Local p-adic analysis

Peter Schneider

Course at MPI MiS Leipzig, August 30 - Sept. 2, 2021

Contents

1	Ultrametric spaces	2
2	Nonarchimedean fields	4
3	Convergent series	8
4	Differentiability	9
5	Power series	11
6	Locally analytic functions	17
7	Charts and atlases	20
8	Manifolds	22
9	The tangent space	26
10	Reminder: Locally convex K -vector spaces	33
11	The topological vector space $C^{\mathbf{an}}(M,E)$	35
Re	eferences	36

1 Ultrametric spaces

We recall the very basic notions.

Definition. A metric space (X, d) is called ultrametric if the strict triangle inequality

$$d(x, z) \le \max(d(x, y), d(y, z))$$
 for any $x, y, z \in X$

is satisfied.

Remark. i. If (X, d) is ultrametric then $(Y, d | Y \times Y)$, for any subset $Y \subseteq X$, is ultrametric as well.

ii. If $(X_1, d_1), \ldots, (X_m, d_m)$ are ultrametric spaces then the cartesian product $X_1 \times \ldots \times X_m$ is ultrametric with respect to

$$d((x_1,\ldots,x_m),(y_1,\ldots,y_m)) := \max(d_1(x_1,y_1),\ldots,d_m(x_m,y_m))$$
.

Let (X, d) be an ultrametric space.

Lemma 1.1. For any three points $x, y, z \in X$ such that $d(x, y) \neq d(y, z)$ we have

$$d(x,z) = \max(d(x,y),d(y,z)) \ .$$

Proof. Suppose that d(x,y) < d(y,z). Then

$$d(x,y) < d(y,z) \le \max(d(y,x), d(x,z)) = \max(d(x,y), d(x,z)) = d(x,z).$$

Hence $d(x,y) < d(y,z) \le d(x,z)$ and then

$$d(x,z) < \max(d(x,y), d(y,z)) < d(x,z) .$$

Let $a \in X$ be a point and $\varepsilon > 0$ be a real number. We call

$$B_{\varepsilon}(a) := \{x \in X : d(a, x) \le \varepsilon\} \text{ and } B_{\varepsilon}^{-}(a) := \{x \in X : d(a, x) < \varepsilon\}$$

the *closed* and the *open ball*, respectively, around a of radius ε . But be careful!

Lemma 1.2. i. Every ball is open and closed in X.

ii. For $b \in B_{\varepsilon}(a)$, resp. $b \in B_{\varepsilon}^{-}(a)$, we have $B_{\varepsilon}(b) = B_{\varepsilon}(a)$, resp. $B_{\varepsilon}^{-}(b) = B_{\varepsilon}^{-}(a)$.

Proof. Observe that the open, resp. closed, balls are the equivalence classes of the equivalence relation $x \sim y$, resp. $x \approx y$, on X defined by $d(x,y) < \varepsilon$, resp. by $d(x,y) \leq \varepsilon$.

So any point of a ball can serve as its midpoint.

Exercise. The radius of a ball is not well determined.

Corollary 1.3. For any two balls B and B' in X such that $B \cap B' \neq \emptyset$ we have $B \subseteq B'$ or $B' \subseteq B$.

Remark. If the ultrametric space X is connected then it is empty or consists of one point.

Lemma 1.4. Let $U \subseteq X$ be an open subsets and let $\varepsilon_1 > \varepsilon_2 > ... > 0$ be a strictly descending sequence of positive real numbers which converges to zero; then any open covering of U can be refined into a DECOMPOSITION of U into balls of the form $B_{\varepsilon_i}(a)$.

As usual the metric space X is called *complete* if every Cauchy sequence in X is convergent.

Lemma 1.5. A sequence $(x_n)_{n\in\mathbb{N}}$ in X is a Cauchy sequence if and only if $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$.

There is a stronger concept than completeness. For a subset $A \subseteq X$ call

$$d(A) := \sup\{d(x, y) : x, y \in A\}$$

the diameter of A.

Corollary 1.6. Let $B \subseteq X$ be a ball with $\varepsilon := d(B) > 0$ and pick any point $a \in B$; we then have $B = B_{\varepsilon}^{-}(a)$ or $B = B_{\varepsilon}(a)$.

Consider now a descending sequence of balls

$$B_1 \supseteq B_2 \supseteq \ldots \supseteq B_n \supseteq \ldots$$

in X. Suppose that X is complete and that $\lim_{n\to\infty} d(B_n) = 0$. We pick points $x_n \in B_n$ and obtain the Cauchy sequence $(x_n)_{n\in\mathbb{N}}$. Since each B_n is closed we must have $x := \lim_{n\to\infty} x_n \in B_n$ and therefore $x \in \bigcap_n B_n$. Hence

$$\bigcap_{n\in\mathbb{N}}B_n\neq\emptyset.$$

But without the condition on the diameters the intersection $\bigcap_n B_n$ can be **empty** (see the next section for an important example). This motivates the following definition.

Definition. The ultrametric space (X,d) is called spherically complete if any descending sequence of balls $B_1 \supseteq B_2 \supseteq \ldots$ in X has a nonempty intersection.

Lemma 1.7. i. If X is spherically complete then it is complete.

ii. Suppose that X is complete; if 0 is the only accumulation point of the set $d(X \times X) \subseteq \mathbb{R}_+$ of values of the metric d then X is spherically complete.

Lemma 1.8. Suppose that X is spherically complete; for any family $(B_i)_{i\in I}$ of closed balls in X such that $B_i \cap B_j \neq \emptyset$ for any $i, j \in I$ we then have $\bigcap_{i\in I} B_i \neq \emptyset$.

2 Nonarchimedean fields

Let K be any field.

Definition. A nonarchimedean absolute value on K is a function

$$| \ | : K \longrightarrow \mathbb{R}$$

which satisfies:

- (i) $|a| \ge 0$,
- (ii) |a| = 0 if and only if a = 0,
- (iii) $|ab| = |a| \cdot |b|$,
- (iv) $|a + b| \le \max(|a|, |b|)$.

Exercise. *i.* $|n \cdot 1| \le 1$ for any $n \in \mathbb{Z}$.

- ii. $| \ | \ : K^{\times} \longrightarrow \mathbb{R}_{+}^{\times}$ is a homomorphism of groups; in particular, |1| = |-1| = 1.
- iii. K is an ultrametric space with respect to the metric d(a,b) := |b-a|; in particular, we have $|a+b| = \max(|a|,|b|)$ whenever $|a| \neq |b|$.
- iv. Addition and multiplication on the ultrametric space K are continuous maps.

Definition. A nonarchimedean field (K, | |) is a field K equipped with a nonarchimedean absolute value | | such that:

- (i) | is non-trivial, i. e., there is an $a \in K$ with $|a| \neq 0, 1$,
- (ii) K is complete with respect to the metric d(a,b) := |b-a|.

Examples. – Fix a prime number p. Then

$$|a|_p := p^{-r}$$
 if $a = p^r \frac{m}{n}$ with $r, m, n \in \mathbb{Z}$ and $p \nmid mn$

is a nonarchimedean absolute value on the field \mathbb{Q} of rational numbers. The corresponding completion \mathbb{Q}_p is called the field of p-adic numbers. Note that $|\mathbb{Q}_p|_p = p^{\mathbb{Z}} \cup \{0\}$. Hence \mathbb{Q}_p is spherically complete by Lemma 1.7.ii.

- Let K/\mathbb{Q}_p be any finite extension of fields. Then

$$|a| := \sqrt[[K:\mathbb{Q}_p]{|Norm_{K/\mathbb{Q}_p}(a)|_p}$$

is the unique extension of $| \cdot |_p$ to a nonarchimedean absolute value on K. The corresponding ultrametric space K is complete and spherically complete and, in fact, locally compact. (See [Ser] Chap. II §§1-2.)

- The algebraic closure \mathbb{Q}_p^{alg} of \mathbb{Q}_p is not complete. Its completion \mathbb{C}_p is algebraically closed but not spherically complete (see [Sch] §17 and Cor. 20.6).

In the following we fix a nonarchimedean field (K, | |). By the strict triangle inequality the closed unit ball

$$o_K := B_1(0)$$

is a subring of K, called the ring of integers in K, and the open unit ball

$$\mathfrak{m}_K := B_1^-(0)$$

is an ideal in o_K . Because of $o_K^{\times} = o_K \setminus \mathfrak{m}_K$ this ideal \mathfrak{m}_K is the only maximal ideal of o_K . The field o_K/\mathfrak{m}_K is called the *residue class field* of K.

- **Exercise 2.1.** i. If the residue class field o_K/\mathfrak{m}_K has characteristic zero then K has characteristic zero as well and we have |a| = 1 for any nonzero $a \in \mathbb{Q} \subseteq K$.
 - ii. If K has characteristic zero but o_K/\mathfrak{m}_K has characteristic p>0 then we have

$$|a| = |a|_p^{-\frac{\log |p|}{\log p}} \qquad \textit{for any } a \in \mathbb{Q} \subseteq K;$$

in particular, K contains \mathbb{Q}_n .

A nonarchimedean field K as in the second part of Exercise 2.1 is called a p-adic field.

Lemma 2.2. If K is p-adic then we have

$$|n| \ge |n!| \ge |p|^{\frac{n-1}{p-1}}$$
 for any $n \in \mathbb{N}$.

Proof. We may obviously assume that $K = \mathbb{Q}_p$. Then the reader should do this as an exercise but also may consult [B-LL] Chap. II §8.1 Lemma 1. \square

Now let V be any K-vector space.

Definition. A (nonarchimedean) norm on V is a function $\| \| : V \longrightarrow \mathbb{R}$ such that for any $v, w \in V$ and any $a \in K$ we have:

- (i) $||av|| = |a| \cdot ||v||$,
- (ii) $||v + w|| \le \max(||v||, ||w||)$,
- (iii) if ||v|| = 0 then v = 0.

Moreover, V is called normed if it is equipped with a norm.

Exercise. i. $||v|| \ge 0$ for any $v \in V$ and ||0|| = 0.

- ii. V is an ultrametric space with respect to the metric d(v, w) := ||w v||; in particular, we have $||v + w|| = \max(||v||, ||w||)$ whenever $||v|| \neq ||w||$.
- iii. Addition $V \times V \xrightarrow{+} V$ and scalar multiplication $K \times V \longrightarrow V$ are continuous.

Lemma 2.3. Let $(V_1, || ||_1)$ and $(V_2, || ||_2)$ let two normed K-vector spaces; a linear map $f: V_1 \longrightarrow V_2$ is continuous if and only if there is a constant c > 0 such that

$$||f(v)||_2 \le c \cdot ||v||_1$$
 for any $v \in V_1$.

Definition. The normed K-vector space (V, || ||) is called a K-Banach space if V is complete with respect to the metric d(v, w) := ||w - v||.

Examples. 1) K^n with the norm $||(a_1, \ldots, a_n)|| := \max_{1 \le i \le n} |a_i|$ is a K-Banach space.

2) Let I be a fixed but arbitrary index set. A family $(a_i)_{i\in I}$ of elements in K is called bounded if there is a c>0 such that $|a_i|\leq c$ for any $i\in I$. The set

$$\ell^{\infty}(I) := set of all bounded families (a_i)_{i \in I} in K$$

 $with\ componentwise\ addition\ and\ scalar\ multiplication\ and\ with\ the$ norm

$$\|(a_i)_i\|_{\infty} := \sup_{i \in I} |a_i|$$

is a K-Banach space.

3) With I as above let

$$c_0(I) := \{(a_i)_{i \in I} \in \ell^{\infty}(I) : \text{for any } \varepsilon > 0 \text{ we have } |a_i| \ge \varepsilon \}$$

for at most finitely many $i \in I\}$.

It is a closed vector subspace of $\ell^{\infty}(I)$ and hence a K-Banach. Moreover, for $(a_i)_i \in c_0(I)$ we have

$$||(a_i)_i||_{\infty} = \max_{i \in I} |a_i|.$$

Remark. Any K-Banach space $(V, \| \|)$ over a finite extension K/\mathbb{Q}_p which satisfies $\|V\| \subseteq |K|$ is isometric to some K-Banach space $(c_0(I), \| \|_{\infty})$; moreover, all such I have the same cardinality.

Proof. Compare [NFA] Remark 10.2 and Lemma 10.3.

Let V and W be two normed K-vector spaces. Obviously

$$\mathcal{L}(V, W) := \{ f \in \operatorname{Hom}_K(V, W) : f \text{ is continuous} \}$$

is a vector subspace of $\operatorname{Hom}_K(V,W)$. By Lemma 2.3 the operator norm

$$||f|| := \sup \left\{ \frac{||f(v)||}{||v||} : v \in V, v \neq 0 \right\} = \sup \left\{ \frac{||f(v)||}{||v||} : v \in V, 0 < ||v|| \le 1 \right\}$$

is well defined for any $f \in \mathcal{L}(V, W)$. (Unless it causes confusion all occurring norms will be denoted by $\| \ \|$.)

Proposition 2.4. i. $\mathcal{L}(V,W)$ with the operator norm is a normed K-vector space.

ii. If W is a K-Banach space then so, too, is $\mathcal{L}(V, W)$.

In particular,

$$V' := \mathcal{L}(V, K)$$

always is a K-Banach space. It is called the *dual space* to V.

Lemma 2.5. Let I be an index set; for any $j \in I$ let $1_j \in c_0(I)$ denote the family $(a_i)_{i \in I}$ with $a_i = 0$ for $i \neq j$ and $a_j = 1$; then

$$c_0(I)' \xrightarrow{\cong} \ell^{\infty}(I)$$

 $\ell \longmapsto (\ell(1_i))_{i \in I}$

is an isometric linear isomorphism.

Here is a warning.

Proposition 2.6. Suppose that K is not spherically complete; then

$$\left(\ell^{\infty}(\mathbb{N})/c_0(\mathbb{N})\right)' = \{0\} .$$

Proof. [PGS] Thm. 4.1.12.

Throughout the further text (K, | |) is a fixed nonarchimedean field.

3 Convergent series

We briefly collect the most basic facts about convergent series in Banach spaces. Let (V, || ||) be a K-Banach space.

Lemma 3.1. Let $(v_n)_{n\in\mathbb{N}}$ be a sequence in V; we then have:

- i. The series $\sum_{n=1}^{\infty} v_n$ is convergent if and only if $\lim_{n\to\infty} v_n = 0$;
- ii. if the limit $v := \lim_{n \to \infty} v_n$ exists in V and is nonzero then $||v_n|| = ||v||$ for all but finitely many $n \in \mathbb{N}$;
- iii. let $\sigma: \mathbb{N} \to \mathbb{N}$ be any bijection and suppose that the series $v = \sum_{n=1}^{\infty} v_n$ is convergent in V; then the series $\sum_{n=1}^{\infty} v_{\sigma(n)}$ is convergent as well with the same limit v.

The following identities between convergent series are obvious:

$$-\sum_{n=1}^{\infty} av_n = a \cdot \sum_{n=1}^{\infty} v_n \quad \text{ for any } a \in K.$$

$$- (\sum_{n=1}^{\infty} v_n) + (\sum_{n=1}^{\infty} w_n) = \sum_{n=1}^{\infty} (v_n + w_n).$$

Lemma 3.2. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} v_n$ be convergent series in K and V, respectively; then the series $\sum_{n=1}^{\infty} w_n$ with $w_n := \sum_{\ell+m=n} a_{\ell} v_m$ is convergent, and

$$\sum_{n=1}^{\infty} w_n = \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} v_n\right) .$$

Analogous assertions hold true for series $\sum_{n_1,...,n_r=1}^{\infty} v_{n_1,...,n_r}$ indexed by multi-indices in $\mathbb{N} \times ... \times \mathbb{N}$. But we point out the following additional fact.

Lemma 3.3. Let $(v_{m,n})_{m,n\in\mathbb{N}}$ be a double sequence in V such that

$$\lim_{m+n\to\infty} v_{m,n} = 0 ;$$

we then have

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}v_{m,n}=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}v_{m,n}$$

which, in particular, means that all series involved are convergent.

4 Differentiability

Let V and W be two normed K-vector spaces, let $U \subseteq V$ be an open subset, and let $f: U \longrightarrow W$ be some map.

Definition. The map f is called differentiable in the point $v_0 \in U$ if there exists a continuous linear map

$$D_{v_0}f:V\longrightarrow W$$

such that for any $\varepsilon > 0$ there is an open neighbourhood $U_{\varepsilon} = U_{\varepsilon}(v_0) \subseteq U$ of v_0 with

$$||f(v)-f(v_0)-D_{v_0}f(v-v_0)|| \le \varepsilon ||v-v_0||$$
 for any $v \in U_{\varepsilon}$.

Exercise. Check that $D_{v_0}f$ is uniquely determined.

The continuous linear map $D_{v_0}f:V\longrightarrow W$ is called (if it exists) the derivative of f in the point $v_0\in U$. In case V=K we also write $f'(a_0):=D_{a_0}f(1)$.

Remark 4.1. i. If f is differentiable in v_0 then it is continuous in v_0 .

ii. (Chain rule) Let V, W_1 , and W_2 be normed K-vector spaces, $U \subseteq V$ and $U_1 \subseteq W_1$ be open subsets, and $f: U \longrightarrow U_1$ and $g: U_1 \longrightarrow W_2$ be maps; suppose that f is differentiable in some $v_0 \in U$ and g is differentiable in $f(v_0)$; then $g \circ f$ is differentiable in v_0 and

$$D_{v_0}(g \circ f) = D_{f(v_0)}g \circ D_{v_0}f.$$

iii. A continuous linear map $u: V \longrightarrow W$ is differentiable in any $v_0 \in V$ and $D_{v_0}u = u$; in particular, in the situation of ii. we have

$$D_{v_0}(u \circ f) = u \circ D_{v_0} f$$
.

iv. (Product rule) Let V, W_1, \ldots, W_m , and W be normed K-vector spaces, let $U \subseteq V$ be an open subset with maps $f_i : U \longrightarrow W_i$, and let $u : W_1 \times \ldots \times W_m \longrightarrow W$ be a continuous multilinear map; suppose that f_1, \ldots, f_m all are differentiable in some point $v_0 \in U$; then $u(f_1, \ldots, f_m) : U \longrightarrow W$ is differentiable in v_0 and

$$D_{v_0}(u(f_1,\ldots,f_m)) = \sum_{i=1}^m u(f_1(v_0),\ldots,D_{v_0}f_i,\ldots,f_m(v_0)).$$

Remark. Suppose that the vector space $V = V_1 \oplus \ldots \oplus V_m$ is the direct sum of finitely many vector spaces V_1, \ldots, V_m . Then we have the usual notion of the partial derivatives $D_{v_0}^{(i)} f := D_{v_{0,i}} f_i : V_i \longrightarrow W$ of f in v_0 . The differentiability of f in v_0 implies the existence of all partial derivatives together with the identity $D_{v_0} f = \sum_{i=1}^m D_{v_0}^{(i)} f$.

Definition. The map f is called strictly differentiable in $v_0 \in U$ if there exists a continuous linear map $D_{v_0}f: V \longrightarrow W$ such that for any $\varepsilon > 0$ there is an open neighbourhood $U_{\varepsilon} \subseteq U$ of v_0 with

$$||f(v_1) - f(v_2) - D_{v_0}f(v_1 - v_2)|| \le \varepsilon ||v_1 - v_2||$$
 for any $v_1, v_2 \in U_{\varepsilon}$.

Exercise. Suppose that f is strictly differentiable in every point of U. Then the map

$$U \longrightarrow \mathcal{L}(V, W)$$
$$v \longmapsto D_v f$$

is continuous.

Proposition 4.2. (Local invertibility) Let V and W be K-Banach spaces, $U \subseteq V$ be an open subset, and $f: U \longrightarrow W$ be a map which is strictly differentiable in the point $v_0 \in U$; suppose that the derivative $D_{v_0}f: V \xrightarrow{\cong} W$ is a topological isomorphism; then there are open neighbourhoods $U_0 \subseteq U$ of v_0 and $U_1 \subseteq W$ of $f(v_0)$ such that:

- i. $f: U_0 \xrightarrow{\simeq} U_1$ is a homeomorphism;
- ii. the inverse map $g: U_1 \longrightarrow U_0$ is strictly differentiable in $f(v_0)$, and

$$D_{f(v_0)}g = (D_{v_0}f)^{-1}$$
.

Concerning the assumption on the derivative in the above proposition we recall the open mapping theorem (cf. [NFA] Cor. 8.7): It says that any continuous linear bijection between K-Banach spaces necessarily is a topological isomorphism. We also point out the trivial fact that any linear map between two finite dimensional K-Banach spaces is continuous.

Remark. A map $f: X \longrightarrow A$ from some topological space X into some set A is called locally constant if $f^{-1}(a)$ is open (and closed) in X for any $a \in A$. Lemma 1.4 implies that there are plenty of locally constant maps $f: U \longrightarrow W$. They all are strictly differentiable in any $v_0 \in U$ with $D_{v_0} f = 0$.

5 Power series

Let V be a K-Banach space. A power series f(X) in r variables $X = (X_1, \ldots, X_r)$ with coefficients in V is a formal series

$$f(X) = \sum_{\alpha \in \mathbb{N}_0^r} X^{\alpha} v_{\alpha}$$
 with $v_{\alpha} \in V$.

As usual we abbreviate $X^{\alpha} := X_1^{\alpha_1} \cdot \ldots \cdot X_r^{\alpha_r}$ and $|\alpha| := \alpha_1 + \ldots + \alpha_r$ for a multi-index $\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{N}_0^r$.

For any $\varepsilon > 0$ the power series $f(X) = \sum_{\alpha} X^{\alpha} v_{\alpha}$ is called ε -convergent if

$$\lim_{|\alpha| \to \infty} \varepsilon^{|\alpha|} ||v_{\alpha}|| = 0.$$

Remark. If f(X) is ε -convergent then it also is δ -convergent for any $0 < \delta \leq \varepsilon$.

The K-vector space

$$\mathcal{F}_{\varepsilon}(K^r; V) := \text{ all } \varepsilon\text{-convergent power series } f(X) = \sum_{\alpha \in \mathbb{N}_0^r} X^{\alpha} v_{\alpha}$$

is normed by

$$||f||_{\varepsilon} := \max_{\alpha} \varepsilon^{|\alpha|} ||v_{\alpha}||.$$

Remark. $\mathcal{F}_{\varepsilon}(K^r; V)$ is a Banach space whose topology only depends on the topology of V (and not on its specific norm). If $\varepsilon = |c|$ for some $c \in K^{\times}$ the map

$$c_0(\mathbb{N}_0^r) \xrightarrow{\cong} \mathcal{F}_{|c|}(K^r; K)$$

 $(a_\alpha)_\alpha \longmapsto \sum_\alpha \frac{a_\alpha}{c^{|\alpha|}} X^\alpha$

is an isometric linear isomorphism.

Let $B_{\varepsilon}(0)$ denote the closed ball around zero in K^r of radius ε . We recall that K^r always is equipped with the norm $\|(a_1,\ldots,a_r)\| = \max_{1\leq i\leq r} |a_i|$. By Lemma 3.1.i. we have the K-linear map

$$\mathcal{F}_{\varepsilon}(K^r;V) \longrightarrow K\text{-vector space of maps } B_{\varepsilon}(0) \longrightarrow V$$

$$f(X) = \sum_{\alpha} X^{\alpha} v_{\alpha} \longmapsto \tilde{f}(x) := \sum_{\alpha} x^{\alpha} v_{\alpha} .$$

Remark 5.1. For any $x \in B_{\varepsilon}(0)$ the linear evaluation map

$$\mathcal{F}_{\varepsilon}(K^r; V) \longrightarrow V$$

$$f \longmapsto \tilde{f}(x)$$

is continuous of operator norm ≤ 1 .

Proof. We have

$$\|\tilde{f}(x)\| = \|\sum_{\alpha} x^{\alpha} v_{\alpha}\| \le \max_{\alpha} \varepsilon^{|\alpha|} \|v_{\alpha}\| = \|f\|_{\varepsilon}.$$

The following properties are established by straightforward estimates.

Proposition 5.2. Let $u: V_1 \times V_2 \longrightarrow V$ be a continuous bilinear map between K-Banach spaces; then

$$U: \mathcal{F}_{\varepsilon}(K^r; V_1) \times \mathcal{F}_{\varepsilon}(K^r; V_2) \longrightarrow \mathcal{F}_{\varepsilon}(K^r; V)$$
$$\left(\sum_{\alpha} X^{\alpha} v_{\alpha}, \sum_{\alpha} X^{\alpha} w_{\alpha}\right) \longmapsto \sum_{\alpha} X^{\alpha} \left(\sum_{\beta + \gamma = \alpha} u(v_{\beta}, w_{\gamma})\right)$$

is a continuous bilinear map satisfying

$$U(f,g)^{\sim}(x) = u(\tilde{f}(x), \tilde{g}(x))$$
 for any $x \in B_{\varepsilon}(0)$

and any $f \in \mathcal{F}_{\varepsilon}(K^r; V_1)$ and $g \in \mathcal{F}_{\varepsilon}(K^r; V_2)$.

Proposition 5.3. $\mathcal{F}_{\varepsilon}(K^r;K)$ is a commutative K-algebra with respect to the multiplication

$$\left(\sum_{\alpha} b_{\alpha} X^{\alpha}\right) \left(\sum_{\alpha} c_{\alpha} X^{\alpha}\right) := \sum_{\alpha} \left(\sum_{\beta+\gamma} b_{\beta} c_{\gamma}\right) X^{\alpha} ;$$

in addition we have

$$(fg)^{\sim}(x) = \tilde{f}(x)\tilde{g}(x)$$
 for any $x \in B_{\varepsilon}(0)$

 $as\ well\ as$

$$||fg||_{\varepsilon} = ||f||_{\varepsilon} ||g||_{\varepsilon}$$

for any $f, g \in \mathcal{F}_{\varepsilon}(K^r; K)$.

Proposition 5.4. Let $g \in \mathcal{F}_{\delta}(K^r; K^n)$ such that $||g||_{\delta} \leq \varepsilon$; then

$$\mathcal{F}_{\varepsilon}(K^{n}; V) \longrightarrow \mathcal{F}_{\delta}(K^{r}; V)$$
$$f(Y) = \sum_{\beta} Y^{\beta} v_{\beta} \longmapsto f \circ g(X) := \sum_{\beta} g(X)^{\beta} v_{\beta}$$

is a continuous linear map of operator norm ≤ 1 which satisfies

$$(f \circ g)^{\sim}(x) = \tilde{f}(\tilde{g}(x))$$
 for any $x \in B_{\delta}(0) \subseteq K^r$.

Remark. For any $g \in \mathcal{F}_{\delta}(K^r; K^n)$, we have, by Remark 5.1, the inequality

$$\sup_{x \in B_{\delta}(0)} \|\tilde{g}(x)\| \le \|g\|_{\delta} .$$

It is, in general, not an equality. This means that we may have $\tilde{g}(B_{\delta}(0)) \subseteq B_{\varepsilon}(0)$ even if $\varepsilon < ||g||_{\delta}$. Then, for any $f \in \mathcal{F}_{\varepsilon}(K^n; V)$, the composite of maps

 $\tilde{f} \circ \tilde{g}$ exists but the composite of power series $f \circ g \in \mathcal{F}_{\delta}(K^r; V)$ may not. An example of such a situation is

$$g(X) := X^p - X \in \mathcal{F}_1(\mathbb{Q}_p; \mathbb{Q}_p)$$
 and $f(Y) := \sum_{n=0}^{\infty} Y^n \in \mathcal{F}_{\frac{1}{p}}(\mathbb{Q}_p; \mathbb{Q}_p)$.

Corollary 5.5. (Point of expansion) Let $f \in \mathcal{F}_{\varepsilon}(K^r; V)$ and $y \in B_{\varepsilon}(0)$; then there exists an $f_y \in \mathcal{F}_{\varepsilon}(K^r; V)$ such that $||f_y||_{\varepsilon} = ||f||_{\varepsilon}$ and

$$\tilde{f}(x) = \tilde{f}_y(x - y)$$
 for any $x \in B_{\varepsilon}(0) = B_{\varepsilon}(y)$.

Of course, we have the formal partial derivatives $\frac{\partial f}{\partial X_i}(X)$ of f(X). Since $\|\mathbb{N}v_{\alpha}\| \leq \|v_{\alpha}\|$ they respect ε -convergence.

Proposition 5.6. The map \tilde{f} is strictly differentiable in every point $z \in B_{\varepsilon}(0)$ and satisfies

$$D_z^{(i)}\tilde{f}(1) = \left(\frac{\partial f}{\partial X_i}\right)^{\sim}(z) \ .$$

Proof. Using Cor. 5.5 and the chain rule one reduces the assertion to the case z = 0. Consider the continuous linear map

$$D: K^r \longrightarrow V$$

$$(a_1, \dots, a_r) \longmapsto \sum_{i=1}^r a_i v_{\underline{i}}.$$

Let $\delta > 0$ and choose a $0 < \delta' < \varepsilon$ such that

$$\delta' \frac{\|f\|_{\varepsilon}}{\varepsilon^2} \le \delta .$$

By induction with respect to $|\alpha|$ one checks that

$$|x^{\alpha} - y^{\alpha}| \le (\delta')^{|\alpha|-1} ||x - y||$$
 for any $x, y \in B_{\delta'}(0)$.

We now compute

$$\begin{split} \|\tilde{f}(x) - \tilde{f}(y) - D(x - y)\| &= \|\sum_{|\alpha| \ge 2} (x^{\alpha} - y^{\alpha}) v_{\alpha}\| \\ &\leq \max_{|\alpha| \ge 2} |x^{\alpha} - y^{\alpha}| \cdot \|v_{\alpha}\| \\ &\leq \|f\|_{\varepsilon} \cdot \max_{|\alpha| \ge 2} \frac{|x^{\alpha} - y^{\alpha}|}{\varepsilon^{|\alpha|}} \\ &\leq \|f\|_{\varepsilon} \cdot \max_{|\alpha| \ge 2} \frac{(\delta')^{|\alpha| - 1}}{\varepsilon^{|\alpha|}} \cdot \|x - y\| \\ &= \|f\|_{\varepsilon} \cdot \frac{\delta'}{\varepsilon^{2}} \cdot \|x - y\| \\ &\leq \delta \|x - y\| \end{split}$$

for any $x, y \in B_{\delta'}(0)$. This proves that \tilde{f} is strictly differentiable in 0 with $D_0\tilde{f} = D$ and hence

$$D_0^{(i)}\tilde{f}(1) = v_{\underline{i}} = \left(\frac{\partial f}{\partial X_i}\right)^{\sim}(0) .$$

By Prop. 5.6 the map

$$\frac{\partial \tilde{f}}{\partial x_i} : B_{\varepsilon}(0) \longrightarrow V$$
$$x \longmapsto D_x^{(i)} \tilde{f}(1)$$

is well defined and satisfies

$$\frac{\partial \tilde{f}}{\partial x_i} = \left(\frac{\partial f}{\partial X_i}\right)^{\sim} .$$

Corollary 5.7. (Taylor expansion) If K has characteristic zero then we have

$$f(X) = \sum_{\alpha} X^{\alpha} \frac{1}{\alpha_1! \dots \alpha_r!} \left(\left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_r} \right)^{\alpha_r} \tilde{f} \right) (0) .$$

Corollary 5.8. (Identity theorem for power series) If K has characteristic zero then for any nonzero $f \in \mathcal{F}_{\varepsilon}(K^r; V)$ there is a point $x \in B_{\varepsilon}(0)$ such that $\tilde{f}(x) \neq 0$.

By more sophisticated techniques (cf. [BGR] 5.1.4 Cor. 5 and subsequent comment) the assumption on the characteristic of K in Cor. 5.8 can be removed. So the map

$$\mathcal{F}_{\varepsilon}(K^r; V) \longrightarrow \text{ strictly differentiable maps } B_{\varepsilon}(0) \longrightarrow V$$

$$f \longmapsto \tilde{f}$$

always is injective and commutes with all the usual operations as considered above. Therefore we will write very often f for the power series as well as the corresponding map.

Proposition 5.9. (Invertibility for power series) Let $f(X) \in \mathcal{F}_{\varepsilon}(K^r; K^r)$ such that f(0) = 0, and suppose that $D_0 f$ is bijective; we fix a $0 < \delta < \frac{\varepsilon^2}{\|f\|_{\varepsilon} \|(D_0 f)^{-1}\|^2}$; then $\delta < \|f\|_{\varepsilon}$, and there is a uniquely determined $g(Y) \in \mathcal{F}_{\delta}(K^r; K^r)$ such that

$$g(0) = 0, ||g||_{\delta} < \varepsilon, \text{ and } f \circ g(Y) = Y;$$

in particular, the diagram

is commutative.

Finally we note the rather obvious fact.

Proposition 5.10. Let $u:V\longrightarrow W$ be a continuous linear map between K-Banach spaces; then

$$\mathcal{F}_{\varepsilon}(K^r; V) \longrightarrow \mathcal{F}_{\varepsilon}(K^r; W)$$
$$f(X) = \sum_{\alpha} X^{\alpha} v_{\alpha} \longmapsto u \circ f(X) := \sum_{\alpha} X^{\alpha} u(v_{\alpha})$$

is a continuous linear map of operator norm $\leq ||u||$ which satisfies

$$u \circ f(x) = u(f(x))$$
 for any $x \in B_{\varepsilon}(0)$.

6 Locally analytic functions

Let $U \subseteq K^r$ be an open subset and V be a K-Banach space. The key definition in these lectures is the following.

Definition. A function $f: U \longrightarrow V$ is called locally analytic if for any point $x_0 \in U$ there is a ball $B_{\varepsilon}(x_0) \subseteq U$ around x_0 and a power series $F \in \mathcal{F}_{\varepsilon}(K^r; V)$ such that

$$f(x) = F(x - x_0)$$
 for any $x \in B_{\varepsilon}(x_0)$.

The set

$$C^{\mathrm{an}}(U,V) := \text{ all locally analytic functions } f:U\longrightarrow V$$

is a K-vector space with respect to pointwise addition and scalar multiplication. The vector space $C^{\mathrm{an}}(U,V)$ carries a natural topology which will be discussed later on.

Example. By Cor. 5.5 we have $\tilde{F} \in C^{an}(B_{\varepsilon}(0), V)$ for any $F \in \mathcal{F}_{\varepsilon}(K^r; V)$.

Proposition 6.1. Suppose that $f: U \longrightarrow V$ is locally analytic; then f is strictly differentiable in every point $x_0 \in U$ and the function $x \longmapsto D_x f$ is locally analytic in $C^{\mathrm{an}}(U, \mathcal{L}(K^r, V))$.

Proof. Let $F \in \mathcal{F}_{\varepsilon}(K^r; V)$ such that

$$f(x) = \tilde{F}(x - x_0)$$
 for any $x \in B_{\varepsilon}(x_0)$.

From Prop. 5.6 and the chain rule we deduce that f is strictly differentiable in every $x \in B_{\varepsilon}(x_0)$ and

$$D_x f((a_1, \dots, a_r)) = \sum_{i=1}^r a_i D_{x-x_0}^{(i)} \tilde{F}(1) = \sum_{i=1}^r a_i \left(\frac{\partial F}{\partial X_i}\right)^{\sim} (x - x_0) .$$

Let

$$\frac{\partial F}{\partial X_i}(X) = \sum_{\alpha} X^{\alpha} v_{i,\alpha} .$$

For any multi-index α we introduce the continuous linear map

$$L_{\alpha}: K^r \longrightarrow V$$

 $(a_1, \dots, a_r) \longmapsto a_1 v_{1,\alpha} + \dots + a_r v_{r,\alpha}.$

Because of $||L_{\alpha}|| \leq \max_{i} ||v_{i,\alpha}||$ we have

$$G(X) := \sum_{\alpha} X^{\alpha} L_{\alpha} \in \mathcal{F}_{\varepsilon}(K^{r}; \mathcal{L}(K^{r}, V))$$

and

$$D_x f = \tilde{G}(x - x_0)$$
 for any $x \in B_{\varepsilon}(x_0)$.

Remark 6.2. If K has characteristic zero then, for any function $f: U \longrightarrow V$, the following conditions are equivalent:

- i. f is locally constant;
- ii. f is locally analytic with $D_x f = 0$ for any $x \in U$.

Proof. This is an immediate consequence of the Taylor formula in Cor. 5.7.

We now give a list of more or less obvious properties of locally analytic functions.

1) For any open subset $U' \subseteq U$ we have the linear restriction map

$$C^{\mathrm{an}}(U,V) \longrightarrow C^{\mathrm{an}}(U',V)$$

 $f \longmapsto f|U'$.

2) For any open and closed subset $U' \subseteq U$ we have the linear map

$$C^{\mathrm{an}}(U',V) \longrightarrow C^{\mathrm{an}}(U,V)$$

$$f \longmapsto f_!(x) := \begin{cases} f(x) & \text{if } x \in U', \\ 0 & \text{otherwise} \end{cases}$$

called extension by zero.

3) If $U = \bigcup_{i \in I} U_i$ is a covering by pairwise disjoint open subsets then

$$C^{\mathrm{an}}(U,V) \cong \prod_{i \in I} C^{\mathrm{an}}(U_i,V)$$

 $f \longmapsto (f|U_i)_i$.

4) For any two K-Banach spaces V and W we have

$$C^{\mathrm{an}}(U, V \oplus W) \cong C^{\mathrm{an}}(U, V) \oplus C^{\mathrm{an}}(U, W)$$

 $f \longmapsto (\mathrm{pr}_{V} \circ f, \mathrm{pr}_{W} \circ f)$.

In particular

$$C^{\mathrm{an}}(U,K^n) \cong \prod_{i=1}^n C^{\mathrm{an}}(U,K)$$
.

5) For any continuous bilinear map $u: V_1 \times V_2 \longrightarrow V$ between K-Banach spaces we have the bilinear map

$$C^{\mathrm{an}}(U, V_1) \times C^{\mathrm{an}}(U, V_2) \longrightarrow C^{\mathrm{an}}(U, V)$$

 $(f, g) \longmapsto u(f, g)$

(cf. Prop. 5.2). In particular, $C^{an}(U, K)$ is a K-algebra (cf. Prop. 5.3), and $C^{an}(U, V)$ is a module over $C^{an}(U, K)$.

6) For any continuous linear map $u:V\longrightarrow W$ between K-Banach spaces we have the linear map

$$C^{\mathrm{an}}(U,V) \longrightarrow C^{\mathrm{an}}(U,W)$$

 $f \longmapsto u \circ f$

(cf. Prop. 5.10).

Lemma 6.3. Let $U' \subseteq K^n$ be an open subset and let $g \in C^{an}(U, K^n)$ such that $g(U) \subseteq U'$; then the map

$$C^{\mathrm{an}}(U',V) \longrightarrow C^{\mathrm{an}}(U,V)$$

 $f \longmapsto f \circ g$

is well defined and K-linear.

Proof. Let $x_0 \in U$ and put $y_0 := g(x_0) \in U'$. We choose a ball $B_{\varepsilon}(y_0) \subseteq U'$ and a power series $F \in \mathcal{F}_{\varepsilon}(K^n; V)$ such that

$$f(y) = F(y - y_0)$$
 for any $y \in B_{\varepsilon}(y_0)$.

We also choose a ball $B_{\delta}(x_0) \subseteq U$ and a power series $G \in \mathcal{F}_{\delta}(K^r; K^n)$ such that

$$g(x) = G(x - x_0)$$
 for any $x \in B_{\delta}(x_0)$.

Observing that

$$||G - G(0)||_{\delta'} \le \frac{\delta'}{\delta} ||G - G(0)||_{\delta}$$
 for any $0 < \delta' \le \delta$

we may decrease δ so that

$$||G - y_0||_{\delta} = ||G - G(0)||_{\delta} \le \varepsilon$$

(and, in particular, $g(B_{\delta}(x_0)) \subseteq B_{\varepsilon}(y_0)$) holds true. It then follows from Prop. 5.4 that $F \circ (G - y_0) \in \mathcal{F}_{\delta}(K^r; V)$ and

$$(F \circ (G - y_0))^{\sim} (x - x_0) = F(G(x - x_0) - y_0)$$

= $F(g(x) - y_0)$
= $f(g(x))$

for any $x \in B_{\delta}(x_0)$.

The last result can be expressed by saying that the composite of locally analytic functions again is locally analytic.

Proposition 6.4. (Local invertibility) Let $U \subseteq K^r$ be an open subset and let $f \in C^{\mathrm{an}}(U, K^r)$; suppose that $D_{x_0}f$ is bijective for some $x_0 \in U$; then there are open neighbourhoods $U_0 \subseteq U$ of x_0 and $U_1 \subseteq K^r$ of $f(x_0)$ such that:

- i. $f: U_0 \xrightarrow{\simeq} U_1$ is a homeomorphism;
- ii. the inverse map $g: U_1 \longrightarrow U_0$ is locally analytic, i. e., $g \in C^{an}(U_1, K^r)$.

A map $f:U\longrightarrow U'$ between open subsets $U\subseteq K^r$ and $U'\subseteq K^n$ is called locally analytic if the composite $U\stackrel{f}{\longrightarrow} U'\stackrel{\subseteq}{\longrightarrow} K^n$ is a locally analytic function.

7 Charts and atlases

We continue to fix the nonarchimedean field (K, | |). But from now on we will denote K-Banach spaces by letters like E whereas letters like U and V are reserved for open subsets in a topological space.

Let M be a Hausdorff topological space.

Definition. i. A chart for M is a triple (U, φ, K^n) consisting of an open subset $U \subseteq M$ and a map $\varphi : U \longrightarrow K^n$ such that:

- (a) $\varphi(U)$ is open in K^n ,
- (b) $\varphi: U \xrightarrow{\simeq} \varphi(U)$ is a homeomorphism.
- ii. Two charts $(U_1, \varphi_1, K^{n_1})$ and $(U_2, \varphi_2, K^{n_2})$ for M are called compatible if both maps

$$\varphi_1(U_1 \cap U_2) \xrightarrow[\varphi_1 \circ \varphi_2^{-1}]{} \varphi_2(U_1 \cap U_2)$$

are locally analytic.

We note that the condition in part ii. of the above definition makes sense since $\varphi_1(U_1 \cap U_2)$ is open in K^{n_i} . If (U, φ, K^n) is a chart then the open subset U is called its *domain of definition* and the integer $n \geq 0$ its *dimension*. Usually we simply write (U, φ) instead of (U, φ, K^n) . If x is a point in U then (U, φ) is also called a *chart around* x.

Lemma 7.1. Let $(U_i, \varphi_i, K^{n_i})$ for i = 1, 2 be two compatible charts for M; if $U_1 \cap U_2 \neq \emptyset$ then $n_1 = n_2$.

Proof. Let $x \in U_1 \cap U_2$ and put $x_i := \varphi_i(x)$. We consider the locally analytic maps

$$\varphi_1(U_1 \cap U_2) \xrightarrow[q:=\varphi_1 \circ \varphi_2^{-1}]{f:=\varphi_2 \circ \varphi_1^{-1}} \varphi_2(U_1 \cap U_2) .$$

They are differentiable and inverse to each other, and $x_2 = f(x_1)$. Hence, by the chain rule, the derivatives

$$K^{n_1} \xrightarrow{D_{x_1} f} K^{n_2}$$

are linear maps inverse to each other. It follows that $n_1 = n_2$.

- **Definition.** i. An atlas for M is a set $A = \{(U_i, \varphi_i, K^{n_i})\}_{i \in I}$ of charts for M any two of which are compatible and which cover M in the sense that $M = \bigcup_{i \in I} U_i$.
 - ii. Two atlases A and B for M are called equivalent if $A \cup B$ also is an atlas for M.
 - iii. An atlas A for M is called maximal if any equivalent atlas B for M satisfies $B \subseteq A$.

Remark 7.2. i. The equivalence of atlases indeed is an equivalence relation.

ii. In each equivalence class of atlases there is exactly one maximal atlas.

Lemma 7.3. If A is a maximal atlas for M the domains of definition of all the charts in A form a basis of the topology of M.

Definition. An atlas A for M is called n-dimensional if all the charts in A with nonempty domain of definition have dimension n.

Remark 7.4. Let A be an n-dimensional atlas for M; then any atlas B equivalent to A is n-dimensional as well.

8 Manifolds

Definition. A (locally analytic) manifold (M, A) (over K) is a Hausdorff topological space M equipped with a maximal atlas A. The manifold is called n-dimensional (we write $\dim M = n$) if the atlas A is n-dimensional.

We usually speak of a manifold M while considering \mathcal{A} as given implicitly. A chart for M will always mean a chart in \mathcal{A} .

Example. K^n will always denote the n-dimensional manifold whose maximal atlas is equivalent to the atlas $\{(U, \subseteq, K^n) : U \subseteq K^n \text{ open}\}.$

Remark 8.1. Let (U, φ, K^n) be a chart for the manifold M; if $V \subseteq U$ is an open subset then $(V, \varphi | V, K^n)$ also is a chart for M.

Let (M, \mathcal{A}) be a manifold and $U \subseteq M$ be an open subset. Then

$$\mathcal{A}_U := \{ (V, \psi, K^n) \in \mathcal{A} : V \subseteq U \} ,$$

by Lemma 7.3, is an atlas for U. Check that A_U is maximal. The manifold (U, A_U) is called an *open submanifold* of (M, A).

Example. The d-dimensional projective space $\mathbb{P}^d(K) = (K^{d+1} \setminus \{0\}) / \sim$ over K is the set of equivalence classes in $K^{d+1} \setminus \{0\}$ for the equivalence relation

$$(a_1,\ldots,a_{d+1})\sim (ca_1,\ldots,ca_{d+1})$$
 for any $c\in K^{\times}$.

As usual we write $[a_1:\ldots:a_{d+1}]$ for the equivalence class of (a_1,\ldots,a_{d+1}) . With respect to the quotient topology from $K^{d+1} \setminus \{0\}$ the projective space

 $\mathbb{P}^d(K)$ is a Hausdorff topological space. For any $1 \leq j \leq d+1$ we have the open subset

$$U_i := \{ [a_1 : \ldots : a_{d+1}] \in \mathbb{P}^d(K) : |a_i| \le |a_i| \text{ for any } 1 \le i \le d+1 \}$$

together with the homeomorphism

$$\varphi_j: \qquad U_j \xrightarrow{\simeq} B_1(0) \subseteq K^d$$
$$[a_1: \dots: a_{d+1}] \longmapsto \left(\frac{a_1}{a_j}, \dots, \frac{a_{j-1}}{a_j}, \frac{a_{j+1}}{a_j}, \dots, \frac{a_{d+1}}{a_j}\right).$$

The (U_j, φ_j, K^d) are charts for $\mathbb{P}^d(K)$ such that $\bigcup_j U_j = \mathbb{P}^d(K)$. They are pairwise compatible. For example, for $1 \leq j < k \leq d+1$, check that the composite map

$$f: \{x \in B_1(0): |x_{k-1}| = 1\} \xrightarrow{\varphi_j^{-1}} U_j \cap U_k \xrightarrow{\varphi_k} \{y \in B_1(0): |y_j| = 1\},$$

which is given by

$$f(x_1,\ldots,x_d) = \left(\frac{x_1}{x_{k-1}},\ldots,\frac{x_{j-1}}{x_{k-1}},\frac{1}{x_{k-1}},\frac{x_j}{x_{k-1}},\ldots,\frac{x_{k-2}}{x_{k-1}},\frac{x_k}{x_{k-1}},\ldots,\frac{x_d}{x_{k-1}}\right) ,$$

is locally analytic. The above charts therefore form a d-dimensional atlas for $\mathbb{P}^d(K)$.

Exercise. Let (M, A) and (N, B) be two manifolds. Then

$$\mathcal{A} \times \mathcal{B} := \{ (U \times V), \varphi \times \psi, K^{m+n} \} : (U, \varphi, K^m) \in \mathcal{A}, (V, \psi, K^n) \in \mathcal{B} \}$$

is an atlas for $M \times N$ with the product topology. We call $M \times N$ equipped with the equivalent maximal atlas the product manifold of M and N.

Let M be a manifold and E be a K-Banach space.

Definition. A function $f: M \longrightarrow E$ is called locally analytic if $f \circ \varphi^{-1} \in C^{\mathrm{an}}(\varphi(U), E)$ for any chart (U, φ) for M.

Remark 8.2. i. Every locally analytic function $f: M \longrightarrow E$ is continuous.

ii. Let \mathcal{B} be any atlas consisting of charts for M; a function $f: M \longrightarrow E$ is locally analytic if and only if $f \circ \varphi^{-1} \in C^{\mathrm{an}}(\varphi(U), E)$ for any $(U, \varphi) \in \mathcal{B}$.

The set

$$C^{\mathrm{an}}(M,E) := \text{ all locally analytic functions } f: M \longrightarrow E$$

is a K-vector space with respect to pointwise addition and scalar multiplication. It is easy to see that a list of properties 1) - 6) completely analogous to the one given in section 6 holds true.

Let now M and N be two manifolds. The following result is immediate.

Lemma 8.3. For a map $g: M \longrightarrow N$ the following assertions are equivalent:

- i. g is continuous and $\psi \circ g \in C^{\mathrm{an}}(g^{-1}(V), K^n)$ for any chart (V, ψ, K^n) for N;
- ii. for any point $x \in M$ there exist a chart (U, φ, K^m) for M around x and a chart (V, ψ, K^n) for N around g(x) such that $g(U) \subseteq V$ and $\psi \circ g \circ \varphi^{-1} \in C^{\mathrm{an}}(\varphi(U), K^n)$.

Definition. A map $g: M \longrightarrow N$ is called locally analytic if the equivalent conditions in Lemma 8.3 are satisfied.

Lemma 8.4. i. If $g: M \longrightarrow N$ is a locally analytic map and E is a K-Banach space then

$$C^{\mathrm{an}}(N,E) \longrightarrow C^{\mathrm{an}}(M,E)$$

 $f \longmapsto f \circ g$

is a well defined K-linear map.

ii. With $L \xrightarrow{f} M \xrightarrow{g} N$ also $g \circ f : L \longrightarrow N$ is a locally analytic map of manifolds.

Proof. This follows from Lemma 6.3.

Examples 8.5. 1) For any open submanifold U of M the inclusion map $U \xrightarrow{\subseteq} M$ is locally analytic.

- 2) Let $g: M \longrightarrow N$ be a locally analytic map; for any open submanifold $V \subseteq N$ the induced map $g^{-1}(V) \xrightarrow{g} V$ is locally analytic.
- 3) The two projection maps

$$\operatorname{pr}_1: M \times N \longrightarrow M \quad and \quad \operatorname{pr}_2: M \times N \longrightarrow N$$

are locally analytic.

4) For any pair of locally analytic maps $g: L \longrightarrow M$ and $f: L \longrightarrow N$ the map

$$(g,f): L \longrightarrow M \times N$$

 $x \longmapsto (g(x), f(x))$

is locally analytic.

We finish this section by mentioning a very useful technical property of manifolds. First let X be an arbitrary Hausdorff topological space. We recall:

- Let $X = \bigcup_{i \in I} U_i$ and $X = \bigcup_{j \in J} V_j$ be two open coverings of X. The second one is called a *refinement* of the first if for any $j \in J$ there is an $i \in I$ such that $V_i \subseteq U_i$.
- An open covering $X = \bigcup_{i \in I} U_i$ of X is called *locally finite* if every point $x \in X$ has an open neighbourhood U_x such that the set $\{i \in I : U_x \cap U_i \neq \emptyset\}$ is finite.
- The space X is called paracompact, resp. $strictly\ paracompact$, if any open covering of X can be refined into an open covering which is locally finite, resp. which consists of pairwise disjoint open subsets.

Remark 8.6. i. Any ultrametric space X is strictly paracompact.

ii. Any compact space X is paracompact.

Proof. i. This follows from Lemma 1.4. ii. This is trivial. \Box

Proposition 8.7. For a manifold M the following conditions are equivalent:

- i. M is paracompact;
- ii. M is strictly paracompact;
- iii. the topology of M can be defined by a metric which satisfies the strict triangle inequality.

Corollary 8.8. Open submanifolds and product manifolds of paracompact manifolds are paracompact.

9 The tangent space

Let M be a manifold, and fix a point $a \in M$. We consider pairs (c, v) where

- $-c = (U, \varphi, K^m)$ is a chart for M around a and
- $-v \in K^m$.

Two such pairs (c, v) and (c', v') are called equivalent if we have

$$D_{\varphi(a)}(\varphi' \circ \varphi^{-1})(v) = v'$$
.

It follows from the chain rule that this indeed defines an equivalence relation.

Definition. A tangent vector of M at the point a is an equivalence class [c, v] of pairs (c, v) as above.

We define

 $T_a(M) :=$ set of all tangent vectors of M at a.

Lemma 9.1. Let $c = (U, \varphi, K^m)$ and $c' = (U', \varphi', K^m)$ be two charts for M around a; we then have:

i. The map

$$\theta_c: K^m \xrightarrow{\sim} T_a(M)$$

$$v \longmapsto [c, v]$$

is bijective.

ii. $\theta_{c'}^{-1} \circ \theta_c : K^m \xrightarrow{\cong} K^m$ is a K-linear isomorphism.

Proof. (We recall from Lemma 7.1 that the dimensions of two charts around the same point necessarily coincide.) i. Surjectivity follows from

$$[c'',v'']=[c,D_{\varphi''(a)}(\varphi\circ\varphi''^{-1})(v'')]\ .$$

If [c,v]=[c,v'] then $v'=D_{\varphi(a)}(\varphi\circ\varphi^{-1})(v)=v$. This proves the injectivity. ii. From $[c,v]=[c',D_{\varphi(a)}(\varphi'\circ\varphi^{-1})(v)]$ we deduce that

$$\theta_{c'}^{-1} \circ \theta_c = D_{\varphi(a)}(\varphi' \circ \varphi^{-1})$$
.

The set $T_a(M)$, by Lemma 9.1.i., has precisely one structure of a topological K-vector space such that the map θ_c is a K-linear homeomorphism. Because of Lemma 9.1.ii. this structure is independent of the choice of the chart c around a.

Definition. The K-vector space $T_a(M)$ is called the tangent space of M at the point a.

Remark. The manifold M has dimension m if and only if $\dim_K T_a(M) = m$ for any $a \in M$.

Let $g: M \longrightarrow N$ be a locally analytic map of manifolds. By Lemma 8.3.ii. we find charts $c = (U, \varphi, K^m)$ for M around a and $\tilde{c} = (V, \psi, K^n)$ for N around g(a) such that $g(U) \subseteq V$. The composite

$$T_a(g): T_a(M) \xrightarrow{\theta_c^{-1}} K^m \xrightarrow{D_{\varphi(a)}(\psi \circ g \circ \varphi^{-1})} K^n \xrightarrow{\theta_{\tilde{c}}} T_{g(a)}(N)$$

is a continuous K-linear map. We claim that $T_a(g)$ does not depend on the particular choice of charts. Let $c' = (U', \varphi')$ and $\tilde{c}' = (V', \psi')$ be other charts around a and g(a), respectively. Using the identity in the proof of Lemma 9.1.ii. as well as the chain rule we compute

$$\theta_{\tilde{c}} \circ D_{\varphi(a)}(\psi \circ g \circ \varphi^{-1}) \circ \theta_{c}^{-1}$$

$$= \theta_{\tilde{c}'} \circ D_{\psi(g(a))}(\psi' \circ \psi^{-1}) \circ D_{\varphi(a)}(\psi \circ g \circ \varphi^{-1}) \circ D_{\varphi(a)}(\varphi' \circ \varphi^{-1})^{-1} \circ \theta_{c'}^{-1}$$

$$= \theta_{\tilde{c}'} \circ D_{\varphi'(a)}(\psi' \circ g \circ \varphi'^{-1}) \circ \theta_{c'}^{-1} .$$

Definition. $T_a(g)$ is called the tangent map of g at the point a.

Remark. $T_a(\mathrm{id}_M) = \mathrm{id}_{T_a(M)}$.

Lemma 9.2. For any locally analytic maps of manifolds $L \xrightarrow{f} M \xrightarrow{g} N$ we have

$$T_a(g \circ f) = T_{f(a)}(g) \circ T_a(f)$$
 for any $a \in L$.

Proof. This is an easy consequence of the chain rule.

Proposition 9.3. (Local invertibility) Let $g: M \longrightarrow N$ be a locally analytic map of manifolds, and suppose that $T_a(g): T_a(M) \xrightarrow{\cong} T_{g(a)}(N)$ is bijective for some $a \in M$; then there are open neighbourhoods $U \subseteq M$ of a and $V \subseteq N$ of g(a) such that g restricts to a locally analytic isomorphism

$$g: U \xrightarrow{\simeq} V$$

of open submanifolds.

Proof. This is a consequence of Prop. 6.4.

Exercise. Let (U, φ, K^m) be a chart for the manifold M; then $\varphi : U \xrightarrow{\simeq} \varphi(U)$ is a locally analytic isomorphism between the open submanifolds U of M and $\varphi(U)$ of K^m .

Let M be a manifold, E be a K-Banach space, $f \in C^{\mathrm{an}}(M, E)$, and $a \in M$. If $c = (U, \varphi, K^m)$ is a chart for M around a then $f \circ \varphi^{-1} \in C^{\mathrm{an}}(\varphi(U), E)$. Hence

$$d_a f: T_a(M) \xrightarrow{\theta_c^{-1}} K^m \xrightarrow{D_{\varphi(a)}(f \circ \varphi^{-1})} E$$
$$[c, v] \longmapsto D_{\varphi(a)}(f \circ \varphi^{-1})(v)$$

is a continuous K-linear map. If $c'=(U',\varphi',K^m)$ is another chart around a then

$$D_{\varphi(a)}(f \circ \varphi^{-1}) \circ \theta_c^{-1} = D_{\varphi(a)}(f \circ \varphi^{-1}) \circ D_{\varphi(a)}(\varphi' \circ \varphi^{-1})^{-1} \circ \theta_{c'}^{-1}$$
$$= D_{\varphi'(a)}(f \circ \varphi'^{-1}) \circ \theta_{c'}^{-1}.$$

This shows that $d_a f$ does not depend on the choice of the chart c.

Definition. $d_a f$ is called the derivative of f in the point a.

Remark 9.4. For $E = K^r$ viewed as a manifold and for the chart $c_0 = (K^r, id, E)$ for E we have

$$T_a(f) = \theta_{c_0} \circ d_a f$$
.

Obviously the map

$$C^{\mathrm{an}}(M, E) \longrightarrow \mathcal{L}(T_a(M), E)$$

 $f \longmapsto d_a f$

is K-linear.

Lemma 9.5. (Product rule)

i. Let $u: E_1 \times E_2 \longrightarrow E$ be a continuous bilinear map between K-Banach spaces; if $f_i \in C^{an}(M, E_i)$ for i = 1, 2 then $u(f_1, f_2) \in C^{an}(M, E)$ and

$$d_a(u(f_1, f_2)) = u(f_1(a), d_a f_2) + u(d_a f_1, f_2(a))$$
 for any $a \in M$.

ii. For $q \in C^{an}(M,K)$ and $f \in C^{an}(M,E)$ we have

$$d_a(gf) = g(a) \cdot d_a f + d_a g \cdot f(a)$$
 for any $a \in M$.

Let $c=(U,\varphi,K^m)$ be a chart for M. On the one hand, by definition, we have $d_a\varphi=\theta_c^{-1}$ for any $a\in U$; in particular

$$d_a \varphi : T_a(M) \xrightarrow{\cong} K^m$$

is a K-linear isomorphism. On the other hand viewing $\varphi = (\varphi_1, \dots, \varphi_m)$ as a tuple of locally analytic functions $\varphi_i : U \longrightarrow K$ we have

$$d_a\varphi = (d_a\varphi_1, \ldots, d_a\varphi_m)$$
.

This means that $\{d_a\varphi_i\}_{1\leq i\leq m}$ is a K-basis of the dual vector space $T_a(M)'$. Let

$$\left\{\left(\frac{\partial}{\partial\varphi_i}\right)(a)\right\}_{1\leq i\leq m}$$

denote the corresponding dual basis of $T_a(M)$, i. e.,

$$d_a \varphi_i \left(\left(\frac{\partial}{\partial \varphi_i} \right) (a) \right) = \delta_{ij}$$
 for any $a \in U$

where δ_{ij} is the Kronecker symbol. For any $f \in C^{an}(M, E)$ we define the functions

$$\frac{\partial f}{\partial \varphi_i}: U \longrightarrow E$$

$$a \longmapsto d_a f\left(\left(\frac{\partial}{\partial \varphi_i}\right)(a)\right).$$

Lemma 9.6. $\frac{\partial f}{\partial \varphi_i} \in C^{\mathrm{an}}(U, E)$ for any $1 \leq i \leq m$, and

$$d_a f = \sum_{i=1}^m d_a \varphi_i \cdot \frac{\partial f}{\partial \varphi_i}(a)$$
 for any $a \in U$.

Now we define the disjoint union

$$T(M) := \bigcup_{a \in M} T_a(M)$$

together with the projection map

$$p_M: T(M) \longrightarrow M$$

 $t \longmapsto a \text{ if } t \in T_a(M) .$

Hence $T_a(M) = p_M^{-1}(a)$. We will show that T(M) is naturally a manifold and p_M a locally analytic map of manifolds.

Consider any chart $c = (U, \varphi, K^m)$ for M. By Lemma 9.1.i. the map

$$\tau_c: U \times K^m \xrightarrow{\sim} p_M^{-1}(U)$$

 $(a, v) \longmapsto [c, v] \text{ viewed in } T_a(M)$

is bijective. Hence the composite

$$\varphi_c: p_M^{-1}(U) \xrightarrow{\tau_c^{-1}} U \times K^m \xrightarrow{\varphi \times \mathrm{id}} K^m \times K^m = K^{2m}$$

is a bijection onto an open subset in K^{2m} . The idea is that

$$c_T := \left(p_M^{-1}(U), \varphi_c, K^{2m} \right)$$

should be a chart for the manifold T(M). Clearly we have

$$T(M) = \bigcup_{c=(U,\varphi)} p_M^{-1}(U) .$$

We equip T(M) with the finest topology which makes all composed maps

$$U \times K^m \xrightarrow{\tau_c} p_M^{-1}(U) \xrightarrow{\subseteq} T(M)$$

continuous.

Lemma 9.7. i. The map $\tau_c: U \times K^m \xrightarrow{\simeq} p_M^{-1}(U)$ is a homeomorphism with respect to the subspace topology induced by T(M) on $p_M^{-1}(U)$.

ii. The map p_M is continuous.

iii. The topological space T(M) is Hausdorff.

The Lemma 9.7 in particular says that c_T indeed is a chart for T(M). Check that these charts are compatible. We conclude that the set

$$\{c_T : c \text{ a chart for } M\}$$

is an atlas for T(M) and we always view T(M) as a manifold with respect to the equivalent maximal atlas.

Definition. The manifold T(M) is called the tangent bundle of M.

Remark. If M is m-dimensional then T(M) is 2m-dimensional.

Lemma 9.8. The map $p_M: T(M) \longrightarrow M$ is locally analytic.

Proof. Let $c = (U, \varphi, K^m)$ be a chart for M. It suffices to contemplate the commutative diagram

$$T(M) \stackrel{\supseteq}{\longleftarrow} p_M^{-1}(U) \xrightarrow{} \varphi_c(p_M^{-1}(U)) = \varphi(U) \times K^m \stackrel{\subseteq}{\longrightarrow} K^{2m}$$

$$\downarrow^{p_M} \qquad \qquad \downarrow^{\operatorname{pr}_1} \qquad \qquad \downarrow^{\operatorname{pr}_1}$$

$$M \stackrel{\supseteq}{\longleftarrow} U \xrightarrow{} \varphi(U) \xrightarrow{} K^m.$$

Let $g:M\longrightarrow N$ be a locally analytic map of manifolds. We define the map

$$T(g): T(M) \longrightarrow T(N)$$

by

$$T(g)|T_a(M) := T_a(g)$$
 for any $a \in M$.

In particular, the diagram

$$T(M) \xrightarrow{T(g)} T(N)$$

$$\downarrow^{p_M} \qquad \qquad \downarrow^{p_N}$$

$$M \xrightarrow{g} N$$

is commutative.

Proposition 9.9. i. The map T(g) is locally analytic.

ii. For any locally analytic maps of manifolds $L \xrightarrow{f} M \xrightarrow{g} N$ we have

$$T(g \circ f) = T(g) \circ T(f)$$
.

Note that the above ii. is a restatement of Lemma 9.2.

Exercise 9.10. i. For $U \subseteq M$ an open submanifold, $T(\subseteq)$ induces an isomorphism between T(U) and the open submanifold $p_M^{-1}(U)$.

ii. For any two manifolds M and N the map

$$T(\operatorname{pr}_1)\times T(\operatorname{pr}_2):T(M\times N)\xrightarrow{\simeq} T(M)\times T(N)$$

is an isomorphism of manifolds.

Now let M be a manifold and E be a K-Banach space. For any $f \in C^{\mathrm{an}}(M,E)$ we define

$$df: T(M) \longrightarrow E$$

 $t \longmapsto d_{p_M(t)}f(t)$.

Lemma 9.11. We have $df \in C^{an}(T(M), E)$.

Lemma 9.12. Let $g: M \longrightarrow N$ be a locally analytic map of manifolds; for any $f \in C^{an}(N, E)$ we have

$$d(f \circ g) = df \circ T(g) .$$

Proof. This is a consequence of the chain rule.

Exercise. The map

$$d: C^{\mathrm{an}}(M, E) \longrightarrow C^{\mathrm{an}}(T(M), E)$$

 $f \longmapsto df$

is K-linear.

Remark 9.13. If K has characteristic zero then a function $f \in C^{an}(M, E)$ is locally constant if and only if df = 0.

We finish this section by briefly discussing vector fields.

Definition. Let $U \subseteq M$ be an open subset; a vector field ξ on U is a locally analytic map $\xi: U \longrightarrow T(M)$ which satisfies $p_M \circ \xi = \mathrm{id}_U$.

It is easily seen that

$$\Gamma(U, T(M)) := \text{ set of all vector fields on } U$$
.

is a K-vector space w.r.t. pointwise addition and scalar multiplication of maps.

Lemma 9.14. For any vector field $\xi \in \Gamma(M, T(M))$ the map

$$D_{\xi}: C^{\mathrm{an}}(M,K) \longrightarrow C^{\mathrm{an}}(M,K)$$
$$f \longmapsto df \circ \xi$$

is a derivation, i. e.:

- (a) D_{ξ} is K-linear,
- (b) $D_{\xi}(fg) = D_{\xi}(f)g + fD_{\xi}(g)$ for any $f, g \in C^{\mathrm{an}}(M, K)$.

Proposition 9.15. Suppose that M is paracompact; then for any derivation D on $C^{an}(M,K)$ there is a unique vector field ξ on M such that $D = D_{\xi}$.

Lemma 9.16. For any derivations $B, C, D: C^{\mathrm{an}}(M,K) \longrightarrow C^{\mathrm{an}}(M,K)$ we have:

- i. $[B, C] := B \circ C C \circ B$ again is a derivation;
- ii. [,] is K-bilinear;
- iii. [B, B] = 0 and [B, C] = -[C, B];
- iv. $(Jacobi\ identity)\ [[B, C], D] + [[C, D], B] + [[D, B], C] = 0.$

Proof. These are straightforward completely formal computations. \Box

This lemma says that the vector space of derivations on $C^{\mathrm{an}}(M,K)$ is a K-Lie algebra. Using Prop. 9.15 it follows that $\Gamma(M,T(M))$ naturally is a Lie algebra (at least for paracompact M).

10 Reminder: Locally convex K-vector spaces

We recall very briefly the notion of a locally convex K-vector space. For details we refer to [NFA]. Let E be any K-vector space.

Definition. A (nonarchimedean) seminorm on E is a function $q: E \longrightarrow \mathbb{R}$ such that for any $v, w \in E$ and any $a \in K$ we have:

- (i) $q(av) = |a| \cdot q(v)$,
- (ii) $q(v+w) \leq \max(q(v), q(w))$.

Let $(q_i)_{i\in I}$ be a family of seminorms on E. We consider the coarsest topology on E such that:

- (1) All maps $q_i: E \longrightarrow \mathbb{R}$, for $i \in I$, are continuous,
- (2) all translation maps $v + . : E \longrightarrow E$, for $v \in E$, are continuous.

It is called the topology defined by $(q_i)_{i \in I}$.

Lemma 10.1. E is a topological K-vector space, i. e., addition and scalar multiplication are continuous, with respect to the topology defined by $(q_i)_{i \in I}$.

Exercise. The topology on E defined by $(q_i)_{i \in I}$ is Hausdorff if and only if for any vector $0 \neq v \in E$ there is an index $i \in I$ such that $q_i(v) \neq 0$.

Definition. A topology on a K-vector space E is called locally convex if it can be defined by a family of seminorms. A locally convex K-vector space is a K-vector space equipped with a locally convex topology.

Obviously any normed K-vector space and in particular any K-Banach space is locally convex.

Remark 10.2. Let $\{E_j\}_{j\in J}$ be a family of locally convex K-vector spaces; then the product topology on $E:=\prod_{j\in J}E_j$ is locally convex.

For our purposes the following construction is of particular relevance. Let E be a any K-vector space, and suppose that there is given a family $\{E_j\}_{j\in J}$ of vector subspaces $E_j\subseteq E$ each of which is equipped with a locally convex topology.

Lemma 10.3. There is a unique finest locally convex topology \mathcal{T} on E such that all the inclusion maps $E_j \stackrel{\subseteq}{\longrightarrow} E$, for $j \in J$, are continuous.

The topology \mathcal{T} on E in the above lemma is called the *locally convex* final topology with respect to the family $\{E_j\}_{j\in J}$. Suppose that the family $\{E_j\}_{j\in J}$ has the additional properties:

- $E = \bigcup_{j \in J} E_j$;
- the set J is partially ordered by \leq such that for any two $j_1, j_2 \in J$ there is a $j \in J$ such that $j_1 \leq j$ and $j_2 \leq j$;
- whenever $j_1 \leq j_2$ we have $E_{j_1} \subseteq E_{j_2}$ and the inclusion map $E_{j_1} \xrightarrow{\subseteq} E_{j_2}$ is continuous.

In this case the locally convex K-vector space (E, \mathcal{T}) is called the *locally convex inductive limit* of the family $\{E_j\}_{j\in J}$.

Lemma 10.4. A K-linear map $f: E \longrightarrow \tilde{E}$ into any locally convex K-vector space \tilde{E} is continuous (with respect to \mathcal{T}) if and only if the restrictions $f|E_i$, for any $j \in J$, are continuous.

11 The topological vector space $C^{an}(M, E)$

Throughout this section M is a paracompact manifold and E is a K-Banach space. Following [Fea] we briefly describe how to equip $C^{an}(M, E)$ with a locally convex topology.

Using that, by Prop. 8.7, M is strictly paracompact and that, by Lemma 1.4, open coverings of open subset in K^m can be refined into disjoint coverings by balls we obtain the following

Fact: Given $f \in C^{an}(M, E)$ there is a family of charts $(U_i, \varphi_i, K^{m_i})$, for $i \in I$, for M together with real numbers $\varepsilon_i > 0$ such that:

- (a) $M = \bigcup_{i \in I} U_i$, and the U_i are pairwise disjoint;
- (b) $\varphi_i(U_i) = B_{\varepsilon_i}(x_i)$ for one (or any) $x_i \in \varphi_i(U_i)$;
- (c) there is a power series $F_i \in \mathcal{F}_{\varepsilon_i}(K^{m_i}; E)$ with

$$f \circ \varphi_i^{-1}(x) = F_i(x - x_i)$$
 for any $x \in \varphi_i(U_i)$.

Let (c, ε) be a pair consisting of a chart $c = (U, \varphi, K^m)$ for M and a real number $\varepsilon > 0$ such that $\varphi(U) = B_{\varepsilon}(a)$ for one (or any) $a \in \varphi(U)$. As a consequence of the identity theorem for power series Cor. 5.8 the K-linear map

$$\mathcal{F}_{\varepsilon}(K^m; E) \longrightarrow C^{\mathrm{an}}(U, E)$$

 $F \longmapsto F(\varphi(.) - a)$

is injective. Let $\mathcal{F}_{(c,\varepsilon)}(E)$ denote its image. It is a K-Banach space with respect to the norm

$$||f|| = ||F||_{\varepsilon}$$
 if $f(.) = F(\varphi(.) - a)$.

By Cor. 5.5 the pair $(\mathcal{F}_{(c,\varepsilon)}(E), \| \|)$ is independent of the choice of the point a

Definition. An index for M is a family $\mathcal{I} = \{(c_i, \varepsilon_i)\}_{i \in I}$ of charts $c_i = (U_i, \varphi_i, K^{m_i})$ for M and real numbers $\varepsilon_i > 0$ such that the above conditions (a) and (b) are satisfied.

For any index \mathcal{I} for M we have

$$\mathcal{F}_{\mathcal{I}}(E) := \prod_{i \in I} \mathcal{F}_{(c_i, \varepsilon_i)}(E) \subseteq \prod_{i \in I} C^{\mathrm{an}}(U_i, E) = C^{\mathrm{an}}(M, E) .$$

Our above Fact says that

$$C^{\mathrm{an}}(M,E) = \bigcup_{\mathcal{I}} \mathcal{F}_{\mathcal{I}}(E)$$

where \mathcal{I} runs over all indices for M. Hence $C^{\mathrm{an}}(M,E)$ is a union of direct products of Banach spaces, which are locally convex by Remark 10.2. Therefore, by Lemma 10.3, we may equip $C^{\mathrm{an}}(M,E)$ with the corresponding locally convex final topology. All our earlier constructions involving $C^{\mathrm{an}}(M,E)$ are compatible with this topology. In the following we briefly list the most important ones.

Proposition 11.1. For any $a \in M$ the evaluation map

$$\delta_a: C^{\mathrm{an}}(M, E) \longrightarrow E$$

$$f \longmapsto f(a)$$

is continuous.

Corollary 11.2. The locally convex vector space $C^{an}(M, E)$ is Hausdorff.

Remark 11.3. With M also its tangent bundle T(M) is paracompact.

Proposition 11.4. i. The map $d: C^{\mathrm{an}}(M,E) \longrightarrow C^{\mathrm{an}}(T(M),E)$ is continuous.

ii. For any locally analytic map of paracompact manifolds $g: M \longrightarrow N$ the map

$$C^{\mathrm{an}}(N,E) \longrightarrow C^{\mathrm{an}}(M,E)$$

 $f \longmapsto f \circ g$

is continuous.

iii. For any vector field ξ on M the map $D_{\xi}: C^{\mathrm{an}}(M, E) \longrightarrow C^{\mathrm{an}}(M, E)$ is continuous.

Proposition 11.5. For any covering $M = \bigcup_{i \in I} U_i$ by pairwise disjoint open subsets U_i we have

$$C^{\mathrm{an}}(M,E) = \prod_{i \in I} C^{\mathrm{an}}(U_i, E)$$

as topological vector spaces.

To prove these properties one needs Lemma 10.4. This requires to see that $C^{\mathrm{an}}(M,E)$, in fact, is the locally convex inductive limit of the $\mathcal{F}_{\mathcal{I}}(E)$. Technically this means that one has to introduce a directed preorder $\mathcal{I} \leq \mathcal{J}$ (on the set of indices) such that $\mathcal{F}_{\mathcal{I}}(E) \subseteq \mathcal{F}_{\mathcal{J}}(E)$ with this inclusion being continuous.

References

- [BGR] Bosch S., Güntzer U., Remmert R.: Non-Archimedean Analysis. Berlin - Heidelberg - New York: Springer 1984
- [B-LL] Bourbaki N.: Lie Groups and Lie Algebras. Springer 1998
- [Fea] Féaux de Lacroix C. T.: Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper. Thesis, Köln 1997. Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, pp. 1 111 (1999)
- [PGS] Perez-Garcia C., Schickhof W.H.: Locally Convex Spaces over Non-Archimedean Valued Fields. Cambridge Univ. Press 2010
- [NFA] Schneider P.: Nonarchimedean Functional Analysis. Springer 2002
- [Sch] Schickhof W.H.: Ultrametric calculus. Cambridge Univ. Press 1984
- [Ser] Serre J.-P.: Local Fields. Springer 1979