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1 Ultrametric spaces

We recall the very basic notions.

Definition. A metric space (X, d) is called ultrametric if the strict triangle
inequality

d(x, z) ≤ max(d(x, y), d(y, z)) for any x, y, z ∈ X

is satisfied.

Remark. i. If (X, d) is ultrametric then (Y, d |Y × Y ), for any subset
Y ⊆ X, is ultrametric as well.

ii. If (X1, d1), . . . , (Xm, dm) are ultrametric spaces then the cartesian pro-
duct X1 × . . .×Xm is ultrametric with respect to

d((x1, . . . , xm), (y1, . . . , ym)) := max(d1(x1, y1), . . . , dm(xm, ym)) .

Let (X, d) be an ultrametric space.

Lemma 1.1. For any three points x, y, z ∈ X such that d(x, y) 6= d(y, z) we
have

d(x, z) = max(d(x, y), d(y, z)) .

Proof. Suppose that d(x, y) < d(y, z). Then

d(x, y) < d(y, z) ≤ max(d(y, x), d(x, z)) = max(d(x, y), d(x, z)) = d(x, z) .

Hence d(x, y) < d(y, z) ≤ d(x, z) and then

d(x, z) ≤ max(d(x, y), d(y, z)) ≤ d(x, z) .

Let a ∈ X be a point and ε > 0 be a real number. We call

Bε(a) := {x ∈ X : d(a, x) ≤ ε} and B−ε (a) := {x ∈ X : d(a, x) < ε}

the closed and the open ball, respectively, around a of radius ε. But be
careful!

Lemma 1.2. i. Every ball is open and closed in X.

ii. For b ∈ Bε(a), resp. b ∈ B−ε (a), we have Bε(b) = Bε(a), resp. B−ε (b) =
B−ε (a).
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Proof. Observe that the open, resp. closed, balls are the equivalence classes
of the equivalence relation x ∼ y, resp. x ≈ y, on X defined by d(x, y) < ε,
resp. by d(x, y) ≤ ε.

So any point of a ball can serve as its midpoint.

Exercise. The radius of a ball is not well determined.

Corollary 1.3. For any two balls B and B′ in X such that B ∩B′ 6= ∅ we
have B ⊆ B′ or B′ ⊆ B.

Remark. If the ultrametric space X is connected then it is empty or consists
of one point.

Lemma 1.4. Let U ⊆ X be an open subsets and let ε1 > ε2 > . . . > 0 be
a strictly descending sequence of positive real numbers which converges to
zero; then any open covering of U can be refined into a DECOMPOSITION
of U into balls of the form Bεi(a).

As usual the metric space X is called complete if every Cauchy sequence
in X is convergent.

Lemma 1.5. A sequence (xn)n∈N in X is a Cauchy sequence if and only if
limn→∞ d(xn, xn+1) = 0.

There is a stronger concept than completeness. For a subset A ⊆ X call

d(A) := sup{d(x, y) : x, y ∈ A}

the diameter of A.

Corollary 1.6. Let B ⊆ X be a ball with ε := d(B) > 0 and pick any point
a ∈ B; we then have B = B−ε (a) or B = Bε(a).

Consider now a descending sequence of balls

B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . .

in X. Suppose that X is complete and that limn→∞ d(Bn) = 0. We pick
points xn ∈ Bn and obtain the Cauchy sequence (xn)n∈N. Since each Bn is
closed we must have x := limn→∞ xn ∈ Bn and therefore x ∈

⋂
nBn. Hence⋂

n∈N
Bn 6= ∅ .

But without the condition on the diameters the intersection
⋂
nBn can

be empty (see the next section for an important example). This motivates
the following definition.
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Definition. The ultrametric space (X, d) is called spherically complete if
any descending sequence of balls B1 ⊇ B2 ⊇ . . . in X has a nonempty
intersection.

Lemma 1.7. i. If X is spherically complete then it is complete.

ii. Suppose that X is complete; if 0 is the only accumulation point of the
set d(X × X) ⊆ R+ of values of the metric d then X is spherically
complete.

Lemma 1.8. Suppose that X is spherically complete; for any family (Bi)i∈I
of closed balls in X such that Bi ∩ Bj 6= ∅ for any i, j ∈ I we then have⋂
i∈I Bi 6= ∅.

2 Nonarchimedean fields

Let K be any field.

Definition. A nonarchimedean absolute value on K is a function

| | : K −→ R

which satisfies:

(i) |a| ≥ 0,

(ii) |a| = 0 if and only if a = 0,

(iii) |ab| = |a| · |b|,

(iv) |a+ b| ≤ max(|a|, |b|).

Exercise. i. |n · 1| ≤ 1 for any n ∈ Z.

ii. | | : K× −→ R×+ is a homomorphism of groups; in particular, |1| =
| − 1| = 1.

iii. K is an ultrametric space with respect to the metric d(a, b) := |b− a|;
in particular, we have |a+ b| = max(|a|, |b|) whenever |a| 6= |b|.

iv. Addition and multiplication on the ultrametric space K are continuous
maps.

Definition. A nonarchimedean field (K, | |) is a field K equipped with a
nonarchimedean absolute value | | such that:
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(i) | | is non-trivial, i. e., there is an a ∈ K with |a| 6= 0, 1,

(ii) K is complete with respect to the metric d(a, b) := |b− a|.

Examples. – Fix a prime number p. Then

|a|p := p−r if a = pr mn with r,m, n ∈ Z and p 6 |mn

is a nonarchimedean absolute value on the field Q of rational numbers.
The corresponding completion Qp is called the field of p-adic numbers.
Note that |Qp|p = pZ∪{0}. Hence Qp is spherically complete by Lemma
1.7.ii.

– Let K/Qp be any finite extension of fields. Then

|a| := [K:Qp]
√
|NormK/Qp(a)|p

is the unique extension of | |p to a nonarchimedean absolute value on
K. The corresponding ultrametric space K is complete and spherically
complete and, in fact, locally compact. (See [Ser] Chap. II §§1-2.)

– The algebraic closure Qalg
p of Qp is not complete. Its completion Cp

is algebraically closed but not spherically complete (see [Sch] §17 and
Cor. 20.6).

In the following we fix a nonarchimedean field (K, | |). By the strict
triangle inequality the closed unit ball

oK := B1(0)

is a subring of K, called the ring of integers in K, and the open unit ball

mK := B−1 (0)

is an ideal in oK . Because of o×K = oK \mK this ideal mK is the only maximal
ideal of oK . The field oK/mK is called the residue class field of K.

Exercise 2.1. i. If the residue class field oK/mK has characteristic zero
then K has characteristic zero as well and we have |a| = 1 for any
nonzero a ∈ Q ⊆ K.

ii. If K has characteristic zero but oK/mK has characteristic p > 0 then
we have

|a| = |a|
− log |p|

log p
p for any a ∈ Q ⊆ K;

in particular, K contains Qp.
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A nonarchimedean field K as in the second part of Exercise 2.1 is called
a p-adic field.

Lemma 2.2. If K is p-adic then we have

|n| ≥ |n!| ≥ |p|
n−1
p−1 for any n ∈ N.

Proof. We may obviously assume that K = Qp. Then the reader should do
this as an exercise but also may consult [B-LL] Chap. II §8.1 Lemma 1.

Now let V be any K-vector space.

Definition. A (nonarchimedean) norm on V is a function ‖ ‖ : V −→ R
such that for any v, w ∈ V and any a ∈ K we have:

(i) ‖av‖ = |a| · ‖v‖,

(ii) ‖v + w‖ ≤ max(‖v‖, ‖w‖),

(iii) if ‖v‖ = 0 then v = 0.

Moreover, V is called normed if it is equipped with a norm.

Exercise. i. ‖v‖ ≥ 0 for any v ∈ V and ‖0‖ = 0.

ii. V is an ultrametric space with respect to the metric d(v, w) := ‖w−v‖;
in particular, we have ‖v+w‖ = max(‖v‖, ‖w‖) whenever ‖v‖ 6= ‖w‖.

iii. Addition V × V +−−→ V and scalar multiplication K × V −→ V are
continuous.

Lemma 2.3. Let (V1, ‖ ‖1) and (V2, ‖ ‖2) let two normed K-vector spaces;
a linear map f : V1 −→ V2 is continuous if and only if there is a constant
c > 0 such that

‖f(v)‖2 ≤ c · ‖v‖1 for any v ∈ V1 .

Definition. The normed K-vector space (V, ‖ ‖) is called a K-Banach space
if V is complete with respect to the metric d(v, w) := ‖w − v‖.

Examples. 1) Kn with the norm ‖(a1, . . . , an)‖ := max1≤i≤n |ai| is a
K-Banach space.

6



2) Let I be a fixed but arbitrary index set. A family (ai)i∈I of elements in
K is called bounded if there is a c > 0 such that |ai| ≤ c for any i ∈ I.
The set

`∞(I) := set of all bounded families (ai)i∈I in K

with componentwise addition and scalar multiplication and with the
norm

‖(ai)i‖∞ := sup
i∈I
|ai|

is a K-Banach space.

3) With I as above let

c0(I) := {(ai)i∈I ∈ `∞(I) : for any ε > 0 we have |ai| ≥ ε
for at most finitely many i ∈ I}.

It is a closed vector subspace of `∞(I) and hence a K-Banach. More-
over, for (ai)i ∈ c0(I) we have

‖(ai)i‖∞ = max
i∈I
|ai| .

Remark. Any K-Banach space (V, ‖ ‖) over a finite extension K/Qp which
satisfies ‖V ‖ ⊆ |K| is isometric to some K-Banach space (c0(I), ‖ ‖∞);
moreover, all such I have the same cardinality.

Proof. Compare [NFA] Remark 10.2 and Lemma 10.3.

Let V and W be two normed K-vector spaces. Obviously

L(V,W ) := {f ∈ HomK(V,W ) : f is continuous}

is a vector subspace of HomK(V,W ). By Lemma 2.3 the operator norm

‖f‖ := sup

{
‖f(v)‖
‖v‖

: v ∈ V, v 6= 0

}
= sup

{
‖f(v)‖
‖v‖

: v ∈ V, 0 < ‖v‖ ≤ 1

}
is well defined for any f ∈ L(V,W ). (Unless it causes confusion all occurring
norms will be denoted by ‖ ‖.)

Proposition 2.4. i. L(V,W ) with the operator norm is a normed K-
vector space.

ii. If W is a K-Banach space then so, too, is L(V,W ).
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In particular,
V ′ := L(V,K)

always is a K-Banach space. It is called the dual space to V .

Lemma 2.5. Let I be an index set; for any j ∈ I let 1j ∈ c0(I) denote the
family (ai)i∈I with ai = 0 for i 6= j and aj = 1; then

c0(I)′
∼=−−→ `∞(I)

` 7−→ (`(1i))i∈I

is an isometric linear isomorphism.

Here is a warning.

Proposition 2.6. Suppose that K is not spherically complete; then(
`∞(N)/c0(N)

)′
= {0} .

Proof. [PGS] Thm. 4.1.12.

Throughout the further text (K, | |) is a fixed nonarchimedean field.

3 Convergent series

We briefly collect the most basic facts about convergent series in Banach
spaces. Let (V, ‖ ‖) be a K-Banach space.

Lemma 3.1. Let (vn)n∈N be a sequence in V ; we then have:

i. The series
∑∞

n=1 vn is convergent if and only if limn→∞ vn = 0;

ii. if the limit v := limn→∞ vn exists in V and is nonzero then ‖vn‖ = ‖v‖
for all but finitely many n ∈ N;

iii. let σ : N→ N be any bijection and suppose that the series v =
∑∞

n=1 vn
is convergent in V ; then the series

∑∞
n=1 vσ(n) is convergent as well

with the same limit v.

The following identities between convergent series are obvious:

–
∑∞

n=1 avn = a ·
∑∞

n=1 vn for any a ∈ K.

– (
∑∞

n=1 vn) + (
∑∞

n=1wn) =
∑∞

n=1(vn + wn).
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Lemma 3.2. Let
∑∞

n=1 an and
∑∞

n=1 vn be convergent series in K and V ,
respectively; then the series

∑∞
n=1wn with wn :=

∑
`+m=n a`vm is conver-

gent, and
∞∑
n=1

wn =
( ∞∑
n=1

an

)( ∞∑
n=1

vn

)
.

Analogous assertions hold true for series
∑∞

n1,...,nr=1 vn1,...,nr indexed by
multi-indices in N× . . .×N. But we point out the following additional fact.

Lemma 3.3. Let (vm,n)m,n∈N be a double sequence in V such that

lim
m+n→∞

vm,n = 0 ;

we then have
∞∑
m=1

∞∑
n=1

vm,n =
∞∑
n=1

∞∑
m=1

vm,n

which, in particular, means that all series involved are convergent.

4 Differentiability

Let V and W be two normed K-vector spaces, let U ⊆ V be an open subset,
and let f : U −→W be some map.

Definition. The map f is called differentiable in the point v0 ∈ U if there
exists a continuous linear map

Dv0f : V −→W

such that for any ε > 0 there is an open neighbourhood Uε = Uε(v0) ⊆ U of
v0 with

‖f(v)− f(v0)−Dv0f(v − v0)‖ ≤ ε‖v − v0‖ for any v ∈ Uε .

Exercise. Check that Dv0f is uniquely determined.

The continuous linear map Dv0f : V −→ W is called (if it exists) the
derivative of f in the point v0 ∈ U . In case V = K we also write f ′(a0) :=
Da0f(1).

Remark 4.1. i. If f is differentiable in v0 then it is continuous in v0.
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ii. (Chain rule) Let V,W1, and W2 be normed K-vector spaces, U ⊆ V
and U1 ⊆ W1 be open subsets, and f : U −→ U1 and g : U1 −→ W2

be maps; suppose that f is differentiable in some v0 ∈ U and g is
differentiable in f(v0); then g ◦ f is differentiable in v0 and

Dv0(g ◦ f) = Df(v0)g ◦Dv0f .

iii. A continuous linear map u : V −→ W is differentiable in any v0 ∈ V
and Dv0u = u; in particular, in the situation of ii. we have

Dv0(u ◦ f) = u ◦Dv0f .

iv. (Product rule) Let V,W1, . . . ,Wm, and W be normed K-vector spaces,
let U ⊆ V be an open subset with maps fi : U −→ Wi, and let
u : W1 × . . . × Wm −→ W be a continuous multilinear map; sup-
pose that f1, . . . , fm all are differentiable in some point v0 ∈ U ; then
u(f1, . . . , fm) : U −→W is differentiable in v0 and

Dv0(u(f1, . . . , fm)) =
m∑
i=1

u(f1(v0), . . . , Dv0fi, . . . , fm(v0)) .

Remark. Suppose that the vector space V = V1⊕ . . .⊕Vm is the direct sum
of finitely many vector spaces V1, . . . , Vm. Then we have the usual notion of

the partial derivatives D
(i)
v0 f := Dv0,ifi : Vi −→ W of f in v0. The differ-

entiability of f in v0 implies the existence of all partial derivatives together

with the identity Dv0f =
∑m

i=1D
(i)
v0 f .

Definition. The map f is called strictly differentiable in v0 ∈ U if there
exists a continuous linear map Dv0f : V −→ W such that for any ε > 0
there is an open neighbourhood Uε ⊆ U of v0 with

‖f(v1)− f(v2)−Dv0f(v1 − v2)‖ ≤ ε‖v1 − v2‖ for any v1, v2 ∈ Uε .

Exercise. Suppose that f is strictly differentiable in every point of U . Then
the map

U −→ L(V,W )

v 7−→ Dvf

is continuous.
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Proposition 4.2. (Local invertibility) Let V and W be K-Banach spaces,
U ⊆ V be an open subset, and f : U −→ W be a map which is strictly

differentiable in the point v0 ∈ U ; suppose that the derivative Dv0f : V
∼=−→W

is a topological isomorphism; then there are open neighbourhoods U0 ⊆ U of
v0 and U1 ⊆W of f(v0) such that:

i. f : U0
'−−→ U1 is a homeomorphism;

ii. the inverse map g : U1 −→ U0 is strictly differentiable in f(v0), and

Df(v0)g = (Dv0f)−1 .

Concerning the assumption on the derivative in the above proposition
we recall the open mapping theorem (cf. [NFA] Cor. 8.7): It says that any
continuous linear bijection between K-Banach spaces necessarily is a topo-
logical isomorphism. We also point out the trivial fact that any linear map
between two finite dimensional K-Banach spaces is continuous.

Remark. A map f : X −→ A from some topological space X into some
set A is called locally constant if f−1(a) is open (and closed) in X for any
a ∈ A. Lemma 1.4 implies that there are plenty of locally constant maps f :
U −→W . They all are strictly differentiable in any v0 ∈ U with Dv0f = 0.

5 Power series

Let V be a K-Banach space. A power series f(X) in r variables X =
(X1, . . . , Xr) with coefficients in V is a formal series

f(X) =
∑
α∈Nr0

Xαvα with vα ∈ V .

As usual we abbreviate Xα := Xα1
1 · . . . ·Xαr

r and |α| := α1 + . . .+ αr for a
multi-index α = (α1, . . . , αr) ∈ Nr0.

For any ε > 0 the power series f(X) =
∑

αX
αvα is called ε-convergent

if
lim
|α|→∞

ε|α|‖vα‖ = 0 .

Remark. If f(X) is ε-convergent then it also is δ-convergent for any 0 <
δ ≤ ε.
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The K-vector space

Fε(Kr;V ) := all ε-convergent power series f(X) =
∑
α∈Nr0

Xαvα

is normed by
‖f‖ε := max

α
ε|α|‖vα‖ .

Remark. Fε(Kr;V ) is a Banach space whose topology only depends on the
topology of V (and not on its specific norm). If ε = |c| for some c ∈ K× the
map

c0(Nr0)
∼=−−→ F|c|(Kr;K)

(aα)α 7−→
∑
α

aα

c|α|
Xα

is an isometric linear isomorphism.

Let Bε(0) denote the closed ball around zero in Kr of radius ε. We recall
that Kr always is equipped with the norm ‖(a1, . . . , ar)‖ = max1≤i≤r |ai|.
By Lemma 3.1.i. we have the K-linear map

Fε(Kr;V ) −→ K-vector space of maps Bε(0) −→ V

f(X) =
∑
α

Xαvα 7−→ f̃(x) :=
∑
α

xαvα .

Remark 5.1. For any x ∈ Bε(0) the linear evaluation map

Fε(Kr;V ) −→ V

f 7−→ f̃(x)

is continuous of operator norm ≤ 1.

Proof. We have

‖f̃(x)‖ = ‖
∑
α

xαvα‖ ≤ max
α

ε|α|‖vα‖ = ‖f‖ε .

The following properties are established by straightforward estimates.
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Proposition 5.2. Let u : V1 × V2 −→ V be a continuous bilinear map
between K-Banach spaces; then

U : Fε(Kr;V1)×Fε(Kr;V2) −→ Fε(Kr;V )(∑
α

Xαvα,
∑
α

Xαwα
)
7−→

∑
α

Xα
( ∑
β+γ=α

u(vβ, wγ)
)

is a continuous bilinear map satisfying

U(f, g)∼(x) = u(f̃(x), g̃(x)) for any x ∈ Bε(0)

and any f ∈ Fε(Kr;V1) and g ∈ Fε(Kr;V2).

Proposition 5.3. Fε(Kr;K) is a commutative K-algebra with respect to
the multiplication(∑

α

bαX
α
)(∑

α

cαX
α
)

:=
∑
α

(∑
β+γ

bβcγ
)
Xα ;

in addition we have

(fg)∼(x) = f̃(x)g̃(x) for any x ∈ Bε(0)

as well as
‖fg‖ε = ‖f‖ε‖g‖ε

for any f, g ∈ Fε(Kr;K).

Proposition 5.4. Let g ∈ Fδ(Kr;Kn) such that ‖g‖δ ≤ ε; then

Fε(Kn;V ) −→ Fδ(Kr;V )

f(Y ) =
∑
β

Y βvβ 7−→ f ◦ g(X) :=
∑
β

g(X)βvβ

is a continuous linear map of operator norm ≤ 1 which satisfies

(f ◦ g)∼(x) = f̃(g̃(x)) for any x ∈ Bδ(0) ⊆ Kr .

Remark. For any g ∈ Fδ(Kr;Kn), we have, by Remark 5.1, the inequality

sup
x∈Bδ(0)

‖g̃(x)‖ ≤ ‖g‖δ .

It is, in general, not an equality. This means that we may have g̃(Bδ(0)) ⊆
Bε(0) even if ε < ‖g‖δ. Then, for any f ∈ Fε(Kn;V ), the composite of maps
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f̃ ◦ g̃ exists but the composite of power series f ◦g ∈ Fδ(Kr;V ) may not. An
example of such a situation is

g(X) := Xp −X ∈ F1(Qp;Qp) and f(Y ) :=

∞∑
n=0

Y n ∈ F 1
p
(Qp;Qp) .

Corollary 5.5. (Point of expansion) Let f ∈ Fε(Kr;V ) and y ∈ Bε(0);
then there exists an fy ∈ Fε(Kr;V ) such that ‖fy‖ε = ‖f‖ε and

f̃(x) = f̃y(x− y) for any x ∈ Bε(0) = Bε(y) .

Of course, we have the formal partial derivatives ∂f
∂Xi

(X) of f(X). Since
‖Nvα‖ ≤ ‖vα‖ they respect ε-convergence.

Proposition 5.6. The map f̃ is strictly differentiable in every point z ∈
Bε(0) and satisfies

D(i)
z f̃(1) =

(
∂f

∂Xi

)∼
(z) .

Proof. Using Cor. 5.5 and the chain rule one reduces the assertion to the
case z = 0. Consider the continuous linear map

D : Kr −→ V

(a1, . . . , ar) 7−→
r∑
i=1

aivi .

Let δ > 0 and choose a 0 < δ′ < ε such that

δ′
‖f‖ε
ε2
≤ δ .

By induction with respect to |α| one checks that

|xα − yα| ≤ (δ′)|α|−1‖x− y‖ for any x, y ∈ Bδ′(0) .
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We now compute

‖f̃(x)− f̃(y)−D(x− y)‖ = ‖
∑
|α|≥2

(xα − yα)vα‖

≤ max
|α|≥2

|xα − yα| · ‖vα‖

≤ ‖f‖ε · max
|α|≥2

|xα − yα|
ε|α|

≤ ‖f‖ε · max
|α|≥2

(δ′)|α|−1

ε|α|
· ‖x− y‖

= ‖f‖ε ·
δ′

ε2
· ‖x− y‖

≤ δ‖x− y‖

for any x, y ∈ Bδ′(0). This proves that f̃ is strictly differentiable in 0 with
D0f̃ = D and hence

D
(i)
0 f̃(1) = vi =

(
∂f

∂Xi

)∼
(0) .

By Prop. 5.6 the map

∂f̃

∂xi
: Bε(0) −→ V

x 7−→ D(i)
x f̃(1)

is well defined and satisfies

∂f̃

∂xi
=

(
∂f

∂Xi

)∼
.

Corollary 5.7. (Taylor expansion) If K has characteristic zero then we
have

f(X) =
∑
α

Xα 1
α1!·...·αr!

(( ∂

∂x1

)α1 . . .
( ∂

∂xr

)αr f̃)(0) .

Corollary 5.8. (Identity theorem for power series) If K has characteristic
zero then for any nonzero f ∈ Fε(Kr;V ) there is a point x ∈ Bε(0) such
that f̃(x) 6= 0.
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By more sophisticated techniques (cf. [BGR] 5.1.4 Cor. 5 and subsequent
comment) the assumption on the characteristic of K in Cor. 5.8 can be
removed. So the map

Fε(Kr;V ) −→ strictly differentiable maps Bε(0) −→ V

f 7−→ f̃

always is injective and commutes with all the usual operations as considered
above. Therefore we will write very often f for the power series as well as
the corresponding map.

Proposition 5.9. (Invertibility for power series) Let f(X) ∈ Fε(Kr;Kr)
such that f(0) = 0, and suppose that D0f is bijective; we fix a 0 < δ <

ε2

‖f‖ε‖(D0f)−1‖2 ; then δ < ‖f‖ε, and there is a uniquely determined g(Y ) ∈
Fδ(Kr;Kr) such that

g(0) = 0, ‖g‖δ < ε, and f ◦ g(Y ) = Y ;

in particular, the diagram

Bδ(0)

⊆

%%JJJJJJJJJ

g
{{ww

ww
ww

ww
w

Bε(0)
f

// B‖f‖ε(0)

is commutative.

Finally we note the rather obvious fact.

Proposition 5.10. Let u : V −→ W be a continuous linear map between
K-Banach spaces; then

Fε(Kr;V ) −→ Fε(Kr;W )

f(X) =
∑
α

Xαvα 7−→ u ◦ f(X) :=
∑
α

Xαu(vα)

is a continuous linear map of operator norm ≤ ‖u‖ which satisfies

u ◦ f(x) = u(f(x)) for any x ∈ Bε(0) .
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6 Locally analytic functions

Let U ⊆ Kr be an open subset and V be a K-Banach space. The key
definition in these lectures is the following.

Definition. A function f : U −→ V is called locally analytic if for any
point x0 ∈ U there is a ball Bε(x0) ⊆ U around x0 and a power series
F ∈ Fε(Kr;V ) such that

f(x) = F (x− x0) for any x ∈ Bε(x0) .

The set

Can(U, V ) := all locally analytic functions f : U −→ V

is a K-vector space with respect to pointwise addition and scalar multipli-
cation. The vector space Can(U, V ) carries a natural topology which will be
discussed later on.

Example. By Cor. 5.5 we have F̃ ∈ Can(Bε(0), V ) for any F ∈ Fε(Kr;V ).

Proposition 6.1. Suppose that f : U −→ V is locally analytic; then f is
strictly differentiable in every point x0 ∈ U and the function x 7−→ Dxf is
locally analytic in Can(U,L(Kr, V )).

Proof. Let F ∈ Fε(Kr;V ) such that

f(x) = F̃ (x− x0) for any x ∈ Bε(x0) .

From Prop. 5.6 and the chain rule we deduce that f is strictly differentiable
in every x ∈ Bε(x0) and

Dxf((a1, . . . , ar)) =
r∑
i=1

aiD
(i)
x−x0F̃ (1) =

r∑
i=1

ai
( ∂F
∂Xi

)∼
(x− x0) .

Let
∂F

∂Xi
(X) =

∑
α

Xαvi,α .

For any multi-index α we introduce the continuous linear map

Lα : Kr −→ V

(a1, . . . , ar) 7−→ a1v1,α + . . .+ arvr,α .
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Because of ‖Lα‖ ≤ maxi ‖vi,α‖ we have

G(X) :=
∑
α

XαLα ∈ Fε(Kr;L(Kr, V ))

and
Dxf = G̃(x− x0) for any x ∈ Bε(x0) .

Remark 6.2. If K has characteristic zero then, for any function f : U −→
V , the following conditions are equivalent:

i. f is locally constant;

ii. f is locally analytic with Dxf = 0 for any x ∈ U .

Proof. This is an immediate consequence of the Taylor formula in Cor. 5.7.

We now give a list of more or less obvious properties of locally analytic
functions.

1) For any open subset U ′ ⊆ U we have the linear restriction map

Can(U, V ) −→ Can(U ′, V )

f 7−→ f |U ′ .

2) For any open and closed subset U ′ ⊆ U we have the linear map

Can(U ′, V ) −→ Can(U, V )

f 7−→ f!(x) :=

{
f(x) if x ∈ U ′,
0 otherwise

called extension by zero.

3) If U =
⋃
i∈I Ui is a covering by pairwise disjoint open subsets then

Can(U, V ) ∼=
∏
i∈I

Can(Ui, V )

f 7−→ (f |Ui)i .
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4) For any two K-Banach spaces V and W we have

Can(U, V ⊕W ) ∼= Can(U, V )⊕ Can(U,W )

f 7−→ (prV ◦f,prW ◦f) .

In particular

Can(U,Kn) ∼=
n∏
i=1

Can(U,K) .

5) For any continuous bilinear map u : V1×V2 −→ V between K-Banach
spaces we have the bilinear map

Can(U, V1)× Can(U, V2) −→ Can(U, V )

(f, g) 7−→ u(f, g)

(cf. Prop. 5.2). In particular, Can(U,K) is a K-algebra (cf. Prop. 5.3),
and Can(U, V ) is a module over Can(U,K).

6) For any continuous linear map u : V −→W between K-Banach spaces
we have the linear map

Can(U, V ) −→ Can(U,W )

f 7−→ u ◦ f

(cf. Prop. 5.10).

Lemma 6.3. Let U ′ ⊆ Kn be an open subset and let g ∈ Can(U,Kn) such
that g(U) ⊆ U ′; then the map

Can(U ′, V ) −→ Can(U, V )

f 7−→ f ◦ g

is well defined and K-linear.

Proof. Let x0 ∈ U and put y0 := g(x0) ∈ U ′. We choose a ball Bε(y0) ⊆ U ′

and a power series F ∈ Fε(Kn;V ) such that

f(y) = F (y − y0) for any y ∈ Bε(y0) .

We also choose a ball Bδ(x0) ⊆ U and a power series G ∈ Fδ(Kr;Kn) such
that

g(x) = G(x− x0) for any x ∈ Bδ(x0) .
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Observing that

‖G−G(0)‖δ′ ≤
δ′

δ
‖G−G(0)‖δ for any 0 < δ′ ≤ δ

we may decrease δ so that

‖G− y0‖δ = ‖G−G(0)‖δ ≤ ε

(and, in particular, g(Bδ(x0)) ⊆ Bε(y0)) holds true. It then follows from
Prop. 5.4 that F ◦ (G− y0) ∈ Fδ(Kr;V ) and

(F ◦ (G− y0))∼(x− x0) = F (G(x− x0)− y0)
= F (g(x)− y0)
= f(g(x))

for any x ∈ Bδ(x0).

The last result can be expressed by saying that the composite of locally
analytic functions again is locally analytic.

Proposition 6.4. (Local invertibility) Let U ⊆ Kr be an open subset and
let f ∈ Can(U,Kr); suppose that Dx0f is bijective for some x0 ∈ U ; then
there are open neighbourhoods U0 ⊆ U of x0 and U1 ⊆ Kr of f(x0) such
that:

i. f : U0
'−−→ U1 is a homeomorphism;

ii. the inverse map g : U1 −→ U0 is locally analytic, i. e., g ∈ Can(U1,K
r).

A map f : U −→ U ′ between open subsets U ⊆ Kr and U ′ ⊆ Kn

is called locally analytic if the composite U
f−→ U ′

⊆−−→ Kn is a locally
analytic function.

7 Charts and atlases

We continue to fix the nonarchimedean field (K, | |). But from now on we
will denote K-Banach spaces by letters like E whereas letters like U and V
are reserved for open subsets in a topological space.

Let M be a Hausdorff topological space.

Definition. i. A chart for M is a triple (U,ϕ,Kn) consisting of an open
subset U ⊆M and a map ϕ : U −→ Kn such that:
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(a) ϕ(U) is open in Kn,

(b) ϕ : U
'−−→ ϕ(U) is a homeomorphism.

ii. Two charts (U1, ϕ1,K
n1) and (U2, ϕ2,K

n2) for M are called compati-
ble if both maps

ϕ1(U1 ∩ U2)
ϕ2◦ϕ−1

1 //
ϕ2(U1 ∩ U2)

ϕ1◦ϕ−1
2

oo

are locally analytic.

We note that the condition in part ii. of the above definition makes
sense since ϕ1(U1 ∩ U2) is open in Kni . If (U,ϕ,Kn) is a chart then the
open subset U is called its domain of definition and the integer n ≥ 0 its
dimension. Usually we simply write (U,ϕ) instead of (U,ϕ,Kn). If x is a
point in U then (U,ϕ) is also called a chart around x.

Lemma 7.1. Let (Ui, ϕi,K
ni) for i = 1, 2 be two compatible charts for M ;

if U1 ∩ U2 6= ∅ then n1 = n2.

Proof. Let x ∈ U1∩U2 and put xi := ϕi(x). We consider the locally analytic
maps

ϕ1(U1 ∩ U2)
f :=ϕ2◦ϕ−1

1 //
ϕ2(U1 ∩ U2) .

g:=ϕ1◦ϕ−1
2

oo

They are differentiable and inverse to each other, and x2 = f(x1). Hence,
by the chain rule, the derivatives

Kn1

Dx1f //
Kn2

Dx2g
oo

are linear maps inverse to each other. It follows that n1 = n2.

Definition. i. An atlas for M is a set A = {(Ui, ϕi,Kni)}i∈I of charts
for M any two of which are compatible and which cover M in the sense
that M =

⋃
i∈I Ui.

ii. Two atlases A and B for M are called equivalent if A ∪ B also is an
atlas for M .

iii. An atlas A for M is called maximal if any equivalent atlas B for M
satisfies B ⊆ A.
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Remark 7.2. i. The equivalence of atlases indeed is an equivalence re-
lation.

ii. In each equivalence class of atlases there is exactly one maximal atlas.

Lemma 7.3. If A is a maximal atlas for M the domains of definition of all
the charts in A form a basis of the topology of M .

Definition. An atlas A for M is called n-dimensional if all the charts in
A with nonempty domain of definition have dimension n.

Remark 7.4. Let A be an n-dimensional atlas for M ; then any atlas B
equivalent to A is n-dimensional as well.

8 Manifolds

Definition. A (locally analytic) manifold (M,A) (over K) is a Hausdorff
topological space M equipped with a maximal atlas A. The manifold is called
n-dimensional (we write dimM = n) if the atlas A is n-dimensional.

We usually speak of a manifoldM while consideringA as given implicitly.
A chart for M will always mean a chart in A.

Example. Kn will always denote the n-dimensional manifold whose maxi-
mal atlas is equivalent to the atlas {(U,⊆,Kn) : U ⊆ Kn open}.

Remark 8.1. Let (U,ϕ,Kn) be a chart for the manifold M ; if V ⊆ U is an
open subset then (V, ϕ|V,Kn) also is a chart for M .

Let (M,A) be a manifold and U ⊆M be an open subset. Then

AU := {(V, ψ,Kn) ∈ A : V ⊆ U} ,

by Lemma 7.3, is an atlas for U . Check that AU is maximal. The manifold
(U,AU ) is called an open submanifold of (M,A).

Example. The d-dimensional projective space Pd(K) = (Kd+1 \ {0})/ ∼
over K is the set of equivalence classes in Kd+1 \ {0} for the equivalence
relation

(a1, . . . , ad+1) ∼ (ca1, . . . , cad+1) for any c ∈ K× .

As usual we write [a1 : . . . : ad+1] for the equivalence class of (a1, . . . , ad+1).
With respect to the quotient topology from Kd+1 \ {0} the projective space
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Pd(K) is a Hausdorff topological space. For any 1 ≤ j ≤ d + 1 we have the
open subset

Uj := {[a1 : . . . : ad+1] ∈ Pd(K) : |ai| ≤ |aj | for any 1 ≤ i ≤ d+ 1}

together with the homeomorphism

ϕj : Uj
'−−→ B1(0) ⊆ Kd

[a1 : . . . : ad+1] 7−→
(
a1
aj
, . . . ,

aj−1

aj
,
aj+1

aj
, . . . ,

ad+1

aj

)
.

The (Uj , ϕj ,K
d) are charts for Pd(K) such that

⋃
j Uj = Pd(K). They are

pairwise compatible. For example, for 1 ≤ j < k ≤ d + 1, check that the
composite map

f : {x ∈ B1(0) : |xk−1| = 1}
ϕ−1
j−−−→ Uj ∩ Uk

ϕk−−→ {y ∈ B1(0) : |yj | = 1},

which is given by

f(x1, . . . , xd) =
(

x1
xk−1

, . . . ,
xj−1

xk−1
, 1
xk−1

,
xj
xk−1

, . . . ,
xk−2

xk−1
, xk
xk−1

, . . . , xd
xk−1

)
,

is locally analytic. The above charts therefore form a d-dimensional atlas for
Pd(K).

Exercise. Let (M,A) and (N,B) be two manifolds. Then

A× B := {(U × V ), ϕ× ψ,Km+n) : (U,ϕ,Km) ∈ A, (V, ψ,Kn) ∈ B}

is an atlas for M × N with the product topology. We call M × N equipped
with the equivalent maximal atlas the product manifold of M and N .

Let M be a manifold and E be a K-Banach space.

Definition. A function f : M −→ E is called locally analytic if f ◦ ϕ−1 ∈
Can(ϕ(U), E) for any chart (U,ϕ) for M .

Remark 8.2. i. Every locally analytic function f : M −→ E is contin-
uous.

ii. Let B be any atlas consisting of charts for M ; a function f : M −→
E is locally analytic if and only if f ◦ ϕ−1 ∈ Can(ϕ(U), E) for any
(U,ϕ) ∈ B.
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The set

Can(M,E) := all locally analytic functions f : M −→ E

is a K-vector space with respect to pointwise addition and scalar multipli-
cation. It is easy to see that a list of properties 1) - 6) completely analogous
to the one given in section 6 holds true.

Let now M and N be two manifolds. The following result is immediate.

Lemma 8.3. For a map g : M −→ N the following assertions are equiva-
lent:

i. g is continuous and ψ ◦ g ∈ Can(g−1(V ),Kn) for any chart (V, ψ,Kn)
for N ;

ii. for any point x ∈ M there exist a chart (U,ϕ,Km) for M around x
and a chart (V, ψ,Kn) for N around g(x) such that g(U) ⊆ V and
ψ ◦ g ◦ ϕ−1 ∈ Can(ϕ(U),Kn).

Definition. A map g : M −→ N is called locally analytic if the equivalent
conditions in Lemma 8.3 are satisfied.

Lemma 8.4. i. If g : M −→ N is a locally analytic map and E is a
K-Banach space then

Can(N,E) −→ Can(M,E)

f 7−→ f ◦ g

is a well defined K-linear map.

ii. With L
f−→M

g−→ N also g ◦ f : L −→ N is a locally analytic map of
manifolds.

Proof. This follows from Lemma 6.3.

Examples 8.5. 1) For any open submanifold U of M the inclusion map

U
⊆−−→M is locally analytic.

2) Let g : M −→ N be a locally analytic map; for any open submanifold

V ⊆ N the induced map g−1(V )
g−→ V is locally analytic.

3) The two projection maps

pr1 : M ×N −→M and pr2 : M ×N −→ N

are locally analytic.
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4) For any pair of locally analytic maps g : L −→ M and f : L −→ N
the map

(g, f) : L −→M ×N
x 7−→ (g(x), f(x))

is locally analytic.

We finish this section by mentioning a very useful technical property
of manifolds. First let X be an arbitrary Hausdorff topological space. We
recall:

- Let X =
⋃
i∈I Ui and X =

⋃
j∈J Vj be two open coverings of X. The

second one is called a refinement of the first if for any j ∈ J there is
an i ∈ I such that Vj ⊆ Ui.

- An open covering X =
⋃
i∈I Ui of X is called locally finite if every

point x ∈ X has an open neighbourhood Ux such that the set {i ∈ I :
Ux ∩ Ui 6= ∅} is finite.

- The space X is called paracompact, resp. strictly paracompact, if any
open covering of X can be refined into an open covering which is locally
finite, resp. which consists of pairwise disjoint open subsets.

Remark 8.6. i. Any ultrametric space X is strictly paracompact.

ii. Any compact space X is paracompact.

Proof. i. This follows from Lemma 1.4. ii. This is trivial.

Proposition 8.7. For a manifold M the following conditions are equivalent:

i. M is paracompact;

ii. M is strictly paracompact;

iii. the topology of M can be defined by a metric which satisfies the strict
triangle inequality.

Corollary 8.8. Open submanifolds and product manifolds of paracompact
manifolds are paracompact.
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9 The tangent space

Let M be a manifold, and fix a point a ∈M . We consider pairs (c, v) where

– c = (U,ϕ,Km) is a chart for M around a and

– v ∈ Km.

Two such pairs (c, v) and (c′, v′) are called equivalent if we have

Dϕ(a)(ϕ
′ ◦ ϕ−1)(v) = v′ .

It follows from the chain rule that this indeed defines an equivalence relation.

Definition. A tangent vector of M at the point a is an equivalence class
[c, v] of pairs (c, v) as above.

We define

Ta(M) := set of all tangent vectors of M at a .

Lemma 9.1. Let c = (U,ϕ,Km) and c′ = (U ′, ϕ′,Km) be two charts for M
around a; we then have:

i. The map

θc : Km ∼−−→ Ta(M)

v 7−→ [c, v]

is bijective.

ii. θ−1c′ ◦ θc : Km
∼=−−→ Km is a K-linear isomorphism.

Proof. (We recall from Lemma 7.1 that the dimensions of two charts around
the same point necessarily coincide.) i. Surjectivity follows from

[c′′, v′′] = [c,Dϕ′′(a)(ϕ ◦ ϕ′′−1)(v′′)] .

If [c, v] = [c, v′] then v′ = Dϕ(a)(ϕ ◦ϕ−1)(v) = v. This proves the injectivity.
ii. From [c, v] = [c′, Dϕ(a)(ϕ

′ ◦ ϕ−1)(v)] we deduce that

θ−1c′ ◦ θc = Dϕ(a)(ϕ
′ ◦ ϕ−1) .
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The set Ta(M), by Lemma 9.1.i., has precisely one structure of a topo-
logical K-vector space such that the map θc is a K-linear homeomorphism.
Because of Lemma 9.1.ii. this structure is independent of the choice of the
chart c around a.

Definition. The K-vector space Ta(M) is called the tangent space of M at
the point a.

Remark. The manifold M has dimension m if and only if dimK Ta(M) = m
for any a ∈M .

Let g : M −→ N be a locally analytic map of manifolds. By Lemma
8.3.ii. we find charts c = (U,ϕ,Km) for M around a and c̃ = (V, ψ,Kn) for
N around g(a) such that g(U) ⊆ V . The composite

Ta(g) : Ta(M)
θ−1
c−−−→ Km Dϕ(a)(ψ◦g◦ϕ−1)

−−−−−−−−−−−→ Kn θc̃−−→ Tg(a)(N)

is a continuous K-linear map. We claim that Ta(g) does not depend on the
particular choice of charts. Let c′ = (U ′, ϕ′) and c̃′ = (V ′, ψ′) be other charts
around a and g(a), respectively. Using the identity in the proof of Lemma
9.1.ii. as well as the chain rule we compute

θc̃ ◦Dϕ(a)(ψ ◦ g ◦ ϕ−1) ◦ θ−1c
= θc̃′ ◦Dψ(g(a))(ψ

′ ◦ ψ−1) ◦Dϕ(a)(ψ ◦ g ◦ ϕ−1) ◦Dϕ(a)(ϕ
′ ◦ ϕ−1)−1 ◦ θ−1c′

= θc̃′ ◦Dϕ′(a)(ψ
′ ◦ g ◦ ϕ′−1) ◦ θ−1c′ .

Definition. Ta(g) is called the tangent map of g at the point a.

Remark. Ta(idM ) = idTa(M) .

Lemma 9.2. For any locally analytic maps of manifolds L
f−→ M

g−→ N
we have

Ta(g ◦ f) = Tf(a)(g) ◦ Ta(f) for any a ∈ L .

Proof. This is an easy consequence of the chain rule.

Proposition 9.3. (Local invertibility) Let g : M −→ N be a locally analytic

map of manifolds, and suppose that Ta(g) : Ta(M)
∼=−−→ Tg(a)(N) is bijective

for some a ∈ M ; then there are open neighbourhoods U ⊆ M of a and
V ⊆ N of g(a) such that g restricts to a locally analytic isomorphism

g : U
'−−→ V

of open submanifolds.
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Proof. This is a consequence of Prop. 6.4.

Exercise. Let (U,ϕ,Km) be a chart for the manifold M ; then ϕ : U
'−−→

ϕ(U) is a locally analytic isomorphism between the open submanifolds U of
M and ϕ(U) of Km.

Let M be a manifold, E be a K-Banach space, f ∈ Can(M,E), and a ∈
M . If c = (U,ϕ,Km) is a chart for M around a then f ◦ϕ−1 ∈ Can(ϕ(U), E).
Hence

daf : Ta(M)
θ−1
c−−→ Km Dϕ(a)(f◦ϕ−1)

−−−−−−−−−→ E

[c, v] p−−−−−−−−−−−→ Dϕ(a)(f ◦ ϕ−1)(v)

is a continuous K-linear map. If c′ = (U ′, ϕ′,Km) is another chart around
a then

Dϕ(a)(f ◦ ϕ−1) ◦ θ−1c = Dϕ(a)(f ◦ ϕ−1) ◦Dϕ(a)(ϕ
′ ◦ ϕ−1)−1 ◦ θ−1c′

= Dϕ′(a)(f ◦ ϕ′−1) ◦ θ−1c′ .

This shows that daf does not depend on the choice of the chart c.

Definition. daf is called the derivative of f in the point a.

Remark 9.4. For E = Kr viewed as a manifold and for the chart c0 =
(Kr, id, E) for E we have

Ta(f) = θc0 ◦ daf .

Obviously the map

Can(M,E) −→ L(Ta(M), E)

f 7−→ daf

is K-linear.

Lemma 9.5. (Product rule)

i. Let u : E1×E2 −→ E be a continuous bilinear map between K-Banach
spaces; if fi ∈ Can(M,Ei) for i = 1, 2 then u(f1, f2) ∈ Can(M,E) and

da(u(f1, f2)) = u(f1(a), daf2) + u(daf1, f2(a)) for any a ∈M .

ii. For g ∈ Can(M,K) and f ∈ Can(M,E) we have

da(gf) = g(a) · daf + dag · f(a) for any a ∈M .
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Let c = (U,ϕ,Km) be a chart for M . On the one hand, by definition, we
have daϕ = θ−1c for any a ∈ U ; in particular

daϕ : Ta(M)
∼=−−→ Km

is a K-linear isomorphism. On the other hand viewing ϕ = (ϕ1, . . . , ϕm) as
a tuple of locally analytic functions ϕi : U −→ K we have

daϕ = (daϕ1, . . . , daϕm) .

This means that {daϕi}1≤i≤m is a K-basis of the dual vector space Ta(M)′.
Let {(

∂
∂ϕi

)
(a)
}
1≤i≤m

denote the corresponding dual basis of Ta(M), i. e.,

daϕi
((

∂
∂ϕj

)
(a)
)

= δij for any a ∈ U

where δij is the Kronecker symbol. For any f ∈ Can(M,E) we define the
functions

∂f
∂ϕi

: U −→ E

a 7−→ daf
((

∂
∂ϕi

)
(a)
)
.

Lemma 9.6. ∂f
∂ϕi
∈ Can(U,E) for any 1 ≤ i ≤ m, and

daf =

m∑
i=1

daϕi · ∂f∂ϕi (a) for any a ∈ U .

Now we define the disjoint union

T (M) :=
⋃
a∈M

Ta(M)

together with the projection map

pM : T (M) −→M

t 7−→ a if t ∈ Ta(M) .

Hence Ta(M) = p−1M (a). We will show that T (M) is naturally a manifold
and pM a locally analytic map of manifolds.

29



Consider any chart c = (U,ϕ,Km) for M . By Lemma 9.1.i. the map

τc : U ×Km ∼−−→ p−1M (U)

(a, v) 7−→ [c, v] viewed in Ta(M)

is bijective. Hence the composite

ϕc : p−1M (U)
τ−1
c−−−→ U ×Km ϕ×id−−−−→ Km ×Km = K2m

is a bijection onto an open subset in K2m. The idea is that

cT :=
(
p−1M (U), ϕc,K

2m
)

should be a chart for the manifold T (M). Clearly we have

T (M) =
⋃

c=(U,ϕ)

p−1M (U) .

We equip T (M) with the finest topology which makes all composed maps

U ×Km τc−−→ p−1M (U)
⊆−−→ T (M)

continuous.

Lemma 9.7. i. The map τc : U ×Km '−−→ p−1M (U) is a homeomorphism
with respect to the subspace topology induced by T (M) on p−1M (U).

ii. The map pM is continuous.

iii. The topological space T (M) is Hausdorff.

The Lemma 9.7 in particular says that cT indeed is a chart for T (M).
Check that these charts are compatible. We conclude that the set

{cT : c a chart for M}

is an atlas for T (M) and we always view T (M) as a manifold with respect
to the equivalent maximal atlas.

Definition. The manifold T (M) is called the tangent bundle of M .

Remark. If M is m-dimensional then T (M) is 2m-dimensional.

Lemma 9.8. The map pM : T (M) −→M is locally analytic.
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Proof. Let c = (U,ϕ,Km) be a chart for M . It suffices to contemplate the
commutative diagram

T (M)

pM

��

p−1M (U)
⊇oo

��

// ϕc(p
−1
M (U)) = ϕ(U)×Km

pr1
��

⊆ // K2m

M U
⊇oo ϕ // ϕ(U)

⊆ // Km .

Let g : M −→ N be a locally analytic map of manifolds. We define the
map

T (g) : T (M) −→ T (N)

by
T (g)|Ta(M) := Ta(g) for any a ∈M .

In particular, the diagram

T (M)
T (g) //

pM

��

T (N)

pN

��
M

g // N

is commutative.

Proposition 9.9. i. The map T (g) is locally analytic.

ii. For any locally analytic maps of manifolds L
f−→M

g−→ N we have

T (g ◦ f) = T (g) ◦ T (f) .

Note that the above ii. is a restatement of Lemma 9.2.

Exercise 9.10. i. For U ⊆ M an open submanifold, T (⊆) induces an
isomorphism between T (U) and the open submanifold p−1M (U).

ii. For any two manifolds M and N the map

T (pr1)× T (pr2) : T (M ×N)
'−−→ T (M)× T (N)

is an isomorphism of manifolds.
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Now let M be a manifold and E be a K-Banach space. For any f ∈
Can(M,E) we define

df : T (M) −→ E

t 7−→ dpM (t)f(t) .

Lemma 9.11. We have df ∈ Can(T (M), E).

Lemma 9.12. Let g : M −→ N be a locally analytic map of manifolds; for
any f ∈ Can(N,E) we have

d(f ◦ g) = df ◦ T (g) .

Proof. This is a consequence of the chain rule.

Exercise. The map

d : Can(M,E) −→ Can(T (M), E)

f 7−→ df

is K-linear.

Remark 9.13. If K has characteristic zero then a function f ∈ Can(M,E)
is locally constant if and only if df = 0.

Proof. Use Remark 6.2.

We finish this section by briefly discussing vector fields.

Definition. Let U ⊆M be an open subset; a vector field ξ on U is a locally
analytic map ξ : U −→ T (M) which satisfies pM ◦ ξ = idU .

It is easily seen that

Γ(U, T (M)) := set of all vector fields on U .

is a K-vector space w.r.t. pointwise addition and scalar multiplication of
maps.

Lemma 9.14. For any vector field ξ ∈ Γ(M,T (M)) the map

Dξ : Can(M,K) −→ Can(M,K)

f 7−→ df ◦ ξ

is a derivation, i. e.:
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(a) Dξ is K-linear,

(b) Dξ(fg) = Dξ(f)g + fDξ(g) for any f, g ∈ Can(M,K).

Proposition 9.15. Suppose that M is paracompact; then for any derivation
D on Can(M,K) there is a unique vector field ξ on M such that D = Dξ.

Lemma 9.16. For any derivations B,C,D : Can(M,K) −→ Can(M,K) we
have:

i. [B,C] := B ◦ C − C ◦B again is a derivation;

ii. [ , ] is K-bilinear;

iii. [B,B] = 0 and [B,C] = −[C,B];

iv. (Jacobi identity) [[B,C], D] + [[C,D], B] + [[D,B], C] = 0.

Proof. These are straightforward completely formal computations.

This lemma says that the vector space of derivations on Can(M,K) is a
K-Lie algebra. Using Prop. 9.15 it follows that Γ(M,T (M)) naturally is a
Lie algebra (at least for paracompact M).

10 Reminder: Locally convex K-vector spaces

We recall very briefly the notion of a locally convex K-vector space. For
details we refer to [NFA]. Let E be any K-vector space.

Definition. A (nonarchimedean) seminorm on E is a function q : E −→ R
such that for any v, w ∈ E and any a ∈ K we have:

(i) q(av) = |a| · q(v),

(ii) q(v + w) ≤ max(q(v), q(w)).

Let (qi)i∈I be a family of seminorms on E. We consider the coarsest
topology on E such that:

(1) All maps qi : E −→ R, for i ∈ I, are continuous,

(2) all translation maps v + . : E −→ E, for v ∈ E, are continuous.

It is called the topology defined by (qi)i∈I .
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Lemma 10.1. E is a topological K-vector space, i. e., addition and scalar
multiplication are continuous, with respect to the topology defined by (qi)i∈I .

Exercise. The topology on E defined by (qi)i∈I is Hausdorff if and only if
for any vector 0 6= v ∈ E there is an index i ∈ I such that qi(v) 6= 0.

Definition. A topology on a K-vector space E is called locally convex if it
can be defined by a family of seminorms. A locally convex K-vector space is
a K-vector space equipped with a locally convex topology.

Obviously any normed K-vector space and in particular any K-Banach
space is locally convex.

Remark 10.2. Let {Ej}j∈J be a family of locally convex K-vector spaces;
then the product topology on E :=

∏
j∈J Ej is locally convex.

For our purposes the following construction is of particular relevance.
Let E be a any K-vector space, and suppose that there is given a family
{Ej}j∈J of vector subspaces Ej ⊆ E each of which is equipped with a locally
convex topology.

Lemma 10.3. There is a unique finest locally convex topology T on E such

that all the inclusion maps Ej
⊆−−→ E, for j ∈ J , are continuous.

The topology T on E in the above lemma is called the locally convex
final topology with respect to the family {Ej}j∈J . Suppose that the family
{Ej}j∈J has the additional properties:

- E =
⋃
j∈J Ej ;

- the set J is partially ordered by ≤ such that for any two j1, j2 ∈ J
there is a j ∈ J such that j1 ≤ j and j2 ≤ j;

- whenever j1 ≤ j2 we have Ej1 ⊆ Ej2 and the inclusion map Ej1
⊆−−→ Ej2

is continuous.

In this case the locally convex K-vector space (E, T ) is called the locally
convex inductive limit of the family {Ej}j∈J .

Lemma 10.4. A K-linear map f : E −→ Ẽ into any locally convex K-
vector space Ẽ is continuous (with respect to T ) if and only if the restrictions
f |Ej, for any j ∈ J , are continuous.
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11 The topological vector space Can(M,E)

Throughout this section M is a paracompact manifold and E is a K-Banach
space. Following [Fea] we briefly describe how to equip Can(M,E) with a
locally convex topology.

Using that, by Prop. 8.7, M is strictly paracompact and that, by Lemma
1.4, open coverings of open subset in Km can be refined into disjoint cover-
ings by balls we obtain the following

Fact: Given f ∈ Can(M,E) there is a family of charts (Ui, ϕi,K
mi), for

i ∈ I, for M together with real numbers εi > 0 such that:

(a) M =
⋃
i∈I Ui, and the Ui are pairwise disjoint;

(b) ϕi(Ui) = Bεi(xi) for one (or any) xi ∈ ϕi(Ui);

(c) there is a power series Fi ∈ Fεi(Kmi ;E) with

f ◦ ϕ−1i (x) = Fi(x− xi) for any x ∈ ϕi(Ui) .

Let (c, ε) be a pair consisting of a chart c = (U,ϕ,Km) for M and a
real number ε > 0 such that ϕ(U) = Bε(a) for one (or any) a ∈ ϕ(U). As a
consequence of the identity theorem for power series Cor. 5.8 the K-linear
map

Fε(Km;E) −→ Can(U,E)

F 7−→ F (ϕ(.)− a)

is injective. Let F(c,ε)(E) denote its image. It is a K-Banach space with
respect to the norm

‖f‖ = ‖F‖ε if f(.) = F (ϕ(.)− a) .

By Cor. 5.5 the pair (F(c,ε)(E), ‖ ‖) is independent of the choice of the point
a.

Definition. An index for M is a family I = {(ci, εi)}i∈I of charts ci =
(Ui, ϕi,K

mi) for M and real numbers εi > 0 such that the above conditions
(a) and (b) are satisfied.

For any index I for M we have

FI(E) :=
∏
i∈I
F(ci,εi)(E) ⊆

∏
i∈I

Can(Ui, E) = Can(M,E) .
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Our above Fact says that

Can(M,E) =
⋃
I
FI(E)

where I runs over all indices for M . Hence Can(M,E) is a union of direct
products of Banach spaces, which are locally convex by Remark 10.2. There-
fore, by Lemma 10.3, we may equip Can(M,E) with the corresponding lo-
cally convex final topology. All our earlier constructions involving Can(M,E)
are compatible with this topology. In the following we briefly list the most
important ones.

Proposition 11.1. For any a ∈M the evaluation map

δa : Can(M,E) −→ E

f 7−→ f(a)

is continuous.

Corollary 11.2. The locally convex vector space Can(M,E) is Hausdorff.

Remark 11.3. With M also its tangent bundle T (M) is paracompact.

Proposition 11.4. i. The map d : Can(M,E) −→ Can(T (M), E) is
continuous.

ii. For any locally analytic map of paracompact manifolds g : M −→ N
the map

Can(N,E) −→ Can(M,E)

f 7−→ f ◦ g

is continuous.

iii. For any vector field ξ on M the map Dξ : Can(M,E) −→ Can(M,E)
is continuous.

Proposition 11.5. For any covering M =
⋃
i∈I Ui by pairwise disjoint open

subsets Ui we have
Can(M,E) =

∏
i∈I

Can(Ui, E)

as topological vector spaces.

To prove these properties one needs Lemma 10.4. This requires to see
that Can(M,E), in fact, is the locally convex inductive limit of the FI(E).
Technically this means that one has to introduce a directed preorder I ≤ J
(on the set of indices) such that FI(E) ⊆ FJ (E) with this inclusion being
continuous.
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