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Intro/ Basics

We will deal with Galois theory

how to compute Galois groups

... and what to do with it.

The Galois theory will be “easy” as we can re-use most of the tools
from the factorisation.
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Galois

Let f ∈ Z[x] be monic and irreducible (both can be relaxed). We
want the Galois group of (a splitting field of) f .
But what does this mean?
f = x4 − 2, then “obviously“ Gal(f) = D4 (in Magma, D8 in
Gap), but this is a useless result, we cannot use this further as we
do not have the operation of the group on anything, just the
isomorphism type.
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Step 0: compute the roots of f and then we can talk about the
Galois group as an explicit group of permutations of the roots. Of
course, we will choose an unramified p-adic splitting field...
And fix the ordering of the roots for the rest of the computation.
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History

Stauduhar, 1969, PhD with Lehmer, Berkeley

Soicher, 1985, PhD with Conway, Cambridge

Geier, 1993, Heidelberg, Diploma

Eichenlaub, 1996, PhD with Olivier, Bordeaux

Geissler, 1996, 2002, Diploma and PhD

Hulpke, 1996

McKay, 1995 (short cosets)

F-Klüners, 2003

Girstmeyer, Yokoyama (97, p-adic), Valibouze, Renoult
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Variants

I present Stauduhar’s method, based on the numerical evaluation
of relative invariants which are roots of relative resolvents..
Original: numeric = complex.
There are symbolic methods based on factoring so called resolvent
polynomials which can be absolute or relative (linked to invariants)
or other (Soicher)
Galois ideals capture different aspects, splitting field as a 0-dim.
ideal.
Recognition algorithms that only find the abstract group, not any
explicit action.
Solvability can be decided in poly-time (Susan Landau).
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Step 1: Stauduhar’s basic tool is now:
Suppose G is known to contain Gal(f) and U is a maximal
subgroup of G. Then we need I ∈ Z[x1, . . . , xn] s.th.
StabG(I) = U and s.th.

R :=
∏

σ∈G//U

(t− Iσ(α1, . . . , αn)) ∈ Z[t]

is square-free (if not, then replace αi by T (αi) for some suitable
polynomial T ∈ Z[t]. This is called a Tschirnhaus transformation.
There are only finitely many bad ones)
Then if Iσ(αi . . . , αn) ∈ Z is a root, then Gal(f) ⊆ Uσ and we
re-start the procedure. If there are no roots for no maximal
subgroup, then G is the result.
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Change of perspective

We know Gal(f) ≤ G. That implies that
Z[x1, . . . , xn]G → Z : xi 7→ αi is well defined.
Let U < G be maximal and I ∈ Z[x1, . . . , xn] such an invariant,
then, as rings:

Q[x1, . . . , xn]
U = Q[x1, . . . , xn]

G[I]

ie. I is a primitive element for the invariant ring of U as an
extension of the invariant ring of G.
Thus if I(α1, . . . , αn) ∈ Z, then Z[x1, . . . , xn]U also maps to Z.
On termination we have explicitly constructed the invariant ring of
the Galois group over the the ring generated by the elementary
symmetric functions. Under evaluation this is the largest subring
mapping to Z.
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How do we prove θ := Iσ(α1, . . . , αn) ∈ Z? Given that we have
only a p-adic approximation.
We know more: given f , we have bounds on the complex roots,
this implies bounds on the possible complex size of θ if we were to
choose complex roots.
Also, by assumption θ is algebraic of degree ≤ (G : U) and θ looks
like µ ∈ Z. So fix µ.
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The task is to prove that θ − µ = 0. We know (see above)

bounds on the possible complex size of the difference

bounds on the degree

a lower bound on the norm: we have θ − µ = 0 mod pk for
the precision that we are currently using.

And that is enough: N(θ − µ) is divisible by pk, thus we have
lower bound (if non-zero). This implies a lower bound in ‖.‖e as
above (arithmetic-geometric-means), the lower bound is
monotonous in k but bounded from above by the complex bound
(which is independent of the precision!) Thus if k is large enough,
the norm has to be 0.
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Problem(s)

(G : U) might be huge

Sym(n) is not a good starting group

the index is too large

the invariants are hard to find

maximal subgroups are non-trivial to compute
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Subfields

Let K = Q[α] = Q[t]/f the stem field of f , and α some root of f .
If k has a subfield, K ⊃ k = Q[β] for some β = h(α), then this
implies a partitioning of the roots of f : two roots are in the same
partition iff h(αi) = h(αj).
This implies that the Galois group

is imprimitive

has to have this partition as a block-system

Thus, we get G has to be contained in some suitable
wreath-product.
If we have more than one subfield, we use an intersection. (also
hard to compute)
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...

Two question:

how to get subfields without the Galois group?

what about primitive groups?
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Subfields - very naive

Subfields correspond to block-systems, hence partitions. So:

enumerate all suitable partitions

for each partition P test if P defines a subfield

This is Dixon’s original subfield algorithm, implemented by J.
Klüners.
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Partition to Subfield

Let P = (B1, . . . , Bk) be the potential block system, a partitioning
of the roots fixed at the beginning. Then |Bi| = |Bj | for all i, j.
Fact: if all βi =

∏
α∈Bi

α are pairwise different, then they are the
p-adic conjugates of a primitive element of the subfield. If not,
then there is some x ∈ Z s.th. βi =

∏
α∈Bi

α+ x works.
(We can also try to sum rather than multiply)
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From the p-adic conjugates of a primitive element we can easily
(Newton) get the p-adic approximation of the minimal polynomial.
From the formula for β we get bounds for the coefficients, hence
the precision necessary to get the exact (potential) polynomial.
Good, but does it define a subfield? Here we also need the
“subfield–polynomial”, we need h ∈ Q[x] s.th. β = h(α).
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Subfield Polynomial

Fundamentally, finding h is an interpolation problem:

h(αk) = βi

for all αk ∈ Bi, the same block.
From here we also get bounds and some algorithm, but h ∈ Q[x]
so we have denominators.
If f is monic and integral, then α is an algebraic integer, hence β,
hence we can use all our denominator techniques to get results.
However, we can do even better:
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Co-different

Let f be monic, irreducible and integral. Then

C = {γ ∈ K|Tr(γZ[α]) ⊆ Z}

is the codifferent of Z[α] = Z[t]/f .
We know

O ⊆ C = 1/f ′(α)Z[α]
Let g =

∑
git

i = f/(t− α), then Tr(gi/f
′(α)αj) = δi,j

Thus we can compute the coefficients of f ′(α)h via trace and
multiplication with the dual basis.
This too gives good and easy bounds.
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Klüeners - van Hoeij

All partitions? That is a lot!
New idea, due to van Hoeij again, more generically 1st: Let
f ∈ k[t] be irreducible and K any field containing a root of f .
Then

f =
∏

fi ∈ K[t]

wlog, f1 = t− α.
For each i, define Ki = K[x]/fi and

φi : k = Q[α]→ Ki = K[x]/fi : α→ x

This is a field embedding. Then

Li := ker(φi − Id)

Is a subfield. All subfields are intersections of the Li.
Claus Fieker
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...

This is slow, when directly applied (K = k[t]/f) due to

factoring (over a number field)

linear algebra (over a number field)

But K can be any field containing a root, so choose an unramified
p-adic field.
Trade-off: the linear algebra is now hard:

over Qp

imprecise.
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...

Klüeners and van Hoeij improved this: they they to find a small
basis for the subfield contained in the co-different.
Small: small coefficients in the linear combination
Codifferent: no-denominators
Small: find using LLL, again.
From the basis (potential basis, due to errors), find the partition
and use above to verify the partition.
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Primitive Groups

If there are no subfields, then...
we can try to use

R =
∏

(t− αi − αj)

and its factorisation as a starting point.
Fact: take “any” polynomial constructed from the roots that is
rational. Then any non-trivial factor comes from the stabilizer of
the roots in this factor.
Thus we get potentially better starting groups than Sn/ An this
way.
(Alt(n), Sym(n) are usually detected while trying to find a nice
p-adic field. They are separated by the discriminant)
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The large index problem

Here only a partial solution:
If we use an unramified p-adic extension, then we have a
non-trivial automorphism σ, the Frobenius for this extension.
This is automatically an element of the Galois group.
Hence we need to only consider groups containing σ.
Translate: we need coset representatives τ s.th. σ ∈ U τ as only
those are possible for the Galois group.
This is a huge reduction.
However, the requirement for Stauduhar’s method was to know
that R is square-free. This can now not be verified...
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Invariants

We need, for U < G maximal, some G-relative U -invariant, ie.
some I s.th. StabG(I) = V .
This is trivial:

I =
∑
σ∈U

(x1x
2
2 · · ·xnn)σ

is such an invariant.
This is useless.
Example: √

disc =
∏
i<j

(xi − xj)

This is a Sym(n)-relative Alt(n)-invariant.
In this (factored) form, we can evaluate in O(n2) multiplications.
Expanded, we need O(2n) operations...
So the goal is to find invariants in some form that can be
evaluated. This is hard...Claus Fieker

Local Computations for Global Problems:Galois Theory



Galois Theory Applications Function Fields

Resolvents

Let I be a G-relative U -invariant, then

R :=
∏

σ∈G//U

(t− Iσ(α1, . . . , αn)) ∈ Z[t]

is called a G-relative resolvent polynomial.
Suppose R has a factor g, then, since G acts on the roots of R,
the roots of g are a single G-orbit., thus the Galois group has to
contain the stabiliser of this orbit.
In the simple case of g being linear, hence “a root”, this is
Stauduhar: the stabilizer is just Uσ by construction.
But ...
... what about other factors?
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...

Other factors?
Problem(s):

we actually need R, so far we’ve only looked for roots

then we need to factor, we will always have superfluous local
factors. Recall degR = G : V is large

then we need the roots and the stabilizer. This is hard group
theory

But:
This can help a lot. In fact, entire algorithms are designed around

(symbolically) computing resolvents

factoring

intersecting stabilizers.

For moderate degree, this works well.
Claus Fieker
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How to use it?

We can work in the normal closure!
Let U be any subgroup of G and I s.th. StabG(I) = U , then
I is a primitive element for Z[x1, . . . , xn]U over Z[x1, . . . , xn]G,
hence, generically, I(α1, . . . , αn) is a primitive element for the
fixed field of U .
Since we have the explicit G-action we can

test primitivity (compute all conjugates (Iσ for σ ∈ G//U)
and check there different)

get bounds for the coefficients of the min. poly

compute the min. poly

At worst, we might have to do a Tschirnhaus transformation to
ensure the primitivity.
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Applications

change the “representation”: the same abstract group can be
realised as a permutation group of different degrees (e.g.
Sym(3) can be on 3 points (cubic polynomial) or 6 points.

compute any subfield of the normal closure explicitly

for any chain of subgroups, obtain the corresponding tower of
fields

explicitly solve by radicals
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Function Fields

Now, try the same for K = Q(t)[x]/f or Q[t, x]/f . Hilbert
irreducibility states that for almost all choices for t0 ∈ Z, the
Galois group of K and of k = Q[x]/f(t0, x) are “the same”, (this
then also includes subfields!)
So:

choose a p-adic splitting field for k and compute the
subfields/ Galois group

lift the p-adic roots for k to Qq[[t]] roots for K

verify that the subfields (block systems) for k work as well for
K

verify that the invariants used later also evaluate to s.th.
“integral”
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...

Problem(s):

now the bounds have to come from complex power series

the integrality (for the subfield polynomial) is difficult: the
codifferent shows that we are in

IntCls(Q[t],K) ⊆ 1

f ′(x)
Q[t][x]/f

we would need a bound for

IntCls(Z[t],K) ⊆ 1

f ′(x)
Z[t][x]/f

which is hard: Z[t] is no PID, the module theory collapses.
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