For $f \in P_{\text {gh }}$, let π_{1} and π_{2} denote the projections of $P_{g h}$ onto P_{g} and P_{h}, respectively, under the bijection $P_{g h} \rightarrow P_{g} \times P_{h}$. Then the number of \mathbb{Q}_{p}-roots of $f \in P_{g h}$ is $X+Y$, where $X, Y: P_{g h} \rightarrow\{0,1,2, \ldots\}$ are independent random variables distributed on $f \in P_{g h}$ as the number of \mathbb{Q}_{p}-roots of $\pi_{1}(f) \in P_{g}$ and $\pi_{2}(f) \in P_{h}$, respectively.

- $f=f_{1} f_{2}, f \in P_{g h}, f_{1} \in P_{g}, f_{2} \in P_{h}$.
- Intuition: Count the number of roots f as a sum of numbers of roots of f_{1} and f_{2}, which are independent.

Independence of lifts 2

- Let $m \leq n$, and let $B_{m, n}:=\left\{f \in \mathbb{Z}_{p}[x]_{n}: \bar{f} \in \mathbb{F}_{p}[x]_{m}^{1}\right\}$.

Independence of lifts 2

- Let $m \leq n$, and let $B_{m, n}:=\left\{f \in \mathbb{Z}_{p}[x]_{n}: \bar{f} \in \mathbb{F}_{p}[x]_{m}^{1}\right\}$.
- $B_{2,4}=\left\{p a x^{4}+p b x^{3}+(1+p c) x^{2}+d x+e: a, b, c, d, e \in \mathbb{Z}_{p}\right\}$
- Note that \mathbb{Q}_{p}-roots of polynomials in P_{1}^{n-m} are in $\mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$.

Independence of lifts 2

- Let $m \leq n$, and let $B_{m, n}:=\left\{f \in \mathbb{Z}_{p}[x]_{n}: \bar{f} \in \mathbb{F}_{p}[x]_{m}^{1}\right\}$.
- $B_{2,4}=\left\{p a x^{4}+p b x^{3}+(1+p c) x^{2}+d x+e: a, b, c, d, e \in \mathbb{Z}_{p}\right\}$
- Note that \mathbb{Q}_{p}-roots of polynomials in P_{1}^{n-m} are in $\mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$.

Lemma

For $n \geq m$, the multiplication map

$$
\mathbb{Z}_{p}[x]_{m}^{1} \times P_{1}^{n-m} \rightarrow B_{m, n}
$$

is a measure-preserving bijection.

Independence of lifts 2

Corollary

For $f \in B_{m, n}$, let ψ_{1} and ψ_{2} denote the projections of $B_{m, n}$ onto $\mathbb{Z}_{p}[x]_{m}^{1}$ and P_{1}^{n-m}, respectively, under the bijection $B_{m, n} \rightarrow \mathbb{Z}_{p}[x]_{m}^{1} \times P_{1}^{n-m}$. Let $X, Y: B_{m, n} \rightarrow\{0,1,2, \ldots\}$ be the random variables giving the numbers of roots of $f \in B_{m, n}$ in \mathbb{Z}_{p} and in $\mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$, respectively. Then X and Y are independent random variables distributed on $f \in B_{m, n}$ as the number of \mathbb{Q}_{p}-roots of $\psi_{1}(f)(x) \in \mathbb{Z}_{p}[x]_{m}^{1}$ and of $\psi_{2}(f)^{\mathrm{rev}}(x):=x^{n-m} \psi_{2}(f)(1 / x) \in P_{x^{n-m}}$, respectively.

- $f=p a_{n} x^{n}+\cdots+p a_{m+1} x^{m+1}+a_{m} x^{m}+\cdots+a_{1} x+a_{0}=f_{1} f_{2}$,
- $f_{1}=x^{m}+\cdots+b_{1} x+b_{0}, f_{2}=p c_{n-m} x^{n-m}+\cdots+p c_{1} x+1$.
- $g_{2}=x^{n-m}+p c_{1} x^{n-m-1}+\cdots+p c_{n-m}$.
- Intuition: Count the number of roots f as a sum of numbers of roots of f_{1} and g_{2}, which are independent.

Conditional expectations

(1) Let $f \in \mathbb{F}_{p}[x]_{n}^{1}$.

- $\alpha(n, d \mid f)=$ the expected number of d-sets of \mathbb{Q}_{p}-roots of a polynomial in $P_{f} \subset \mathbb{Z}_{p}[x]_{n}^{1}$.
- Note $\beta(n, d)=\alpha\left(n, d \mid x^{n}\right)$.

Conditional expectations

(1) Let $f \in \mathbb{F}_{p}[x]_{n}^{1}$.

- $\alpha(n, d \mid f)=$ the expected number of d-sets of \mathbb{Q}_{p}-roots of a polynomial in $P_{f} \subset \mathbb{Z}_{p}[x]_{n}^{1}$.
- Note $\beta(n, d)=\alpha\left(n, d \mid x^{n}\right)$.
(2) Let $\sigma \in \mathcal{S}(n)$.
- $\alpha(n, d \mid \sigma)=$ the expected number of d-sets of \mathbb{Q}_{p}-roots of a polynomial in $\mathbb{Z}_{p}[x]_{n}^{1}$ whose $\bmod p$ splitting type is σ.

Writing the α 's in terms of the β^{\prime} s

Lemma

Let $g, h \in \mathbb{F}_{p}[x]$ be monic and coprime. Then

$$
\alpha(\operatorname{deg}(g h), d \mid g h)=\sum_{d_{1}, d_{2} \geq 0, d_{1}+d_{2}=d} \alpha\left(\operatorname{deg}(g), d_{1} \mid g\right) \cdot \alpha\left(\operatorname{deg}(h), d_{2} \mid h\right) .
$$

If h has no roots in \mathbb{F}_{p}, then

$$
\alpha(\operatorname{deg}(g h), d \mid g h)=\alpha(\operatorname{deg}(g), d \mid g)
$$

Writing the α 's in terms of the β 's

Lemma

Let $g, h \in \mathbb{F}_{p}[x]$ be monic and coprime. Then

$$
\alpha(\operatorname{deg}(g h), d \mid g h)=\sum_{d_{1}, d_{2} \geq 0, d_{1}+d_{2}=d} \alpha\left(\operatorname{deg}(g), d_{1} \mid g\right) \cdot \alpha\left(\operatorname{deg}(h), d_{2} \mid h\right)
$$

If h has no roots in \mathbb{F}_{p}, then

$$
\alpha(\operatorname{deg}(g h), d \mid g h)=\alpha(\operatorname{deg}(g), d \mid g)
$$

Proof (sketch-idea).

- Independence of lifts $1+$ fact
- Fact: $\binom{X+Y}{d}=\sum_{d_{1}+d_{2}=d}\binom{X}{d_{1}}\binom{Y}{d_{2}}$ for independent random variables X and Y taking values in \mathbb{N}_{0}.

Writing the α 's in terms of the $\beta^{\prime} s$

Example

$$
\begin{gathered}
\alpha\left(8,2 \mid x^{2}(x+1)\left(x^{2}+3\right)\left(x^{3}+2\right)\right)=\alpha\left(3,2 \mid x^{2}(x+1)\right)= \\
=\alpha\left(2,2 \mid x^{2}\right) \alpha(1,0 \mid x+1)+\alpha\left(2,1 \mid x^{2}\right) \alpha(1,1 \mid x+1)+\alpha\left(2,0 \mid x^{2}\right) \alpha(1,2 \mid x+1)= \\
=\beta(2,2) \beta(1,0)+\beta(2,1) \beta(1,1)+\beta(2,0) \beta(1,2)= \\
=\beta(2,2) \cdot 1+\frac{1}{p+1} \cdot 1+1 \cdot 0=\frac{3}{2(p+1)}
\end{gathered}
$$

Writing the α 's in terms of the β 's

Example

$$
\begin{gathered}
\alpha\left(8,2 \mid x^{2}(x+1)\left(x^{2}+3\right)\left(x^{3}+2\right)\right)=\alpha\left(3,2 \mid x^{2}(x+1)\right)= \\
=\alpha\left(2,2 \mid x^{2}\right) \alpha(1,0 \mid x+1)+\alpha\left(2,1 \mid x^{2}\right) \alpha(1,1 \mid x+1)+\alpha\left(2,0 \mid x^{2}\right) \alpha(1,2 \mid x+1)= \\
=\beta(2,2) \beta(1,0)+\beta(2,1) \beta(1,1)+\beta(2,0) \beta(1,2)= \\
=\beta(2,2) \cdot 1+\frac{1}{p+1} \cdot 1+1 \cdot 0=\frac{3}{2(p+1)}
\end{gathered}
$$

Corollary

Let $\sigma=\left(1^{n_{1}} \cdots 1^{n_{k}} \cdots\right) \in \mathcal{S}(n)$ be a splitting type with exactly $k=m_{1}(\sigma)$ powers of 1 . Then

$$
\alpha(n, d \mid \sigma)=\sum_{d_{1}+\cdots+d_{k}=d} \prod_{i=1}^{k} \beta\left(n_{i}, d_{i}\right)
$$

More about the ρ values

- Primitive polynomials $f \in \mathbb{Z}_{p}[x]$ are those with $\bar{f} \neq 0$.
- We can restrict to primitive polynomials to compute $\rho(n, d)$.
- Let $f \in \mathbb{Z}_{p}[x]$ be a primitive polynomial of degree n.
- Define $m=\operatorname{deg}(\bar{f})$ to be the reduced degree of f.
- For $0 \leq m \leq n$, the density of primitive polynomials $f \in \mathbb{Z}_{p}[x]_{n}$ with reduced degree m is $\frac{p-1}{p^{n+1}-1} p^{m}$.

More about the ρ values

- Primitive polynomials $f \in \mathbb{Z}_{p}[x]$ are those with $\bar{f} \neq 0$.
- We can restrict to primitive polynomials to compute $\rho(n, d)$.
- Let $f \in \mathbb{Z}_{p}[x]$ be a primitive polynomial of degree n.
- Define $m=\operatorname{deg}(\bar{f})$ to be the reduced degree of f.
- For $0 \leq m \leq n$, the density of primitive polynomials $f \in \mathbb{Z}_{p}[x]_{n}$ with reduced degree m is $\frac{p-1}{p^{n+1}-1} p^{m}$.
- $\rho(n, d, m)=$ the expected number of d-sets of \mathbb{Q}_{p}-roots of f as $f \in \mathbb{Z}_{p}[x]_{n}$ runs over polynomials of degree n with reduced degree m.
- Conditioning on the value of $m \Longrightarrow$

Lemma

$$
\rho(n, d)=\frac{p-1}{p^{n+1}-1} \sum_{m=0}^{n} p^{m} \rho(n, d, m)
$$

Further formulas between α 's, β^{\prime} s and ρ 's

Lemma (ρ 's in terms of α 's and β^{\prime} 's)

We have

$$
\begin{equation*}
\rho(n, d, m)=\sum_{d_{1}+d_{2}=d} \alpha\left(m, d_{1}\right) \cdot \beta\left(n-m, d_{2}\right) \tag{1}
\end{equation*}
$$

Further formulas between α 's, β^{\prime} s and ρ^{\prime} s

Lemma (ρ 's in terms of α 's and β^{\prime} 's)

We have

$$
\begin{equation*}
\rho(n, d, m)=\sum_{d_{1}+d_{2}=d} \alpha\left(m, d_{1}\right) \cdot \beta\left(n-m, d_{2}\right) . \tag{1}
\end{equation*}
$$

Proof (sketch-idea).

- f has reduced degree $m \Longrightarrow f=c g$, with $c \in \mathbb{Z}_{p}^{*}$ and $g \in B_{m, n}$.
- $g=g_{1} g_{2}$, with $\left(g_{1}, g_{2}\right) \in \mathbb{Z}_{p}[x]_{m}^{1} \times P_{1}^{n-m}$.
- Use: Independence of lifts $2+$ fact.

Further formulas between α 's, β^{\prime} s and ρ^{\prime} s

Lemma (ρ 's in terms of α 's and β^{\prime} 's)

We have

$$
\begin{equation*}
\rho(n, d, m)=\sum_{d_{1}+d_{2}=d} \alpha\left(m, d_{1}\right) \cdot \beta\left(n-m, d_{2}\right) . \tag{1}
\end{equation*}
$$

Proof (sketch-idea).

- f has reduced degree $m \Longrightarrow f=c g$, with $c \in \mathbb{Z}_{p}^{*}$ and $g \in B_{m, n}$.
- $g=g_{1} g_{2}$, with $\left(g_{1}, g_{2}\right) \in \mathbb{Z}_{p}[x]_{m}^{1} \times P_{1}^{n-m}$.
- Use: Independence of lifts $2+$ fact.

Lemma (β^{\prime} s in terms of α 's)

Fix d non-negative integer. Then for all $n \geq d$ we have

$$
\beta(n, d)=p^{-\binom{n}{2}} \alpha(n, d)+(p-1) \sum_{0 \leq s<r<n} p^{-\binom{r+1}{2}} p^{s} \alpha(s, d) .
$$

Generating functions

- Define the generating functions:

$$
\begin{aligned}
& \mathcal{A}_{d}(t):=(1-t) \sum_{n=0}^{\infty} \alpha(n, d) t^{n} \\
& \mathcal{B}_{d}(t):=(1-t) \sum_{n=0}^{\infty} \beta(n, d) t^{n} \\
& \mathcal{R}_{d}(t):=(1-t)(1-p t) \sum_{n=0}^{\infty}\left(p^{n}+p^{n-1}+\cdots+1\right) \rho(n, d) t^{n}
\end{aligned}
$$

- Previous relations can be nicely expressing using these generating functions.

Main theorem $1+2$

Theorem (BCFG)

We have the following power series identities in two variables t and u :

$$
\sum_{d=0}^{\infty} \mathcal{A}_{d}(p t) u^{d}=\left(\sum_{d=0}^{\infty} \mathcal{B}_{d}(t) u^{d}\right)^{p}
$$

$\sum_{d=0}^{\infty} \mathcal{R}_{d}(t) u^{d}=\left(\sum_{d=0}^{\infty} \mathcal{A}_{d}(p t) u^{d}\right)\left(\sum_{d=0}^{\infty} \mathcal{B}_{d}(t) u^{d}\right)=\left(\sum_{d=0}^{\infty} \mathcal{B}_{d}(t) u^{d}\right)^{p+1} ;$

$$
\mathcal{B}_{d}(t)-t \mathcal{B}_{d}(t / p)=\Phi\left(\mathcal{A}_{d}(t)-t \mathcal{A}_{d}(p t)\right),
$$

where $\Phi\left(\sum_{n \geq 0} c_{n} t^{n}\right)=\sum_{n \geq 0} c_{n} p^{-\binom{n}{2}} t^{n}$.

Theorem (BCFG)

- $\alpha(n, d), \beta(n, d)$ and $\rho(n, d)$ are rational functions of p.
- $\rho(n, d)(p)=\rho(n, d)(1 / p) ; \alpha(n, d)(p)=\beta(n, d)(1 / p)$.

Main theorem 3

Theorem (BCFG)

- $\mathcal{A}_{d}, \mathcal{B}_{d}$ and \mathcal{R}_{d} are polynomials of degree at most $2 d$.
- $\alpha(n, d), \beta(n, d)$, and $\rho(n, d)$ are independent of n provided that n is sufficiently large relative to d.

Main theorem 3

Theorem (BCFG)

- $\mathcal{A}_{d}, \mathcal{B}_{d}$ and \mathcal{R}_{d} are polynomials of degree at most $2 d$.
- $\alpha(n, d), \beta(n, d)$, and $\rho(n, d)$ are independent of n provided that n is sufficiently large relative to d.

Proof - Idea.

- Denote the subset of polynomials in $\mathbb{Z}_{p}[x]_{d}^{1}$ that split completely by $\mathbb{Z}_{p}[x]_{d}^{1 \text { split }}$.
- Consider the multiplication map $\mathbb{Z}_{p}[x]_{d}^{1 \text { split }} \times \mathbb{Z}_{p}[x]_{n-d}^{1} \rightarrow \mathbb{Z}_{p}[x]_{n}^{1}$.
- $\alpha(n, d)$ is the p-adic measure of the image of the multiplication map, viewed as a multiset.

$$
\Longrightarrow \alpha(n, d)=\int_{g \in \mathbb{Z}_{p}[x]_{d}^{1 \text { split }}} \int_{h \in \mathbb{Z}_{p}[x]_{n-d}^{1}}|\operatorname{Res}(g, h)|_{p} d h d g .
$$

- The inner integral is independent of $n \geq 2 d$.

The density of p-adic polynomials with a root

- $1-\rho^{*}(n, 0)=$ the probability that a random polynomial of degree n over \mathbb{Z}_{p} has at least one root over \mathbb{Q}_{p}.
- $\rho^{*}(n, 0)=\sum_{d=0}^{n}(-1)^{d} \rho(n, d)$, likewise for the α^{\prime} s and β^{\prime} s.

The density of p-adic polynomials with a root

- $1-\rho^{*}(n, 0)=$ the probability that a random polynomial of degree n over \mathbb{Z}_{p} has at least one root over \mathbb{Q}_{p}.
- $\rho^{*}(n, 0)=\sum_{d=0}^{n}(-1)^{d} \rho(n, d)$, likewise for the α^{\prime} s and β^{\prime} s.
- Then

$$
\begin{gathered}
\mathcal{A}^{*}(t):=(1-t) \sum_{n=0}^{\infty} \alpha^{*}(n, 0) t^{n}=\sum_{d=0}^{\infty}(-1)^{d} \mathcal{A}_{d}(t), \\
\mathcal{B}^{*}(t):=(1-t) \sum_{n=0}^{\infty} \beta^{*}(n, 0) t^{n}=\sum_{d=0}^{\infty}(-1)^{d} \mathcal{B}_{d}(t), \\
\mathcal{R}^{*}(t):=(1-t)(1-p t) \sum_{n=0}^{\infty} \frac{p^{n+1}-1}{p-1} \rho^{*}(n, 0) t^{n}=\sum_{d=0}^{\infty}(-1)^{d} \mathcal{R}_{d}(t) .
\end{gathered}
$$

More results

- Our theorem specialises to (by setting $u=-1$)

Theorem

$$
\begin{gathered}
\mathcal{A}^{*}(p t)=\mathcal{B}^{*}(t)^{p} \\
\mathcal{R}^{*}(t)=\mathcal{A}^{*}(p t) \mathcal{B}^{*}(t)=\mathcal{B}^{*}(t)^{p+1} \\
\mathcal{B}^{*}(t)-t \mathcal{B}^{*}(t / p)=\Phi\left(\mathcal{A}^{*}(t)-t \mathcal{B}^{*}(p t)\right)
\end{gathered}
$$

where Φ is as before.
The same symmetry in p holds.

More results

- Our theorem specialises to (by setting $u=-1$)

Theorem

$$
\begin{gathered}
\mathcal{A}^{*}(p t)=\mathcal{B}^{*}(t)^{p} \\
\mathcal{R}^{*}(t)=\mathcal{A}^{*}(p t) \mathcal{B}^{*}(t)=\mathcal{B}^{*}(t)^{p+1} \\
\mathcal{B}^{*}(t)-t \mathcal{B}^{*}(t / p)=\Phi\left(\mathcal{A}^{*}(t)-t \mathcal{B}^{*}(p t)\right)
\end{gathered}
$$

where Φ is as before.
The same symmetry in p holds.

- Asymptotic results when $p \rightarrow \infty$ and $n \rightarrow \infty$.

The end

Thank you for your attention!

Question

Any questions?

Asymptotic results when $p \rightarrow \infty$

Proposition

(a) Let $0 \leq d \leq n$ be integers. Then

$$
\lim _{p \rightarrow \infty} \alpha(n, d)=\lim _{p \rightarrow \infty} \rho(n, d)=\frac{1}{d!}
$$

(b) Let $0 \leq r \leq n$ be integers. Then

$$
\lim _{p \rightarrow \infty} \rho^{*}(n, r)=\lim _{p \rightarrow \infty} \alpha^{*}(n, r)=\sum_{d=0}^{n}(-1)^{d-r}\binom{d}{r} \frac{1}{d!}=\frac{1}{r!} \sum_{d=0}^{n-r}(-1)^{d} \frac{1}{d!}
$$

Hence, if we also let $n \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} \rho^{*}(n, r)=\lim _{n \rightarrow \infty} \lim _{p \rightarrow \infty} \alpha^{*}(n, r)=\frac{1}{r!} e^{-1}
$$

