
Models Extensions Multiplicative Dependencies

Local Computations for Global Problems:
Intro and 1st Problems

Claus Fieker

MPI Leipzig, August 30, 2021

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Intro/ Basics

Local computations are going to refer to computations using p-adic
rings/ fields or their extensions.
Qp = {

∑
i≥v xip

i | 0 ≤ xi < p} for some prime p.

Zp = {
∑

i≥0 xip
i | 0 ≤ xi < p} for some prime p.

Here all sums converge in the p-adic topology. In fact, Zp is the
completion of Z and Qp of Q. Elements of Zp are called p-adic
integers, of Qp p-adic numbers.

Problem

In general, we cannot represent neither p-adic integers nor p-adic
numbers exactly.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Why?

Two key advantages:

we can choose p - there are infinitely many

we can use algebra - approximation and rounding is mainly
“mod”

There are also disadvantages:
p-adics do not (yet) play well with real-life (physics, biology, ...)
...thus we need to “move back” to reality at the end.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Rounding and Errors

p-adic numbers are approximated, same as reals: the infinite sum
is truncated:

x =
∑
i≥v

xip
i ≈

n∑
i=v

xip
i

n is the precision (of x).
Compare to reals

x =
∑
i≤b

xi10
i ≈

b∑
i=n

xi10
i

But, since in addition, the carry always propagates upwards, we
can never know the last digit after some operations. For p-adics,
the same carry just vanishes into the unknown at the other end.
We don’t care.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Rounding and Errors

Given x and y with precision n, we can compute x+ y, x · y with
precision n as well. The error does not increase!
Similar statements hold for more complicated operations such as
log, exp.
Careful: division by units is also fine (ie. does not increase the
error) while division by p will increase the (absolute) error. (Side
remark: multiplication by p thus decreases the error)

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Algebra

The more algebraic way to phrase this fundamental result on
precision:

∑n
i=v xip

i is a representative for the coset modulo
pn+1Zp.
Since for rings, the cosets also form a ring, we get the same result.
As long as we are only doing ring operations, we will never loose
precision. (However, in some weird situation we can gain
precision.)
This simplifies the analysis of complex algorithms significantly.
Precision is only dictated by the size of the result - independent of
the length of the computation.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Example

Suppose we want to solve

Ax = b

for A ∈ Gl(k,Q) and b ∈ Qk. Since x is unique, we can

solve directly (Gauss, LU, ...) in Q
move to R and use numerical tools
move to Qp or Zp

Why?

In Q: coefficient explosion: depending on the strategy
intermediate results can be exponentially large
In R: numerical instability (Hilbert matrix) can easily produce
totally useless results
In Zp we’re essentially just computing x mod pn: all stays
small, no errors.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Choose precision

So: what precision n do we need? This is one of the core problems
in almost all p-adic computations. To simplify assume A and b are
integral, ‖A‖∞, ‖b‖∞ ≤ B
Here: Cramer’s rule writes x as a quotient of 2 determinants,
Hadamard gives upper bounds for them. Result:

xi =
ni
di

for |ni|, |di| ≤ (
√
kB)k.

So if pn > 2(
√
kB)k or

n ≥ k(logpB +
1

2
logp k)

we’re in business. Generically, this is sharp.
Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Rational Reconstruction

Given x mod pn, find a, b ∈ Z s.th.

a ≡ xb mod pn

(then we say x ≡ a/b mod pn)
Easiest method:

M =

(
1 x
0 pn

)
and consider the lattice spanned by the rows of M . If a, b ≤ B
and pn > 2B2, then any shortest vector (u, v) in this lattice
satisfies v/u = a/b.
(u, v) can be found using Gauss-reduction or LLL. (Or using
continued fractions without involving lattices or with a variant of
just the gcd algorithm.)
Either way: this can be done quasi-linear in n.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Zp
For Zp there are not too many possibilities, usually we can

work in Z/pnZ, but think p-adically (absolute precision)

write x = pvy for a unit y ∈ (Z/pnZ)∗ (floating model,
relative precision)

Note: in the 1st: pn = 0, but not in the second.

Z/pnZ is well understood: a finite Artinian ring, euclidean,
PIR, ...

the floating model is more like reals/ interval arithmetic

algorithms can easily be analysed in the 1st, the runtime is
predictable

(some) (pathological) examples work better in the 2nd

the 2nd can easily be extended to Qp (allow negative v)

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

More Complex Ideas

Consider x in precision n, so x =
∑n−1

i=0 xip
i + pny for some

unknown y.
Then xp can be guaranteed with precision n+ 1 as all binomial
coefficients for the error term are divisible by p.
However, xp−1 · x will usually not have precision n+ 1.
X. Caruso, D. Roe, T. Vaccon gave a framework where lattices are
used to trace the error terms (and part of the history) more
carefully.
They can assure that xp−1 · x will be in precision n+ 1, but the
cost scales at least quadratically in the number of variables to be
traced.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Lazy Approach

There is also the lazy approach where noting is actually computed
- until you ask for it explicitly.
In short: instead of computing x+ y a straight line program is
assembled to record the fact that z = x+ y without actually
computing anything. When the user asks for z up to some
precision, the program is analysed and with hopefully minimal
effort the desired digits are produced.
C. Doris implemented this in Magma, for (multi-variate) power
series this is classic.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Comparison

There is no best, most correct choice.
The absolute one is mathematically easy, not not really p-adic.
The relative one is close to the doubles, but as difficult to use as
the doubles (best stick to integral computations)
The lattice framework is great if precision is expensive - and the
number of variables small
The lazy approach is great if no a-priory bounds are available

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Basics

We’re going to need extensions of Qp as well. Here is a summary
of the basic results we need:
Any finite extension E/Qp can uniquely be written as a totally
ramified extension over an unramified one: There is U s.th. E/U
is totally ramified and U/Qp is unramified.
For each degree there is exactly one unramified extension. The
Galois group is cyclic, generated by the Frobenius. The residue
field is the finite field of the same degree (over Fp).
For us: given that I can choose p (mainly) I will mainly not use
ramified extensions. They are interesting and complicated. I want
fast and easy. I also try to not have denominators.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Slightly more

Given E/Qp a finite extension, there are 2 canonical equivalent
valuations/ absolute values on E:
One extending the valuation/ absolute value from Qp

One coming from the maximal ideal.
Both are used and useful. Just be careful to understand which is
implemented.
Finally: extensions occur as completions of number fields at prime
ideals.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

...even more

Computing the canonical split into ramified/ unramified is hard.
Not computing the split makes computation of valuations hard.
The precise notion of precision of elements is also tricky in general:
for unramified: choose an exact polynomial and precision is the
minimal precision of the coefficients.
For ramified: precision is usually measured in terms of a
uniformizer, so does not immediately translate into coefficients. Be
careful
The discussion about the different models is the same.
Thus: avoiding this, when possible is good.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Completions

Let K be a number field, O some order and p be some inevitable
unramified prime ideal. Then the completion of O at p is the
valuation ring of the unramified extension of Qp of the degree the
inertia index of p.
It can easily be constructed by using the same polynomial as for
the residue field.
Note: unramified implies that we can choose exact defining
polynomials that can be used at any precision.
By using primes not dividing the discriminant (of the polynomial
defining the field), we do not need any p-maximal order.
In general, computing a general completion is “the same” as
computing a p-maximal order, the primes in there and then some
linear algebra.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Splitting Fields

K = Q[t]/f and p be an easy prime: coprime to the discriminant
of f , avoiding a finite number of additional pitfalls.
Then, f =

∏
fi mod p and, setting d = lcmi deg(fi) we see that f

splits completely in Fpd . In fact, this is the splitting field.
Let E be the unramified extension of Qp of degree d. Using
Newton lifting we see that f splits into linears over E as well, so E
is a p-adic splitting field.
(Lifting is easy since disc f 6= 0 mod p implies all roots are single
roots.)

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Lifting

Given

f ≡
d∏
i=1

(t− αi) mod p

we want

f ≡
d∏
i=1

(t− βi) mod pn

for some possibly large n.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

...

Using classical Newton iteration

x 7→ x− f(x)

f ′(x)

which will converge quadratically (so need log2 n steps). Each
iteration would need (using Horner) O(d) many multiplication. We
have d roots, so a total of Õ(d2)
We can also use a product tree to lift the entire factorisation! This
will result a Õ(d) total operations (using fast arithmetic). For
non-trivial examples this wins.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Lifting

Of course, for small examples, using the double iteration is not too
bad. It is also possible to first lift a partial factorisation over Qp

before lifting the factorisations of the factors in the extension.
J. Klüners even chose a tower of extensions to step-by-step refine
the roots.
In the evil case (ramified) one needs to also understand that a
factorisation up to precision k will not imply that all factors are
known to precision k. In general, an input precision of k means the
individual factors cannot be guaranteed with the same precision.
For the easy, unramified case, this is no problem.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Task

Given αi ∈ K, for some number field K, find the lattice of
multiplicative relations, i.e. all λi ∈ Z s.th.

∏
αλii = 1.

By looking at valuations, this reduces via Z-linear algebra to a
problem of units:
Given αi units in some number field K, find the lattice of relations.
Using logarithms:

∏
αλii = 1 is almost the same as∑

λi logαi = 0 (Almost: there is a problem with torsion, but that
can be fixed in a third step)

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Classical...

Using classical logarithms: K embeds into C exactly n different
ways. Sorting the usual way (taking only one of conjugate pairs),
we get a map

L : K → Rr1+r2 : α 7→ (log |α(i)|)

Under our assumptions, the image of the units under this map
forms a lattice and, essentially, linear algebra will find the answer.
However: the result should be in Z, but this way it will be in R.
Instead of exact, it will be full of rounding errors.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

...

Partial solution (1): normalise the last component to be 1, then
the others should be in Q. Use continued fractions to recover
plausible results - and verify.
Partial solution (2): this is a lattice problem. Use LLL. Problem:
this lattice is in R?, there is no implementation available for
lattices that are not in Q?. So will have to start with an
approximated lattice.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

... using p-adics

Or, we could use p-adics. Let p be an easy prime (unramified, not
an index divisor, ...) and E an extension of Qp that is a splitting
field. Maybe choose p s.th. the degree of E is not too large.
Then K embeds into E also n times and we can use the “same”
map as above:

Lp : K → En : α 7→ (logα(i))i

where log : E → E is the p-adic logarithm.
Caveat: the p-adic log is only defined (via power series) on 1-units,
ie. elements such that v(1− x) > 0. But there is works. We can
extend this as α is a unit, hence v(α(i)) = 0, so a (large) power of
α will be a 1-unit, so logα(i) := 1/µ log(α(i))µ.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Leopoldt

Believing Leopoldts conjecture, the Lp(α) are p-adically dependent
iff the L(α) are R-dependent. Normalising, as above, the last
coefficient in the dependency to 1, we now get∏

αλii = ζ

for a torsion unit ζ and λn = 1, λi ∈ Q is given modpn, so
rational reconstruction can find λi exactly. If we have bounds....

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Bounds

Tricky: let αi for 1 ≤ i ≤ n− 1 be independent and αn an
additional unit.
We have 2 tasks:

decide if αn is independent as well (false if n is too large)
if not, find the dependency.

p-adically, if they are independent, they will be independent in
almost any precision.
We need more:

Bound, Dobrowski

If α is a non-torsion unit, then there is at least one conjugate

≥ 1 +
1

6

log n

n2

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

If the αi are dependent, they generate a R-lattice of dimension

n− 1. Let βi be a basis for this lattice. Then αi =
∏
β
bi,j
j for

bi,j ∈ Z.
If the αi are dependent, then αann =

∏n−1
i=1 α

ai
i . Using the βi∏

β
anbn,j

j =

n−1∏
i=1

∏
β
aibi,j
j =

∏
j

β
∑
aibi,j

j

We get a system of linear equations:

anbn,j =
∑

aibi,j

Which we can normalise (the 1st n− 1 are independent!):

bn,j =
∑ ai

an
bi,j

Cramer’s rule gives ai/an as a quotient of determinants of the bi,j ,
so we need to bound the determinants.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

As we do not know the bi,j (they depend on the β which we do not
have), this is fun.
The det(bi,j) is however the index of

〈βi|i〉 : 〈αi|1 ≤ i ≤ n− 1〉

. The index can be computed using (real) logarithms, hence
estimated:

|det(bi,j)1≤i,j≤n−1| =
√
detL(αi)Lt(αj)√
detL(βi)Lt(βj)

The numerator determinant can be estimated using Hadamard (we
have the αi explicitly. Here precision is not important, any upper
bound will do)

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

The denominator: we need a lower bound. The elements form a
lattice with a lower bound for the Minkowski-minimum, so we can
use this.
Note: if n− 1 is the unit rank, we can replace Minkowski by any
lower regulator bound.
Note: this estimate is pessimistic. Using a lower precision is fine -
we need to verify the relation anyway.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Being more “complex”

So far we’ve used embeddings into a single splitting field and used
all “conjugates”. However, comparing to the classical case: for
each pair of complex embeddings, we take only one datum and, in
general, we split into real and imaginary part to get n real values.
So Let p be an easy prime ideal above p, Kp be the completion of
p. Then

Kp : Qp = f(p|p)
Gal(Kp) is cyclic, generated by σ

if αi ∈ Kp, then so is αj = σαi
log and σ commute

thus any relation between the i-th conjugate implies one for
the j-th

we do not want Kp-relations, but Qp-relations

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Better:

So:

for each prime ideal pi over p, we pick one conjugate in Kpi

take the logarithms Lp

any Qp-relation implies a coefficient wise relation

So we replace the linear system from above by an n× r system
over Qp - a clear win.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Why????

So far, given that we need to verify any p-adic relation, and/or
need to have bounds, both coming from real computations, why do
the p-adic one at all?

fine print: the units are usually given factored: α =
∏
βni
i

where ni can easily have 1000 bits and the product several
hundred terms. Thus to get precise real information requires a
precision logarithmic in the exponents and linear in the
number of terms.
Upper bounds are easier.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

...

during the computation, the representations grow, badly.
Thus even the p-adic precision needs to be increased.
However: instead of increasing the precision, we can just use a
different prime and do the same. Given that the solution is
unique in Q, we can combine information using CRT, in
parallel.
(I don’t know how to increase the log-precision - and they
tend to dominate the time.)

no hassle with numerical problems in the linear equations.
There are hardly any implementations of sophisticated linear
algebra in high real precision, and neither any literature.
Floats are useless here.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Verification

We need to compute image under the real-log-map L to an
absolute precision of 10−3 or so (from the bound) and see if we get
close enough to 0.
The difference to the direct solver is that the verification needs
only low absolute precision, while the “finding” would need
absolute precision proportional to the size of the relation.

Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

Models Extensions Multiplicative Dependencies

Postprocessing

At the end of each run we have either

a relation

a proof that the new unit is independent.

Having a relation allows to compute a basis for the new group:
Let U = 〈α1, . . . , αn−1〉 with independent αi and αn dependent
with relation αann

∏n−1
i=1 α

ai
i = 1 for ai ∈ Z. Assume gcd(ai|i) = 1.

Then, using HNF with transformation, we find T ∈ Gl(n,Z) s.th.

(a1, . . . , an)T = (1, 0, . . . , 0)

Then

βj =

n∏
i=1

(T−1)i,jαi

for 2 ≤ j ≤ n is the new basis.
Claus Fieker

Local Computations for Global Problems:Intro and 1st Problems

	Models
	Extensions
	Multiplicative Dependencies

