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@ Forthcoming work of M. Bhargava, J. Cremona, T. Fisher:

* “The density of hyperelliptic curves over Q of genus g that have
points everywhere locally”

o Hyperelliptic curves given by (affine equation) C : y? = f(x),
f e Zlx].

@ Simpler question - when C has an affine Weierstrass point locally?

@ Extend to a fixed number of zeros.

@ Related work:

* Buhler, Goldstein, Moews, and Rosenberg - p-adic polynomial splitting

* Caruso; Evans; Kulkarni and Lerario; Shmueli (all indenpendently) -
expectations of the number of roots of p-adic polynomials
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Magic of Q,

Theorem (Polynomial Hensel's lemma)

f € Zp[x].

Assume that its reduction modulo p, f, factors over F,[x] as

f =gh such that

g, h € F,[x] are coprime polynomials in F,[x], and g is monic.
There exists a factorization f = gh where

g, h € Zy[x], g and h reduce modulo p to g and h, respectively,
g is monic of degree deg(g) = deg(g).
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Theorem (Polynomial Hensel's lemma)

f € Zp[x].

Assume that its reduction modulo p, f, factors over F,[x] as

f =gh such that

g, h € F,[x] are coprime polynomials in F,[x], and g is monic.
There exists a factorization f = gh where

g,h € Z,[x], g and h reduce modulo p to g and h, respectively,
g is monic of degree deg(g) = deg(g).

Theorem (Hensel's lemma - simple version)

o f eZyx].

® Xg € Zp Is a simple root of f modulo p, i.e., that f(xp) =0 (mod p)
and f'(x0) 0 (mod p).

® There is a unique Xy € Zp such that Xo = xo (mod p) and f(Xg) = 0.
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Haar measure on Z, and probability

@ 7, possesses the normalized Haar measure yu, (11p(Zp) = 1).
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Haar measure on Z, and probability

@ 7, possesses the normalized Haar measure yu, (11p(Zp) = 1).
e For any k € Fp,, denote Dy = {x € Zp : x = k (mod p)}.

e Hence, pp(Dy) = %, for all k € Fp

L

o Similarly, up(p"Zp + a) = pp(p"Zp) = -5, for any a € Zy.
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Haar measure on Z, and probability

@ 7, possesses the normalized Haar measure yu, (11p(Zp) = 1).
e For any k € Fp,, denote Dy = {x € Zp : x = k (mod p)}.

e Hence, pp(Dy) = %, for all k € Fp

o Similarly, up(p"Zp + a) = pp(p"Zp) = i,,, for any a € Zp,.

o We extend i, to Zj for any n € N. Then p,(Z7) = 1.
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Haar measure on Z, and probability

@ 7, possesses the normalized Haar measure yu, (11p(Zp) = 1).
e For any k € Fp,, denote Dy = {x € Zp : x = k (mod p)}.
Hence, pp(Dy) = %, for all k € Fp

Similarly, pp(p"Zp + a) = pp(p"Zp) = i,,, for any a € Zp,.

We extend i, to Zj, for any n € N. Then u,(Z5) = 1.
o Let V CZ7 Then [, dup = pp(V).
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Haar measure on Z, and probability

@ 7, possesses the normalized Haar measure yu, (11p(Zp) = 1).
e For any k € Fp,, denote Dy = {x € Zp : x = k (mod p)}.

e Hence, pp(Dy) = %, for all k € Fp

o Similarly, up(p"Zp + a) = pp(p"Zp) = i,,, for any a € Zp,.

o We extend i, to Zj for any n € N. Then p,(Z7) = 1.

o Let V CZ7 Then [, dup = pp(V).

© The density of V C Zy is jip(V).

@ The density of p™Z,, inside Zj, is p— “Probability” that a random
element a € Z,, is divisible by p™ ,Tm = pp(p"Zp).

@ The probability of some event parametrised by Z7 is the density of the
subset of Z7 on which this event realises.
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Haar measure on Z, - polynomial probability

@ Let R be a ring.
e R[x], = all polynomials in R[x] of degree at most n.

e R[x]} = all monic polynomials in R[x] of degree n.
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Haar measure on Z, - polynomial probability

@ Let R be a ring.

e R[x], = all polynomials in R[x] of degree at most n.

e R[x]} = all monic polynomials in R[x] of degree n.
o f=anx"+---+aix+ag € Zp[x]n ¢+ (an, ..., a1,a) € Z11.
o f = x”—i—an_lx”*l—i—- --+ai1x+ag € ZP[X]% — (a,,_l, .o, a1, 30) € Zg.
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Haar measure on Z, - polynomial probability

@ Let R be a ring.

e R[x], = all polynomials in R[x] of degree at most n.

e R[x]} = all monic polynomials in R[x] of degree n.
o f=anx"+---+aix+ag € Zp[x]n ¢+ (an, ..., a1,a) € Z11.
o f = x”—i—an_lx”*l—i—- --+ai1x+ag € ZP[X]% — (a,,_l, .o, a1, ao) € Zg.

@ Consider monic polynomials of degree n that have property P.

@ There is S € Zj that corresponds to polynomials with property P.

The probability of property P is then 11,(S) as a subset of Zj.
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:

(1) those for which f has no roots over F,;
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which f has no roots over F,;

(2) those for which f has a simple root over F;
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which f has no roots over F,;
(2) those for which f has a simple root over F;

(3) those for which f has roots over F,,, but no simple roots.
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which f has no roots over F,;
(2) those for which f has a simple root over F;
(3) those for which f has roots over F,,, but no simple roots.

@ Then

(1) do not have roots over Qp;
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which f has no roots over F,;
(2) those for which f has a simple root over F;
(3) those for which f has roots over F,,, but no simple roots.
@ Then
(1) do not have roots over Qp;

(2) Hensel's lemma = have at least one root over Q,;
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@ Consider a problem to determine the probability that a random monic
f € Zp[x] of degree n has at least one root in Qp.

@ Divide monic polynomials f of degree n into three disjoint subsets:
(1) those for which f has no roots over F,;
(2) those for which f has a simple root over F;
(3) those for which f has roots over F,,, but no simple roots.
@ Then
(1) do not have roots over Qp;
(2) Hensel's lemma = have at least one root over Q,;

(3) the hardest case, we do not know the exact answer, needs further
investigation (need Hensel's lemma for polynomials).
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@ General strategy is

(1) Consider all possible factorisations (=splitting types) of polynomials f
over [Fp,;
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(2) Compute probabilities of each splitting type;
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@ General strategy is

(1) Consider all possible factorisations (=splitting types) of polynomials f
over [Fp,;

(2) Compute probabilities of each splitting type;

(3) Compute the probability that f has a root in each splitting type.
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@ General strategy is

(1) Consider all possible factorisations (=splitting types) of polynomials f
over [Fp,;

(2) Compute probabilities of each splitting type;
(3) Compute the probability that f has a root in each splitting type.

(4) Sum the products of last two probabilities over all splitting types of
degree n.
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@ General strategy is

(1) Consider all possible factorisations (=splitting types) of polynomials f
over [Fp,;

(2) Compute probabilities of each splitting type;
(3) Compute the probability that f has a root in each splitting type.

(4) Sum the products of last two probabilities over all splitting types of
degree n.

@ «y := the probability that a random monic polynomial of degree n has
a root in Qp (equivalently in Zp).

@ (3, := the same probability under the condition that f = x" (mod p).

o Goal: As practise, compute o, S3,.

Stevan Gajovié 03/09/2021 7/32



Irreducible polynomials over [,

The number of monic irreducible polynomials of degree n in F,[x] is equal
to (u: N — {0,—1,1} is the Mébius funciton)

> u(k)pk
k|n

n

N, =

(*) Ni=p;
(*) Ng = L;p for g a prime number;
2
(*) Ngz = % for g a prime number;

p" + o(p")
.

(*) Important: N, =
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Factorization probabilities

o Splitting type of degree n is a tuple o = (d;* d3? - - - df*) where the d;
and e; are positive integers satisfying ) dje; = n.
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Factorization probabilities

e Splitting type of degree n is a tuple o = (d;* dy? - - - df*) where the d;
and e; are positive integers satisfying ) dje; = n.

@ S(n) := the set of all splitting types of degree n.
o Fix o = (d* d5? ... di*) € S(n).
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Factorization probabilities

e Splitting type of degree n is a tuple o = (d;* dy? - - - df*) where the d;
and e; are positive integers satisfying ) dje; = n.

@ S(n) := the set of all splitting types of degree n.
o Fix o = (d* d5? ... di*) € S(n).
@ A monic polynomial f in Fp[x] of degree n has splitting type o if
(1) f factors as f(x) = H}Zl fi(x)%,
(2) f; are distinct irreducible monic polynomials over Fp,
)

(3) deg(f)) =dj, forall 1 <j <t
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Factorization probabilities

e Splitting type of degree n is a tuple o = (d;* dy? - - - df*) where the d;
and e; are positive integers satisfying ) dje; = n.

@ S(n) := the set of all splitting types of degree n.

o Fix o = (d* d5? ... di*) € S(n).

@ A monic polynomial f in Fp[x] of degree n has splitting type o if
(1) f factors as f(x) = H}Zl fi(x)%,

(2) f; are distinct irreducible monic polynomials over Fp,

(3) deg(f)) =dj, forall 1 <j <t

Irreducible factorization of f | o(f)=splitting type of f | Degree
x2(x +1)(x* + 1)(x3 +2)* (3*21%1) 17

@ \(o) = the probability that a degree n monic polynomial f € Fj[x]
has splitting type o - it is a rational function of p.
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Degrees n = 2 and n = 3 - quickly

o Let f € Zp[x] be a monic polynomial of degree n = 2 - blackboard.
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Degrees n = 2 and n = 3 - quickly

o Let f € Zp[x] be a monic polynomial of degree n = 2 - blackboard.
@ Let f € Zp[x] be a monic polynomial of degree n = 3.

o We make the table of possible splitting types of f over F, and the
number of them.

3

(3) N3 _ P 3—P
21) Noly = 227

(1%) N =p
@) | M- =pp 1)
(1 1 1) (/\3/)1) — P(P*16)(P*2)
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Degrees n = 2 and n = 3 - quickly

o Let f € Zp[x] be a monic polynomial of degree n = 2 - blackboard.
@ Let f € Zp[x] be a monic polynomial of degree n = 3.

o We make the table of possible splitting types of f over F, and the
number of them.

3

(3) N3 _ P 3—P
21) Noly = 227

(1%) N =p
@) | M- =pp 1)
(1 1 1) (/\3/)1) — P(P*16)(P*2)

3 _p? -1 —1D(p-2
_pP—p°  plp )Jr p(p—1)(p )+ P
2p3 p3 6p3 p3
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Degrees n = 2 and n = 3 - quickly

o Let f € Zp[x] be a monic polynomial of degree n = 2 - blackboard.
@ Let f € Zp[x] be a monic polynomial of degree n = 3.

o We make the table of possible splitting types of f over F, and the
number of them.

(3) Ns = P33—P

(21) Noly = 2P

(1%) N =p

(1°1) | (N1 —1)=p(p—1)

(1 1 1) (/\?/)1) — P(P*lﬁ)(sz)

3 _p? -1 —1D(p-2
= P 2p3p N p(pp3 ) N p(p 63219 ) n %ﬁ}

o We want to compute (33 - blackboard.
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@ Table of splitting types of degree 4 with probabilities:

W [ @ Ny = 25 0
2) | @31 N3Ny = P52 1
3) | () Ny = 7P 0
(4) (22) (l\éz) _ (P2*P)(52*P*2) 0
5) | (21?) A= B
6) | (211) Ny (M) = Pl 1
(7) (1%) Ny =p Ba
8) | (1°1) | Mi(NM—1)=p(p—1) 1
(9) | (121?) () =2 [1-(1-p)
(10) (12 1 1) Ny (lefl) — P(P*12)(P*2) 1
(11) | (1111) (Aﬁlll) — P(P—l)(gz‘_z)(P—'J’) 1
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Case n = 4 - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a
linear polynomial is random?

Question

| \

Can we assume in (9) the same thing? Are these two polynomials
“independent’?
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Case n = 4 - continued

Question

Can we in (5) assume that the polynomial which reduces to a square of a
linear polynomial is random?

Question

| \

Can we assume in (9) the same thing? Are these two polynomials
“independent’?

Yes - by Hensel's polynomial lemmal

@ We know how to express 34 in terms of aq, ap, and ay4.

e — Compute ay and (4.
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@ Denote the density of the following subset of polynomials in Z,[x]
having exactly r (0 < r < n) roots in Qp

(1*) for degree n polynomials f € Zy[x] by p*(n, r);
(2*) for monic degree n polynomials f € Z,[x] by a*(n, r);

(3*) for monic degree n polynomials f € Zp[x] such that f = x” (mod p)
by 5*(n, r).
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@ Denote the density of the following subset of polynomials in Z,[x]
having exactly r (0 < r < n) roots in Qp

(1*) for degree n polynomials f € Zy[x] by p*(n, r);
(2*) for monic degree n polynomials f € Z,[x] by a*(n, r);
(3*) for monic degree n polynomials f € Zp[x] such that f = x” (mod p)
by 8*(n, r).
e Consider, for 0 < d <n

o(n,d) = :0 (5)e@n,

r

@ Recall: (9) = the number of subsets of size d of a set of size r.

e — p(n,d) = the expected number of sets of size d (d-sets) of
Qp-roots of a random polynomial f € Z,[x] of degree n.
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@ Denote the expected number of sets of size d (d-sets) (0 < d < n) of
Qp-roots of

(1) a random polynomial f € Zp[x] of degree n by p(n, d);
(2) a random monic polynomial f € Z,[x] of degree n by a(n, d);

(3) a random monic polynomial f € Zp[x] of degree n that reduces to x"
modulo p by 5(n, d).
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@ Denote the expected number of sets of size d (d-sets) (0 < d < n) of
Qp-roots of

(1) a random polynomial f € Zp[x] of degree n by p(n, d);
(2) a random monic polynomial f € Z,[x] of degree n by a(n, d);

(3) a random monic polynomial f € Zp[x] of degree n that reduces to x"
modulo p by 5(n, d).

@ There is an inversion formula for 0 < r <n

n

0.0) = S0 (§ ) ot

d=0

@ Analogous relations hold for a's and f’s.

@ If we can compute all values of p or p*, we can compute all values of

the other one.
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Examples - expectations of the number of roots

@ Results by Caruso; Evans; Kulkarni and Lerario; Shmueli:

1 ifn=1, 1 if n=1,
a(”? 1): L Ifn227 ﬂ(njl): L |fn>27
p+1 p+1 -

and
p(n,1) =1 forall n> 1.
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Examples - small degrees

e Note p*(n,n—1) =a*(n,n—1) = p*(n,n—1) = 0.

e Buhler et al: p*(n, n) = p(n, n) and a*(n, n) = «(n, n).
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Examples - small degrees

e Note p*(n

,n—1)=a*(n,n—1)=p*(n,n—1) =0.

e Buhler et al: p*(n, n) = p(n, n) and a*(n, n) = «(n, n).

o p"(2,2) =

Stevan Gajovié

= (2,00 =3

+
11

S
N

ﬁ — a*(2,0):

N|=
he]
—
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Examples - small degrees

e Note p*(n,n—1) =a*(n,n—1) = p*(n,n—1) = 0.

e Buhler et al: p*(n, n) = p(n, n) and a*(n, n) = «(n, n).
>

° p*(2,2) =1 = p*(2,0)=

0 0*(2,2) = 357 = a*(2,0) =322
2

° p*(3,3) =, where y = 6(p4+(53:;2)+p+1)-

p*(3.0) + p*(3,1) +p*(3,3) = L.

1=p(3,1) = (9)p"(3.0) + (1)p"(3,1) + (})0"(3,3).
= p*(3,0) =27, p*(3,1) =1 - 3.
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Examples - small degrees

e Note p*(n,n—1) =a*(n,n—1) = p*(n,n—1) = 0.
e Buhler et al: p*(n, n) = p(n, n) and a*(n, n) = «(n, n).
1
2

° p*(2,2) =1 = p*(2,0)=

0 0*(2,2) = 357 = a*(2,0) =322
2

° p*(3,3) =, where y = 6(p4+(53:;2)+p+1)-

e p*(3,0) + p*(3,1) + p*(3,3) = L.
o 1=p(3,1) = () (3.0)+ (1)p"3.1) + (3)"(3,3).
o = p*(3,0) =2, p*(3,1) =1—3n.

o a*(3,0) = ;1 +27, 0*(3,1) =

o ’y/ _1 p5—ptip3
6 (p+1)(p*+p3+p*+p+1)

p+1 -39, a*(3,3) = v/, where
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Measure-preserving bijections

(*) Let A C Zp[x]}, B C Zp[x]}L, and AB C Zp[X]},,, or
(*) Let A C Zp[x]}, B C Zp[x]n, and AB C Zp[X]m+n
be measurable subsets such that multiplication induces a bijection

Ax B— AB={ab|ac A, be B}.

If the resultant of a and b satisfies Res(a, b) € Z, for alla € A, b € B,
then the bijection is measure-preserving.

v
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Measure-preserving bijections

Lemma

(*) Let A C Zp[x]}, B C Zp[x]}L, and AB C Zp[X]},,, or
(*) Let A C Zp[x]}, B C Zp[x]n, and AB C Zp[X]m+n
be measurable subsets such that multiplication induces a bijection

AxB— AB={ab|ac A, be B}.

If the resultant of a and b satisfies Res(a, b) € Z, for alla € A, b € B,
then the bijection is measure-preserving.

v

Proof (sketch-idea).

Change of variables is given by the resultant, which is a unit:

/ dpp = / | Res(a, b)|pdpp = / dpp
(a,b)eAxB abecAB abeAB

Stevan Gajovi¢ 03/09/2021 17 /32
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Independence of lifts 1

o For f € Fp[x]L, we define
(1) Pr:=A{F € Zoly, F = };
(2) P:={F ¢ Zp[X]m,f: f} for m > n.
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Independence of lifts 1

o For f € Fp[x]L, we define
(1) Pr:={F € Zp[x]}, F = f};
(2) PM:={F € Zp[X]m, F = f} for m > n.
o Let f = x?>+2. Then
(1) Ps:={x?®+ pax+ (2+ pb) : a,b € Z};
(2) P#:= {pax*+pbx®+ (1+ pc)x?+ pdx+(2+pe) : a,b,c,d, e € Zp};
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Independence of lifts 1

o For f € Fp[x]L, we define
(1) Pr:={F € Zp[x]}, F = f};
(2) PM:={F € Zp[X]m, F = f} for m > n.
o Let f = x?>+2. Then
(1) Ps:={x?®+ pax+ (2+ pb) : a,b € Z};
(2) P#:= {pax*+pbx®+ (1+ pc)x?+ pdx+(2+pe) : a,b,c,d, e € Zp};

Suppose that g, h € F[x]| are monic and coprime. Then the multiplication
map Py x Py, — Py is a measure-preserving bijection.
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Independence of lifts 1

o For f € Fp[x]L, we define
(1) Pr:={F € Zp[x]}, F = f};
(2) PM:={F € Zp[X]m, F = f} for m > n.
o Let f = x?>+2. Then
(1) Ps:={x?®+ pax+ (2+ pb) : a,b € Z};
(2) P#:= {pax*+pbx®+ (1+ pc)x?+ pdx+(2+pe) : a,b,c,d, e € Zp};

Lemma

Suppose that g, h € F[x]| are monic and coprime. Then the multiplication
map Py x Py, — Py is a measure-preserving bijection.

Proof (sketch-idea).

@ Hensel's lemma for polynomials = P, x P, — Py is a bijection.
@ Previous lemma = it is measure preserving.

Stevan Gajovié
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Independence of lifts 1

Corollary

Let g, h € Fp[x] be coprime monic polynomials. For f € Pgy, let w1 and
denote the projections of Pgy, onto P, and Py, respectively, under the
bijection Pgy — P4 x Py. Then the number of Qp-roots of f € Py, is

X +Y, where X, Y : Pg, = {0,1,2,...} are independent random variables
distributed on f € Py as the number of Qp-roots of m1(f) € Pg and
ma(f) € Py, respectively.

o f="fify, f€ Py, f€Py fre P

@ Intuition: Count the number of roots f as a sum of numbers of roots
of fi and £, which are independent.
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Independence of lifts 2

o Let m< n, and let By, , := {f € Zp[x]n: f € Fp[x]},}.
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Independence of lifts 2

o Let m< n, and let By, , := {f € Zp[x]n: f € Fp[x]},}.
o Bog = {pax* + pbx®+ (1 + pc)x®> + dx +e: a,b,c,d, e € Zp}

o Note that Qp-roots of polynomials in P/ are in Qp\Zp.
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Independence of lifts 2

o Let m< n, and let By, , := {f € Zp[x]n: f € Fp[x]},}.
o Bog = {pax* + pbx®+ (1 + pc)x®> + dx +e: a,b,c,d, e € Zp}

o Note that Qp-roots of polynomials in P/ are in Qp\Zp.

For n > m, the multiplication map

Zp[x]p X P{™™ = Bpmp

is a measure-preserving bijection.
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Independence of lifts 2

Corollary

For f € Bm n, let 11 and 1, denote the projections of By, , onto Zp[x]:,ln
and P{~"™, respectively, under the bijection B, — Zp[x]L, x P]~™. Let
X,Y :Bnn—{0,1,2,...} be the random variables giving the numbers of
roots of f € B in Zp and in Qp \ Zp, respectively. Then X and Y are
independent random variables distributed on f € B, , as the number of
Qp-roots of 1(f)(x) € Zp[x]}, and of

o (F)V(x) := x""MPa(f)(1/x) € Pyn—m, respectively.

o f=pax"+ -+ pampi X"+ apxT 4 -+ ayx + ag = fif,
@ i=x"+---+bix+ by, b =pcr_mx"""+ .-+ pax+1.
0 & =x""+pax""" 1+ + pcpm.

@ Intuition: Count the number of roots f as a sum of numbers of roots
of 1 and g», which are independent.
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Conditional expectations

(1) Let f € Fp[x]}.

@ «on,d | f) = the expected number of d-sets of Q,-roots of a
polynomial in Pr C Z,[x]}.

e Note 5(n,d) = a(n,d | x").
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Conditional expectations

(1) Let f € Fp[x]}.

@ «on,d | f) = the expected number of d-sets of Q,-roots of a
polynomial in Pr C Z,[x]}.

e Note 5(n,d) = a(n,d | x").
(2) Let o0 € S(n).

e a(n,d | o) = the expected number of d-sets of Q,-roots of a
polynomial in Z,[x]} whose mod p splitting type is o.
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Writing the a's in terms of the §'s

Let g, h € Fp[x] be monic and coprime. Then

a(deg(gh),d [gh)= > a(deg(g),d | g) - a(deg(h), d> | h).
d1,d>>0,d1+do=d

If h has no roots in IFp, then

a(deg(gh), d | gh) = a(deg(g),d | g).
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Writing the a's in terms of the §'s

Lemma

Let g, h € Fp[x] be monic and coprime. Then

dy,d>>0,d1+d>=d

If h has no roots in IFp, then

a(deg(gh), d | gh) = a(deg(g),d | g).

Proof (sketch-idea).

@ Independence of lifts 1 + fact
o Fact: (XZY) = ditdo=d (c)li) (g,;) for independent random variables
X and Y taking values in Np.

0l

v
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Writing the a's in terms of the §'s

(8,2 | X2(x + 1)(x* +3)(x3+2)) = (3,2 | x*(x+ 1)) =

=a(2,2|x?)a(1,0|x+1)+(2,1|x?)a(1,1]|x+1)+(2,0]x?)(1,2|x+1)=

1 3
=6(2,2)-1+——-1+1-0=
A2,2) p+1 2(p+1)
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Writing the a's in terms of the §'s

(8,2 | X2(x + 1)(x* +3)(x3+2)) = (3,2 | x*(x+ 1)) =

=a(2,2|x?)a(1,0|x+1)+(2,1|x?)a(1,1]|x+1)+(2,0]x?)(1,2|x+1)=

1 3
=p(2,2) 1+ ——-14+1.-0= —
A2,2) p+1 2(p+1)

Corollary

Let o = (1™ ..-1"%...) € S§(n) be a splitting type with exactly k = my (o)
powers of 1. Then

k
a(n,d | o) = Z Hﬁ(ni,di)-

dy+tde=d i=1

v
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More about the p values

o Primitive polynomials f € Zp[x] are those with f # 0.

@ We can restrict to primitive polynomials to compute p(n, d).
o Let f € Zp[x] be a primitive polynomial of degree n.

o Define m = deg(f) to be the reduced degree of f.

@ For 0 < m < n, the density of primitive polynomials f € Z,[x], with

reduced degree m is p,ﬂ]ilp’".
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More about the p values

o Primitive polynomials f € Zp[x] are those with f # 0.

@ We can restrict to primitive polynomials to compute p(n, d).
o Let f € Zp[x] be a primitive polynomial of degree n.

o Define m = deg(f) to be the reduced degree of f.

@ For 0 < m < n, the density of primitive polynomials f € Z,[x], with

reduced degree m is p,,’i;ilp’".

e p(n,d, m) = the expected number of d-sets of Q,-roots of f as
f € Zp|x]n runs over polynomials of degree n with reduced degree m.

e Conditioning on the value of m —
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Further formulas between a's, 5's and p's

Lemma (p's in terms of a's and f3's)
We have

p(n,d,m)= Y a(m,di) B(n—m,d). (1)

di+do=d
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Further formulas between a's, 5's and p's

Lemma (p's in terms of a's and f3's)
We have

p(n,d, m) = Z a(m,d1) - B(n—m,d).

di+do=d

Proof (sketch-idea).
o f has reduced degree m = f = cg, with c € Z; and g € B .

° g = gig, with (g1,8) € Zp[x]}, x P{ ™.
@ Use: Independence of lifts 2 + fact.
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Further formulas between a's, 5's and p's

Lemma (p's in terms of a's and f3's)
We have

p(n,d, m) = Z a(m,d1) - B(n—m,d).

di+do=d

(1)

Proof (sketch-idea).
o f has reduced degree m = f = cg, with c € Z; and g € B .

° g = gig, with (g1,8) € Zp[x]}, x P{ ™.
@ Use: Independence of lifts 2 + fact.

Lemma (('s in terms of a's)
Fix d non-negative integer. Then for all n > d we have

8(n,d)=p Ba(nd)+(p-1) 3 p(3)pa(s,d).
0<s<r<n
Stevan Gajovié 03/09/2021
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Generating functions

@ Define the generating functions:

Ag(t) =1 —1t) ) a(n,d)t™

WE

0

3
Il

Ba(t) := (1 -1t) p B(n,d)t";

L)

n

Ra(t) ;= (1 —t)(1—pt) Y (p"+p" ' +--- + 1)p(n, d)t".
n=0

@ Previous relations can be nicely expressing using these generating
functions.
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Main theorem 142

Theorem (BCFG)

We have the following power series identities in two variables t and u:

ZAd pt)ud = (ZBd )p;

o0 p+1
an u! = (ZAd pt)u ) (ZBd(t > = (ZBd(t)ud> :
By(t) — tBa(t/p) = & (Aq(t) — tAg(pt)),

where O350 cnt") = Xm0 cop~ )2,

Theorem (BCFG)

e «(n,d), B(n,d) and p(n,d) are rational functions of p.

o p(n,d)(p) = p(n, d)(1/p); a(n,d)(p) = B(n,d)(1/p).
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Theorem (BCFG)

o Ay, By and Ry are polynomials of degree at most 2d.
e a(n,d), B(n,d), and p(n,d) are independent of n provided that n is
sufficiently large relative to d.
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Theorem (BCFG)

o Ay, By and Ry are polynomials of degree at most 2d.
e «(n,d), B(n,d), and p(n, d) are independent of n provided that n is
sufficiently large relative to d.

Proof - Idea.

o Denote the subset of polynomials in Z,[x]} that split completely by
ZP[X]bsp“t-

o Consider the multiplication map Zp[x]}fp“t X Zp[x|L_ 4 — Zp[x]3.

@ «(n,d) is the p-adic measure of the image of the multiplication map,
viewed as a multiset.

— a(n,d):/

g€Zp[x]

) / | Res(g, h)|p dh dg.
ISP S heZpx]:

@ The inner integral is independent of n > 2d.

| —
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The density of p-adic polynomials with a root

@ 1— p*(n,0) = the probability that a random polynomial of degree n
over Zp has at least one root over Q.

o p*(n,0) =>"0_o(—=1)¥p(n,d), likewise for the a’s and B's.
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The density of p-adic polynomials with a root

@ 1— p*(n,0) = the probability that a random polynomial of degree n
over Zp has at least one root over Q.

o p*(n,0) =>"0_o(—=1)¥p(n,d), likewise for the a’s and B's.

@ Then

A () = (1= 1)) a*(n,0)t" = (—1)7Aq(t),
n=0 d=0

B (t):=(1— 1)) B*(n,0)t"=> (~1)By(t),
n=0 d=0

pn+1 -1 oo J
RH(t) == (1 —t)(1— pt) o1 pH(n,0)t" = (—1)7Rq(t)

n=0 d=0
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More results

@ Our theorem specialises to (by setting u = —1)

A*(pt) = B*(1)P,
R*(t) = A*(pt)B*(t) = B*(t)"*,
B*(t) — tB*(t/p) = ®(A"(t) — tB*(pt)),

where ® is as before.
The same symmetry in p holds.
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More results

@ Our theorem specialises to (by setting u = —1)

Theorem

A*(pt) = B*(1)P,
R*(t) = A*(pt)B*(t) = B*(t)"*,
B*(t) — tB*(t/p) = ®(A"(t) — tB*(pt)),

where ® is as before.
The same symmetry in p holds.

@ Asymptotic results when p — oo and n — co.
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Thank you for your attention! J

Any questions? I
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Asymptotic results when p — oo

(a) Let 0 < d < n be integers. Then

: : 1
Jim a(n.d) = lim p(n.d) = .

(b) Let 0 < r < n be integers. Then

n

Jim () = Jim 0700 = 07 (F) gy = 3 0

d=0
Hence, if we also let n — 0o, we obtain

: . . : 1
lim lim p*(n,r) = lim lim a*(n,r) = —e L.
n—00 p—+00 n—00 p—+00 rl
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