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1 Ultrametric spaces

We recall the very basic notions.

Definition. A metric space (X,d) is called ultrametric if the strict triangle
inequality

d(z,z) < max(d(z,y),d(y,z)) for anyz,y,z € X
18 satisfied.

Remark. i. If (X,d) is ultrametric then (Y,d|Y xY), for any subset
Y C X, is ultrametric as well.

it. If (X1,d1), ..., (Xm,dm) are ultrametric spaces then the cartesian pro-
duct X1 X ... x X, ts ultrametric with respect to

d((.’El, o axm)a (yla ce. 7ym)) = maX(dl(.’El, yl)a “ee adm(xmaym)) .
Let (X, d) be an ultrametric space.

Lemma 1.1. For any three points x,y,z € X such that d(x,y) # d(y, z) we

have
d(z,z) = max(d(z,y),d(y,2)) .

Proof. Suppose that d(x,y) < d(y, z). Then
d(z,y) < d(y,z) < max(d(y, z),d(z, 2)) = max(d(z,y), d(z, z)) = d(z, 2) .
Hence d(x,y) < d(y,z) < d(z,z) and then

d(z,z) < max(d(x,y),d(y,2)) < d(z,z) .

Let a € X be a point and € > 0 be a real number. We call
B.(a):={x € X :d(a,z) <e} and B (a):={re X :d(a,x)<e}

the closed and the open ball, respectively, around a of radius €. But be
careful!

Lemma 1.2. i. Every ball is open and closed in X.

it. Forb e B.(a), resp. b € BZ (a), we have B.(b) = B:(a), resp. BZ (b) =
BZ (a).

€



Proof. Observe that the open, resp. closed, balls are the equivalence classes
of the equivalence relation x ~ y, resp.  ~ y, on X defined by d(z,y) < e,
resp. by d(z,y) < e. O

So any point of a ball can serve as its midpoint.

Exercise. The radius of a ball is not well determined.

Corollary 1.3. For any two balls B and B’ in X such that BN B’ # () we
have B C B’ or B' C B.

Remark. If the ultrametric space X is connected then it is empty or consists
of one point.

Lemma 1.4. Let U C X be an open subsets and let €1 > 5 > ... > 0 be
a strictly descending sequence of positive real numbers which converges to
zero; then any open covering of U can be refined into a DECOMPOSITION
of U into balls of the form Be,(a).

As usual the metric space X is called complete if every Cauchy sequence
in X is convergent.

Lemma 1.5. A sequence (zp)nen in X is a Cauchy sequence if and only if
limy, 00 d(Zp, Tnt1) = 0.

There is a stronger concept than completeness. For a subset A C X call
d(A) := sup{d(z,y) : 2,y € A}
the diameter of A.

Corollary 1.6. Let B C X be a ball with ¢ := d(B) > 0 and pick any point
a € B; we then have B = B (a) or B = Bc(a).

Consider now a descending sequence of balls
Bi2ByD>...OB,D...

in X. Suppose that X is complete and that lim, . d(B,) = 0. We pick
points x,, € B, and obtain the Cauchy sequence (z,)nen. Since each B, is
closed we must have z := lim,,_,o , € B, and therefore z € ), By,. Hence

() Bn#0.
neN

But without the condition on the diameters the intersection (), B, can
be empty (see the next section for an important example). This motivates
the following definition.



Definition. The ultrametric space (X,d) is called spherically complete if
any descending sequence of balls By O By O ... in X has a nonempty
intersection.

Lemma 1.7. i. If X is spherically complete then it is complete.

1. Suppose that X is complete; if 0 is the only accumulation point of the
set d(X x X) C Ry of values of the metric d then X is spherically
complete.

Lemma 1.8. Suppose that X is spherically complete; for any family (B;)icr
of closed balls in X such that B; N\ Bj # 0 for any i,j € I we then have

ﬂie[ B; 7& 0.
2 Nonarchimedean fields

Let K be any field.

Definition. A nonarchimedean absolute value on K is a function

[|: K — R
which satisfies:
(1) la| =0,
(ii) |a| =0 if and only if a =0,
(iit) |ab| = |af - [b],
(iv) |a + b] < max(|al, |b]).
Exercise. i. |n-1] <1 for anyn € Z.
i | |+ K* — RZ is a homomorphism of groups; in particular, |1| =
|—1]=1.
i1i. K is an ultrametric space with respect to the metric d(a,b) :== |b— al;

in particular, we have |a + b| = max(|a|, |b|) whenever |a| # |b|.

w. Addition and multiplication on the ultrametric space K are continuous
maps.

Definition. A nonarchimedean field (K,| |) is a field K equipped with a
nonarchimedean absolute value | | such that:



(i) | | is non-trivial, i. e., there is an a € K with |a| # 0,1,
(ii) K is complete with respect to the metric d(a,b) :=|b— al.
Examples. - Fix a prime number p. Then
lalp :=p™" ifa=p" with r,m,n € Z and p fmn

is a nonarchimedean absolute value on the field Q of rational numbers.
The corresponding completion Q) is called the field of p-adic numbers.
Note that |Qp|, = p2U{0}. Hence Q, is spherically complete by Lemma
[17. 4.

— Let K/Qy be any finite extension of fields. Then

[K:Qp]
jaf = "% |Normic 3, (a)]

is the unique extension of | |, to a nonarchimedean absolute value on
K. The corresponding ultrametric space K is complete and spherically
complete and, in fact, locally compact. (See [Ser]] Chap. II §§1-2.)

— The algebraic closure leg of Qp is not complete. Its completion C,

is algebraically closed but not spherically complete (see [Schl] §17 and
Cor. 20.6).

In the following we fix a nonarchimedean field (K| |). By the strict
triangle inequality the closed unit ball

OK = Bl (0)
is a subring of K, called the ring of integers in K, and the open unit ball
mg (= Bl_ (0)

is an ideal in o . Because of olx( = ox \mx this ideal mg is the only maximal
ideal of ok . The field ox /my is called the residue class field of K.

Exercise 2.1. i. If the residue class field ox /my has characteristic zero
then K has characteristic zero as well and we have |a| = 1 for any
nonzero a € Q C K.

it. If K has characteristic zero but ox /my has characteristic p > 0 then

we have
_ log|p|

lal = lal, **"  for anya € Q C K;

in particular, K contains Q,.



A nonarchimedean field K as in the second part of Exercise [2.1]is called
a p-adic field.

Lemma 2.2. If K is p-adic then we have
n—1
|n| > |n!| > |p|?=1 for any n € N.

Proof. We may obviously assume that K = Q. Then the reader should do
this as an exercise but also may consult [B-LL] Chap. IT §8.1 Lemma 1. [

Now let V' be any K-vector space.

Definition. A (nonarchimedean) norm on V is a function || || : V — R
such that for any v,w € V and any a € K we have:

(1) llav]| = laf - [[v]l,

(i) |lv+ wl| < max([lo], [[w]]),
(#3) if ||v]| = 0 then v = 0.
Moreover, V is called normed if it is equipped with a norm.
Exercise. i ||v]| >0 for any v €V and ||0]| = 0.

it. 'V is an ultrametric space with respect to the metric d(v, w) = ||[w—wv||;
in particular, we have ||[v+w|| = max(||v]|, ||w]|) whenever ||v|| # ||w]|.

ii. Addition V- x V. = V and scalar multiplication K x V. — V are
continuous.

Lemma 2.3. Let (Vi,|| ||l1) and (Va, || ||2) let two normed K-vector spaces;
a linear map f : Vi — Vo is continuous if and only if there is a constant
c > 0 such that

[F@)ll2 < e-llvfly for anyveVi.

Definition. The normed K-vector space (V, || ||) is called a K-Banach space
if V' is complete with respect to the metric d(v,w) := |Jw — v||.

Examples. 1) K™ with the norm ||(ai,...,a,)| = maxi<i<y |ai| is a
K -Banach space.



2) Let I be a fized but arbitrary index set. A family (a;)ier of elements in
K is called bounded if there is a ¢ > 0 such that |a;| < ¢ for anyi € I.
The set

0°(1) := set of all bounded families (a;);cr in K

with componentwise addition and scalar multiplication and with the

norm
1(@i)illoo = sup |ai|
i€l

is a K-Banach space.

3) With I as above let

co() := {(a;)ier € L°(I) : for any € > 0 we have |a;| > ¢
for at most finitely many i € I}.

It is a closed vector subspace of £°°(I) and hence a K-Banach. More-
over, for (a;); € co(I) we have

1{@s)slco = max|ai .

Remark. Any K-Banach space (V, || ||) over a finite extension K/Q, which
satisfies |V|| C |K| is isometric to some K-Banach space (co(I),] ||eo);
moreover, all such I have the same cardinality.

Proof. Compare [NFA] Remark 10.2 and Lemma 10.3. O
Let V and W be two normed K-vector spaces. Obviously
LV, W) :={f € Homg(V,W) : f is continuous}
is a vector subspace of Homg (V, W). By Lemma the operator norm

VO s vo 0 = {00y cvo <oy <1}

[[o]]

o]

141 +=sup {
is well defined for any f € L(V,W). (Unless it causes confusion all occurring

norms will be denoted by || ||.)

Proposition 2.4. i. L(V,W) with the operator norm is a normed K-
vector space.

it. If W is a K-Banach space then so, too, is L(V,W).



In particular,
V':i=L(V,K)

always is a K-Banach space. It is called the dual space to V.

Lemma 2.5. Let I be an index set; for any j € I let 1; € co(I) denote the
family (a;)ier with a; =0 for i # j and a; = 1; then

s an isometric linear isomorphism.
Here is a warning.

Proposition 2.6. Suppose that K is not spherically complete; then

(€(N)/eo(N))" = {0} -
Proof. [PGS|] Thm. 4.1.12. O

Throughout the further text (K, | |) is a fixed nonarchimedean field.

3 Convergent series

We briefly collect the most basic facts about convergent series in Banach
spaces. Let (V.|| ||) be a K-Banach space.

Lemma 3.1. Let (vy)nen be a sequence in V' ; we then have:
i. The series Y 2 | vy is convergent if and only if limy,_,o vy, = 0;

it. if the limit v := lim,,_ o vy, exists in V' and is nonzero then ||vy,| = ||v]|
for all but finitely many n € N;

iii. let o : N — N be any bijection and suppose that the seriesv =Y > | vy,

is convergent in V; then the series > -, Vg(n) 18 convergent as well
with the same limit v.

The following identities between convergent series are obvious:
— Y avy =a-y > v, foranyac K.

= (i vn) + (0l wa) = D000 (vn + w).



Lemma 3.2. Let > >°  a, and Y 2| v, be convergent series in K and V,

respectively; then the series Y o | wy, with wy, = > ttmen @V 5 conver-
gent, and

o o0 o

Duwn= (D) (D)

n=1 n=1 n=1

Analogous assertions hold true for series Zx,,..,nrzl Un,,...n, indexed by
multi-indices in N x ... x N. But we point out the following additional fact.

Lemma 3.3. Let (Vymn)mneN be a double sequence in V' such that

lim vy, =0;
m-+n—o00

we then have

SIS SIS
5 5 Um,n = 5 5 Um,n
m=1n=1 n=1m=1

which, in particular, means that all series involved are convergent.

4 Differentiability

Let V and W be two normed K-vector spaces, let U C V be an open subset,
and let f: U — W be some map.

Definition. The map f is called differentiable in the point vg € U if there
exists a continuous linear map

Dy f:V — W

such that for any e > 0 there is an open neighbourhood U, = U (vy) C U of
vy with

1f(v) = f(vo) = Duo f(v —wo)|| <ellv—wol|  for anyv e Ue .
Exercise. Check that D, f is uniquely determined.

The continuous linear map D, f : V — W is called (if it exists) the
derivative of f in the point vy € U. In case V = K we also write f'(ag) :=

Dg, f(1).

Remark 4.1. i. If [ is differentiable in vg then it is continuous in vg.



it. (Chain rule) Let VW1, and Wy be normed K -vector spaces, U C V
and Uy C Wy be open subsets, and f : U — Uy and g : Uy —> Wo
be maps; suppose that f is differentiable in some vg € U and g is
differentiable in f(vg); then g o f is differentiable in vy and

Dyo(go f) = Dgwy)g© Do f -

iii. A continuous linear map v : V. — W is differentiable in any vg € V
and Dy, u = u; in particular, in the situation of . we have

Dyy(uo f) =uo Dy f .

. (Product rule) Let VW1, ..., Wy, and W be normed K -vector spaces,
let U C V be an open subset with maps f; : U — W;, and let
w o Wiy x ... x W, — W be a continuous multilinear map; sup-

pose that f1,..., fm all are differentiable in some point vy € U; then
w(f1y..oy fm) : U — W is differentiable in vy and

m

Dy (u(ft, .- fm)) = D _u(fi(v0),- -, Dy fir- -, fin(v0)) -

i=1

Remark. Suppose that the vector space V. =V @ ... B V,, is the direct sum
of finitely many vector spaces Vi, ..., Vy,. Then we have the usual notion of
the partial derivatives Dq()?f = Dy, fi : Vi — W of f in vo. The differ-
entiability of f in vy implies the existence of all partial derivatives together

with the identity Dy, f = > 7", Dq(}i)f.

Definition. The map f is called strictly differentiable in vg € U if there
exists a continuous linear map Dy, f : V. — W such that for any ¢ > 0
there is an open neighbourhood U C U of vy with

[f(v1) = f(v2) = Do f(v1 = v2)|| < eflor —wal| - for any vi,v2 € Ue .

Exercise. Suppose that f is strictly differentiable in every point of U. Then
the map

U— L(V,IV)
vi— D, f

1S continuous.

10



Proposition 4.2. (Local invertibility) Let V' and W be K-Banach spaces,
U C V be an open subset, and f : U — W be a map which is strictly
differentiable in the point vy € U; suppose that the derivative Dy, f : V. — W

18 a topological isomorphism; then there are open neighbourhoods Uy C U of
vo and Uy CW of f(vg) such that:

i. f: Uy — Uy is a homeomorphism;

it. the inverse map g : Uy — Uy is strictly differentiable in f(vo), and
D)9 = (Do f) 71

Concerning the assumption on the derivative in the above proposition
we recall the open mapping theorem (cf. [NFA] Cor. 8.7): It says that any
continuous linear bijection between K-Banach spaces necessarily is a topo-
logical isomorphism. We also point out the trivial fact that any linear map
between two finite dimensional K-Banach spaces is continuous.

Remark. A map f : X — A from some topological space X into some
set A is called locally constant if f~'(a) is open (and closed) in X for any
a € A. Lemma implies that there are plenty of locally constant maps f :
U — W. They all are strictly differentiable in any vo € U with D, f = 0.

5 Power series

Let V be a K-Banach space. A power series f(X) in r variables X =
(X1,...,X,) with coefficients in V' is a formal series

f(X)= ZXO‘UQ with v, € V.

a€eNg
As usual we abbreviate X* := X{" -...- X2 and |a| :=a; + ... + «, for a
multi-index a = (a1,...,0,) € Nj.
For any ¢ > 0 the power series f(X) =) X%v, is called e-convergent
if
lim el®lju,] = 0.
|at] =00

Remark. If f(X) is e-convergent then it also is d-convergent for any 0 <
0 <e.

11



The K-vector space

F(K"; V) := all e-convergent power series f(X Z X%,
aeNg

is normed by
11l = max g |

Remark. F.(K";V) is a Banach space whose topology only depends on the
topology of V' (and not on its specific norm). If € = |c| for some ¢ € K* the
map

co(Np) — f\ch“ K)

aaar—>z \alX

s an isometric linear isomorphism.

Let B.(0) denote the closed ball around zero in K" of radius €. We recall
that K" always is equipped with the norm |(ai,...,a,)|| = maxi<i<, |a;.
By Lemma [3.1}i. we have the K-linear map

Fo(K"; V) — K-vector space of maps B:(0) — V'

ZXaUal—>f Z$ Vo -

Remark 5.1. For any x € B:(0) the linear evaluation map

FAKV) — V
fr— f()

18 continuous of operator norm < 1.

Proof. We have

1 ()l = HZ% val| < maxel™vall = I f]e -

O]

The following properties are established by straightforward estimates.

12



Proposition 5.2. Let u : Vi x Vo — V be a continuous bilinear map
between K -Banach spaces; then

U:FAK"; V1) x Fo(K"; Vo) — Fo (K™ V)

(ZX“UQ,ZX“wa)MZXO‘( Z u(vg,wv))

s a continuous bilinear map satisfying

U(f,9)" (@) = u(f(z),g(x))  for any x € B-(0)
and any f € Fo(K"; V1) and g € F.(K"; V).

Proposition 5.3. F.(K"; K) is a commutative K-algebra with respect to
the multiplication

(SmX) (S eak) =30 (3 X*
“ “ a Pty

in addition we have

(f9)~(x) = f(2)g(x) for any x € B:(0)

as well as

1fglle = 1fllllglls
for any f,9 € Fo(K"; K).

Proposition 5.4. Let g € F5(K"; K™) such that ||g||s < €; then
Fe(K™ V) — F5(K"; V)

V) =Y Ylugr— fog(X) = g(X) vy
B B

s a continuous linear map of operator norm < 1 which satisfies
(fo9)™(x) = f(g())  for any x € Bs(0) S K" .

Remark. For any g € F5(K"; K™), we have, by Remark the inequality

sup ||lg(z)[l < llglls -
z€B;s(0)

It is, in general, not an equality. This means that we may have §(Bs(0)) C
B.(0) even ife < ||g||s. Then, for any f € Fo(K™; V), the composite of maps

13



fog exists but the composite of power series fog € Fs(K"; V) may not. An
example of such a situation is

9(X) =X - X € Ai(Qp Q) and f(Y):=) Y"e€F1(QnQ) .
n=0

Corollary 5.5. (Point of expansion) Let f € F.(K";V) and y € B:(0);
then there exists an f, € F(K"; V) such that || fyllc = || f||e and

fx)=fylw—y)  for anyx € B-(0) = B(y) -

Of course, we have the formal partial derivatives %(X ) of f(X). Since
INva|| < ||val| they respect e-convergence.

Proposition 5.6. The map f is strictly differentiable in every point z €

B.(0) and satisfies N
D0 = () ).

Proof. Using Cor. and the chain rule one reduces the assertion to the
case z = (. Consider the continuous linear map

D: K —V
T
(al,...,ar) — Zawi .
=1
Let 6 > 0 and choose a 0 < ¢’ < € such that
Al _ 5
g2 -

By induction with respect to || one checks that

|z — | < (5’)'”'71”3: -l for any x,y € By (0) .

14



We now compute

If(z) = f(y) = D@x =)l = | Y_ (" —y*)val

|a|>2
< max 2% — y*| - [Jval|
|a|>2
2% — y°|
< = J1
1fle - e —r
(5/)\0471
<[ flle- max e |z =yl
la|>2  gl®
6/
=lflle- = - lle =yl

SNM—M

for any z,y € Bs(0). This proves that f is strictly differentiable in 0 with
Do f = D and hence

DY F(1) = vy = ( jjﬁ)w 0 |

By Prop. [5.6] the map

of

v
x— DV f(1)

T

of _ (9f\~
81‘1’ N 8XZ
Corollary 5.7. (Taylor expansion) If K has characteristic zero then we
have 9 9
X o “£)(0) .
- () () DO

Corollary 5.8. (Identity theorem for power series) If K has characteristic
zero then for any nonzero f € F.(K";V') there is a point x € B:(0) such
that f(x) # 0.

is well defined and satisfies

15



By more sophisticated techniques (cf. [BGR] 5.1.4 Cor. 5 and subsequent
comment) the assumption on the characteristic of K in Cor. can be
removed. So the map

F.(K"; V) — strictly differentiable maps B.(0) — V
f—17
always is injective and commutes with all the usual operations as considered

above. Therefore we will write very often f for the power series as well as
the corresponding map.

Proposition 5.9. (Invertibility for power series) Let f(X) € Fo(K"; K")
such that f(0) = 0, and suppose that Dof is bijective; we fix a 0 < 6 <

2

W; then 6 < ||flle, and there is a uniquely determined g(Y) €
Fs(K"™; K™) such that

9(0) =0, lglls <&, and fog(Y)=Y ;
i particular, the diagram

B;5(0)

A

B.(0)

/

By (0)

18 commutative.
Finally we note the rather obvious fact.

Proposition 5.10. Let u : V. — W be a continuous linear map between
K -Banach spaces; then

FAK"; V) — Fo(K™; W)
FX) =) X% r—uo f(X) = Xu(va)

is a continuous linear map of operator norm < ||u|| which satisfies

wo f(@) = u(f(x))  for anyx € B.(0) .

16



6 Locally analytic functions

Let U C K" be an open subset and V be a K-Banach space. The key
definition in these lectures is the following.

Definition. A function f : U — V s called locally analytic if for any
point xg € U there is a ball B:(xg) € U around xy and a power series
F e F.(K";V) such that

f(x) = F(x — x0) for any x € Be(xg) .
The set
C* (U, V) := all locally analytic functions f: U — V

is a K-vector space with respect to pointwise addition and scalar multipli-
cation. The vector space C**(U, V') carries a natural topology which will be
discussed later on.

Example. By Cor. we have F € C*(B.(0),V) for any F € F.(K";V).

Proposition 6.1. Suppose that f : U — V is locally analytic; then f is
strictly differentiable in every point xo € U and the function x — D, f is
locally analytic in C**(U, L(K",V)).

Proof. Let F' € F.(K"; V) such that

f(z) = F(z — x0) for any « € B:(x0) .
From Prop. and the chain rule we deduce that f is strictly differentiable
in every x € B:(xp) and

Dof((an, ) = S aD, F(1) = ai (D)™ (@ — o)
=1 )

Let
0

F o
6XZ-(X) = za:X Vi -

For any multi-index a we introduce the continuous linear map

L, : K —YV

(@1,...,ap) — a1V 4+ ... + QpUpg -

17



Because of ||Ly| < max; ||v;q|| we have

G(X):=) XLq € F(K"; LK, V))

07

and .
D, f =G(x — zo) for any = € B.(x0) .

O]

Remark 6.2. If K has characteristic zero then, for any function f: U —
V', the following conditions are equivalent:

i. f is locally constant;
1. [ is locally analytic with D, f =0 for any x € U.

Proof. This is an immediate consequence of the Taylor formula in Cor.
O

We now give a list of more or less obvious properties of locally analytic
functions.

1) For any open subset U’ C U we have the linear restriction map

c*™U,V) — Cc*™(U', V)
s FIU" .

2) For any open and closed subset U’ C U we have the linear map

cN UL V) — C*™U,V)
flz) ifxzel,

[ filz) = {0 otherwise

called extension by zero.

3) If U = ;1 Ui is a covering by pairwise disjoint open subsets then
cu,v) = [[e™w V)

icl
f— (flUi)i -

18



4) For any two K-Banach spaces V and W we have
crUVew) = Cc*™UV)e C*™U,W)
f+— (pryof,pryyof) .
In particular

c(U, K" = [[c™U.K) .
=1

5) For any continuous bilinear map u : V; x Vo — V between K-Banach
spaces we have the bilinear map

C*(U, V1) x C*™(U, Vo) — C*(U, V)
(f,9) —>u(f,9)

(cf. Prop. . In particular, C*"(U, K) is a K-algebra (cf. Prop. ,
and C**(U,V) is a module over C**(U, K).

6) For any continuous linear map u : V' — W between K-Banach spaces
we have the linear map

C* (U, V) — C*™(U, W)
fr—uof

(cf. Prop. [5.10)).

Lemma 6.3. Let U’ C K™ be an open subset and let g € C**(U, K™) such

that g(U) C U’; then the map

c*™U, V) — C*™(U, V)
fr—fog

s well defined and K -linear.

Proof. Let z9 € U and put yg := g(xg) € U’'. We choose a ball B.(yg) C U’

and a power series F' € F.(K™; V) such that

fly)=F(y—yo)  forany y € Be(yo) -

We also choose a ball Bs(z¢) C U and a power series G € F5(K"; K™) such
that

g(x) = G(x — xp) for any = € Bs(zo) .
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Observing that
5/
IG =GOl <SG =GO)]ls  forany 0<d" <9
we may decrease ¢ so that
IG —wolls = |G = G(O)][s < &

(and, in particular, g(Bs(xzo)) € B:(yo)) holds true. It then follows from
Prop. that F'o (G —yo) € Fs(K"; V) and

(F o (G —yo))~(z —x0) = F(G(z — 20) — ¥0)
= F(g(x) = yo)
= f(g(2))
for any « € Bs(xo). O

The last result can be expressed by saying that the composite of locally
analytic functions again is locally analytic.

Proposition 6.4. (Local invertibility) Let U C K" be an open subset and
let f e C*™(U,K"); suppose that Dy, f is bijective for some xo € U; then
there are open neighbourhoods Uy C U of zg and Uy C K" of f(xg) such
that:

i. f:Uy—> Uy is a homeomorphism;
it. the inverse map g : Uy — Uy is locally analytic, i. e., g € C**(Uy, K").

A map f : U — U’ between open subsets U C K" and U’ C K"

is called locally analytic if the composite U i> U S K" is a locally
analytic function.

7 Charts and atlases

We continue to fix the nonarchimedean field (X, | |). But from now on we
will denote K-Banach spaces by letters like 2 whereas letters like U and V/
are reserved for open subsets in a topological space.

Let M be a Hausdorff topological space.

Definition. i. A chart for M is a triple (U, p, K™) consisting of an open
subset U C M and a map ¢ : U — K™ such that:

20



(a) p(U) is open in K™,
(b) ¢ : U = @(U) is a homeomorphism.

it. Two charts (U1, o1, K™) and (U, w2, K™2) for M are called compati-
ble if both maps

—1
P20p,

¢1 (U1 NU2) ©2(U1 NUy)

prop; !
are locally analytic.

We note that the condition in part ii. of the above definition makes
sense since ¢1(U; N Us) is open in K™. If (U,p, K™) is a chart then the
open subset U is called its domain of definition and the integer n > 0 its
dimension. Usually we simply write (U, ¢) instead of (U, ¢, K™). If x is a
point in U then (U, ¢) is also called a chart around x.

Lemma 7.1. Let (U;, i, K™) for i = 1,2 be two compatible charts for M;
if Uy NUs # O then ny = no.

Proof. Let x € UyNUsy and put z; := @;(x). We consider the locally analytic
maps

fi=p2007"

@1(U1ﬂU2) (,OQ(U1ﬂU2) .

gi=p10p; "

They are differentiable and inverse to each other, and xzo = f(x1). Hence,
by the chain rule, the derivatives

Dyy f
K™ K2
Dzyg
are linear maps inverse to each other. It follows that n; = no. O

Definition.  i. An atlas for M is a set A = {(U;, pi, K™)}icr of charts
for M any two of which are compatible and which cover M in the sense

that M = Uie[ Ul

1. Two atlases A and B for M are called equivalent if AU B also is an
atlas for M.

1i. An atlas A for M is called maximal if any equivalent atlas B for M
satisfies B C A.
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Remark 7.2. i. The equivalence of atlases indeed is an equivalence re-
lation.

1. In each equivalence class of atlases there is exactly one maximal atlas.

Lemma 7.3. If A is a maximal atlas for M the domains of definition of all
the charts in A form a basis of the topology of M.

Definition. An atlas A for M is called n-dimensional if all the charts in
A with nonempty domain of definition have dimension n.

Remark 7.4. Let A be an n-dimensional atlas for M; then any atlas B
equivalent to A is n-dimensional as well.

8 Manifolds

Definition. A (locally analytic) manifold (M, A) (over K) is a Hausdorff
topological space M equipped with a mazimal atlas A. The manifold is called
n-dimensional (we write dim M = n) if the atlas A is n-dimensional.

We usually speak of a manifold M while considering A as given implicitly.
A chart for M will always mean a chart in A.

Example. K™ will always denote the n-dimensional manifold whose mai-
mal atlas is equivalent to the atlas {(U,C, K™) : U C K™ open}.

Remark 8.1. Let (U, p, K™) be a chart for the manifold M; if V. C U is an
open subset then (V, p|V, K™) also is a chart for M.

Let (M, A) be a manifold and U C M be an open subset. Then
Ay ={(V,¢v,K") e A:V CU} ,

by Lemma is an atlas for U. Check that Ay is maximal. The manifold
(U, Ay) is called an open submanifold of (M, A).

Example. The d-dimensional projective space P4(K) = (K9t \ {0})/ ~
over K is the set of equivalence classes in K1\ {0} for the equivalence
relation

(a1,...,aq+1) ~ (cai,...,caqe1) for any c € K* .

As usual we write [ay : ... : agy1] for the equivalence class of (a1, ..., aq+1).
With respect to the quotient topology from K1\ {0} the projective space

22



PYK) is a Hausdorff topological space. For any 1 < j < d+ 1 we have the
open subset

Uj:={la1:...: ags1] € PUK) : |ai| < |aj| for any 1 <i < d+ 1}

together with the homeomorphism

©j U; =5 By(0) € K4
e

The (Uj,p;, K) are charts for P4(K) such that U;U; = PY(K). They are
pairwise compatible. For example, for 1 < j < k < d+ 1, check that the
composite map

1

gp._
fi{z e Bi(0): x| =1} 2= U;nU, 25 {y € Bi(0) : ly;| =1},

which is given by

_(_m Tj—1 1 Zj Tk—2 _Tg Tg )
f(xl""’xd)_ (Ik—l’”"Ik—l’Ik717xk71’.”’xk—l’xk—lwn’xkfl ’

1s locally analytic. The above charts therefore form a d-dimensional atlas for
PYK).

Exercise. Let (M, A) and (N, B) be two manifolds. Then
AxB:={(UxV),ox, K" : (U p, K™) € A,(V,, K") € B}

1s an atlas for M x N with the product topology. We call M x N equipped
with the equivalent maximal atlas the product manifold of M and N.

Let M be a manifold and F be a K-Banach space.

Definition. A function f : M — E is called locally analytic if f o' €
C*™(@(U), E) for any chart (U, p) for M.

Remark 8.2. i. Every locally analytic function f : M — E is contin-
UOUS.

1. Let B be any atlas consisting of charts for M; a function f : M —
E is locally analytic if and only if f o' € C*®(p(U), E) for any
(U,¢) € B.

23



The set
C*"(M, E) := all locally analytic functions f: M — E

is a K-vector space with respect to pointwise addition and scalar multipli-
cation. It is easy to see that a list of properties 1) - 6) completely analogous
to the one given in section [0 holds true.

Let now M and N be two manifolds. The following result is immediate.

Lemma 8.3. For a map g : M — N the following assertions are equiva-
lent:

i. g is continuous and ¢ og € C*(g~1(V), K™) for any chart (V,v, K™)
for N;

it. for any point x € M there exist a chart (U, o, K™) for M around x
and a chart (V,4, K™) for N around g(x) such that g({U) C V and
bogop ™t € C™(p(U), K™).

Definition. A map g : M — N s called locally analytic if the equivalent
conditions in Lemma are satisfied.

Lemma 8.4. i. If g : M — N is a locally analytic map and E is a
K -Banach space then

C*™(N, E) — C*(M, E)
fr—fog

is a well defined K -linear map.

1. With L i> M L5 N also go f: L — N is a locally analytic map of
manifolds.

Proof. This follows from Lemma [6.3 O

Examples 8.5. 1) For any open submanifold U of M the inclusion map
C . .
U — M is locally analytic.

2) Let g : M — N be a locally analytic map; for any open submanifold
V C N the induced map g~1(V) 25V is locally analytic.

3) The two projection maps
pry: MxN-—M and pry: M xN—N

are locally analytic.
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4) For any pair of locally analytic maps g : L — M and f : L — N
the map

(9.f): L — M x N
z— (g(x), f(z))

is locally analytic.

We finish this section by mentioning a very useful technical property
of manifolds. First let X be an arbitrary Hausdorff topological space. We
recall:

- Let X = ;c; Ui and X = {J;c; V; be two open coverings of X. The
second one is called a refinement of the first if for any j € J there is
an ¢ € I such that V; C U;.

- An open covering X = (J,c;U; of X is called locally finite if every
point x € X has an open neighbourhood U, such that the set {i € I :
U, NU; # 0} is finite.

- The space X is called paracompact, resp. strictly paracompact, if any
open covering of X can be refined into an open covering which is locally
finite, resp. which consists of pairwise disjoint open subsets.

Remark 8.6. i. Any ultrametric space X is strictly paracompact.
1. Any compact space X is paracompact.
Proof. i. This follows from Lemma [1.4] ii. This is trivial. O
Proposition 8.7. For a manifold M the following conditions are equivalent:
1. M 1is paracompact;
1. M is strictly paracompact;

111. the topology of M can be defined by a metric which satisfies the strict
triangle inequality.

Corollary 8.8. Open submanifolds and product manifolds of paracompact
manifolds are paracompact.
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9 The tangent space

Let M be a manifold, and fix a point a € M. We consider pairs (c,v) where
— c=(U,, K™) is a chart for M around a and
—ve K™

Two such pairs (¢,v) and (¢/,v") are called equivalent if we have

/

Dga(a)(@/ © (pil)(v) =U .
It follows from the chain rule that this indeed defines an equivalence relation.

Definition. A tangent vector of M at the point a is an equivalence class
[c,v] of pairs (c,v) as above.

We define
T, (M) := set of all tangent vectors of M at a .

Lemma 9.1. Let ¢ = (U, p, K™) and ¢ = (U',¢', K™) be two charts for M
around a; we then have:

1. The map

0. K™ = T,(M)
v —> [e,v]

is bijective.
ii. 0,100, : K™ — K™ is a K-linear isomorphism.

Proof. (We recall from Lemma that the dimensions of two charts around
the same point necessarily coincide.) i. Surjectivity follows from

[Cﬁv ’U”] - [67 Dap”(a)((/) © (P”_1>(UH)] :

If [¢,v] = [¢,v] then v/ = Dy (¢ 0@~ 1)(v) = v. This proves the injectivity.
ii. From [c,v] = [/, Dy(q) (¢’ © ™) (v)] we deduce that

9;/1 0f.= Dgo(a)((p/ o 90_1) :
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The set To(M), by Lemma i., has precisely one structure of a topo-
logical K-vector space such that the map 6. is a K-linear homeomorphism.
Because of Lemma [9.1}ii. this structure is independent of the choice of the
chart ¢ around a.

Definition. The K -vector space Ty (M) is called the tangent space of M at
the point a.

Remark. The manifold M has dimension m if and only if dimg To(M) = m
for any a € M.

Let g : M — N be a locally analytic map of manifolds. By Lemma
B.3lii. we find charts ¢ = (U, ¢, K™) for M around a and ¢ = (V,¢, K") for
N around g(a) such that g(U) C V. The composite

071 De(a) (ogop™?)

m n s
Ta(g) : Ta(M) K » K" — Tg(a)(N)

is a continuous K-linear map. We claim that 7;(g) does not depend on the
particular choice of charts. Let ¢ = (U’,¢') and & = (V',¢’) be other charts
around a and g(a), respectively. Using the identity in the proof of Lemma
[0.1lii. as well as the chain rule we compute

05 o Dcp(a)(w o0go gpil) @) 0;1
= 05/ ©) Dw(g(a))(l/}, o) w—l) o) D(p(a) (w ©go go_l) o} D@(a) (QOI 9} (p_l>_l o Hc_,l
=0z 0 Doy (W' 0 g0 ') 0 0"
Definition. T,(g) is called the tangent map of g at the point a.
Remark. Ta(ldM) = idTa(M)

Lemma 9.2. For any locally analytic maps of manifolds L i> M2 N
we have

Tu(go f) = Tya(g) o Tulf)  for anyaeL .

Proof. This is an easy consequence of the chain rule. O

Proposition 9.3. (Local invertibility) Let g : M — N be a locally analytic
map of manifolds, and suppose that Ty(g) : Ty (M) = Ty(a)(N) is bijective
for some a € M; then there are open neighbourhoods U C M of a and
V C N of g(a) such that g restricts to a locally analytic isomorphism

g: U=V

of open submanifolds.
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Proof. This is a consequence of Prop. O

Exercise. Let (U,, K™) be a chart for the manifold M; then ¢ : U —
o(U) is a locally analytic isomorphism between the open submanifolds U of
M and p(U) of K™.

Let M be a manifold, F be a K-Banach space, f € C*"(M, E), and a €
M.If c = (U, ¢, K™) is a chart for M around a then fop™! € C*(p(U), E).
Hence

9;1 Dap(a)(fo(no_l)

dof : To(M) 25 K™ E

[C> U] — Dcp(a)(f © 90_1)(U)

is a continuous K-linear map. If ¢ = (U, ¢/, K™) is another chart around
a then

Dy (fow ™) ol =Dy@ay(fop ") o Dy (¢ 0™ !) 1o b}
=Dy (foy ") ob,".
This shows that d,f does not depend on the choice of the chart c.
Definition. d,f is called the derivative of f in the point a.

Remark 9.4. For E = K" viewed as a manifold and for the chart cg =
(K",id, E) for E we have

To(f) =0coodaf
Obviously the map

C¥(M,E) — L(T,(M), E)
fr—daf

is K-linear.
Lemma 9.5. (Product rule)

1. Letu: BE1x Ey — E be a continuous bilinear map between K -Banach
spaces; if f; € C*(M, E;) for i = 1,2 then u(fi1, fo) € C**(M, E) and

da(u(f1, f2)) = u(fi(a), daf2) + uldafi, fa(a))  for anyac M .
ii. For g e C*"(M,K) and f € C*(M, E) we have

da(gf) = g(a) -dof + dag - f(a) for any a € M .
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Let ¢ = (U, ¢, K™) be a chart for M. On the one hand, by definition, we
have d,o = 0! for any a € U; in particular

o : To(M) =5 K™

is a K-linear isomorphism. On the other hand viewing ¢ = (¢1,...,¢m) as
a tuple of locally analytic functions ¢; : U — K we have

dop = (da1,- - - daom) -
This means that {d,¢;}1<i<m is a K-basis of the dual vector space T, (M)’

Let
{ (8?0i ) (a) }1§i§m

denote the corresponding dual basis of T, (M), i. e.,

da@i((%)(a)) = 0ij for any a € U

where §;; is the Kronecker symbol. For any f € C*"(M, E) we define the
functions

5L U—E
ab—>daf((8i%)(a)) .

Lemma 9.6. 5% € C*™(U,E) for any 1 <i<m, and

daf:Zdagoi-ggi(a) for any a € U .
i=1

Now we define the disjoint union

T(M) = | J Tu(M)
aeM

together with the projection map

pv T(M) — M
te—a if teTy(M).

Hence T,(M) = p,; (a). We will show that T(M) is naturally a manifold
and pps a locally analytic map of manifolds.
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Consider any chart ¢ = (U, ¢, K™) for M. By Lemma [9.1]i. the map

Te: U x K™ = pH(U)
(a,v) — [e,v] viewed in T, (M)

is bijective. Hence the composite
-1 ! m _pxid m m 2m
YDy U) =—=Ux K™ — K" x K" =K
is a bijection onto an open subset in K2™. The idea is that

cr = (pa; (U), pe, K*™)

should be a chart for the manifold T'(M). Clearly we have

T(M)= |J pyf ().
c=Up)

We equip T'(M) with the finest topology which makes all composed maps
m Tc —1 -
Ux K™ = p,;(U) = T(M)
continuous.

Lemma 9.7. i. The map 7. : U x K™ = py} (U) is a homeomorphism
with respect to the subspace topology induced by T'(M) on ij(U).

1. The map pyr is continuous.
i11. The topological space T'(M) is Hausdorff.

The Lemma in particular says that cr indeed is a chart for T'(M).
Check that these charts are compatible. We conclude that the set

{er : ¢ a chart for M}

is an atlas for T'(M) and we always view T'(M) as a manifold with respect
to the equivalent maximal atlas.

Definition. The manifold T(M) is called the tangent bundle of M.
Remark. If M is m-dimensional then T (M) is 2m-dimensional.

Lemma 9.8. The map py: T(M) — M is locally analytic.
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Proof. Let ¢ = (U, ¢, K™) be a chart for M. It suffices to contemplate the
commutative diagram

T(M) <= pyt(U) —= pe(pit (U)) = o(U) x K™ —=— fc2m

lpM 2 l lprl

M U 4 o(U) Km

N

O]

Let g : M — N be a locally analytic map of manifolds. We define the
map

T(g): T(M)— T(N)

by
T(9)|Te(M) :=T,(g) for any a € M .

In particular, the diagram

() 22 1)

pm \L \LPN
g

N

is commutative.

Proposition 9.9. i. The map T(g) is locally analytic.
1. For any locally analytic maps of manifolds L L) M L5 N we have
T(gof)=T(g9)oT(f) .
Note that the above ii. is a restatement of Lemma [9.2]

Exercise 9.10. i. For U C M an open submanifold, T(C) induces an
isomorphism between T(U) and the open submanifold p]Tj(U).

1. For any two manifolds M and N the map
T(pry) x T(pry) : T(M x N) = T(M) x T(N)

is an isomorphism of manifolds.
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Now let M be a manifold and F be a K-Banach space. For any f €
C*"(M, E) we define

df : T(M) — E
t—> dpM(t)f(t) .
Lemma 9.11. We have df € C**(T (M), E).

Lemma 9.12. Let g : M — N be a locally analytic map of manifolds; for
any f € C**(N, E) we have

d(fog)=df oT(g) .
Proof. This is a consequence of the chain rule. O

Exercise. The map
d:C*"™(M,E) — C*™(T(M), E)
fr—df
is K-linear.

Remark 9.13. If K has characteristic zero then a function f € C*"(M, E)
is locally constant if and only if df = 0.

Proof. Use Remark O
We finish this section by briefly discussing vector fields.

Definition. Let U C M be an open subset; a vector field & on U is a locally
analytic map & : U — T (M) which satisfies ppro & = idy.

It is easily seen that

I'(U,T(M)) := set of all vector fields on U .

is a K-vector space w.r.t. pointwise addition and scalar multiplication of
maps.

Lemma 9.14. For any vector field & € I'(M,T(M)) the map

De : C*(M, K) — C*™(M, K)
fr—dfof

1s a deritvation, i. e.:
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(a) D¢ is K-linear,

(b) De(fg) = De(f)g + fDe(g) for any f,g € C*"(M, K).

Proposition 9.15. Suppose that M is paracompact; then for any derivation
D on C* (M, K) there is a unique vector field & on M such that D = Dg.

Lemma 9.16. For any derivations B,C,D : C**(M,K) — C**(M, K) we
have:

i. [B,C]:= BoC —C o B again is a derivation;
it. [, ] is K-bilinear;
iti. [B,B] =0 and [B,C] = —[C, B];
iv. (Jacobi identity) [[B,C], D] + [[C, D], B] + [[D, B],C] = 0.
Proof. These are straightforward completely formal computations. O

This lemma says that the vector space of derivations on C**(M, K) is a
K-Lie algebra. Using Prop. it follows that T'(M,T(M)) naturally is a
Lie algebra (at least for paracompact M).

10 Reminder: Locally convex K-vector spaces

We recall very briefly the notion of a locally convex K-vector space. For
details we refer to [NFA]. Let E be any K-vector space.

Definition. A (nonarchimedean) seminorm on E is a function q : E — R
such that for any v,w € E and any a € K we have:

(i) q(av) = lal - q(v),
(ii) g(v + w) < max(q(v), q(w)).

Let (g;)ier be a family of seminorms on E. We consider the coarsest
topology on E such that:

(1) All maps ¢; : E — R, for i € I, are continuous,
(2) all translation maps v+ .: E — E, for v € E, are continuous.

It is called the topology defined by (¢;)icr-
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Lemma 10.1. F is a topological K -vector space, i. e., addition and scalar
multiplication are continuous, with respect to the topology defined by (q;)icr-

Exercise. The topology on E defined by (q;)icr is Hausdorff if and only if
for any vector 0 # v € E there is an index i € I such that g;(v) # 0.

Definition. A topology on a K-vector space E is called locally convez if it
can be defined by a family of seminorms. A locally conver K -vector space is
a K -vector space equipped with a locally convex topology.

Obviously any normed K-vector space and in particular any K-Banach
space is locally convex.

Remark 10.2. Let {E;}jcs be a family of locally convex K -vector spaces;

then the product topology on E = HjEJ E; is locally convez.

For our purposes the following construction is of particular relevance.
Let E be a any K-vector space, and suppose that there is given a family
{E;} ;e of vector subspaces E; C E each of which is equipped with a locally
convex topology.

Lemma 10.3. There is a unique finest locally convex topology T on E such

that all the inclusion maps Ej; =, E, for j € J, are continuous.

The topology 7 on E in the above lemma is called the locally convez
final topology with respect to the family {£;},cs. Suppose that the family
{E;}jes has the additional properties:

- E= UjeJEj?

- the set J is partially ordered by < such that for any two ji,j0 € J
there is a j € J such that j; < j and j2 < j;

. . . . c
- whenever j; < jp we have Ej; C Ej, and the inclusion map F;, — Ej,
is continuous.

In this case the locally convex K-vector space (E,7) is called the locally
convez inductive limit of the family {E;};c .

Lemma 10.4. A K-linear map f : £ — E into any locally conver K-
vector space E is continuous (with respect to T ) if and only if the restrictions
fIE;j, for any j € J, are continuous.
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11 The topological vector space C?**(M, F)

Throughout this section M is a paracompact manifold and F is a K-Banach
space. Following [Fea] we briefly describe how to equip C**(M, E) with a
locally convex topology.

Using that, by Prop. M is strictly paracompact and that, by Lemma
[[.4] open coverings of open subset in K™ can be refined into disjoint cover-
ings by balls we obtain the following

Fact: Given f € C*(M, E) there is a family of charts (U;, p;, K™), for
i €1, for M together with real numbers €; > 0 such that:
(a) M = U,c; Ui, and the U; are pairwise disjoint;
(b) ©i(U;) = Beg,(x;) for one (or any) x; € v;(U;);
(c) there is a power series F; € F., (K™, E) with

fowHx) = Fi(z — ;) for any x € p;(U;) .

Let (c,e) be a pair consisting of a chart ¢ = (U, ¢, K™) for M and a
real number € > 0 such that ¢(U) = B.(a) for one (or any) a € ¢(U). As a
consequence of the identity theorem for power series Cor. the K-linear
map

F(K™ E) — C*"(U, E)
F F(g() - a)

is injective. Let F(..)(F) denote its image. It is a K-Banach space with
respect to the norm

I =11Flle if f() = F(e() —a).

By Cor. the pair (Fc,e)(E), |l ||) is independent of the choice of the point
a.

Definition. An index for M is a family T = {(c;,€i)}ier of charts ¢; =
(Ui, pi, K™) for M and real numbers €; > 0 such that the above conditions
(a) and (b) are satisfied.

For any index Z for M we have

Fr(B) = [[ Fleren(B) € [ €™ (Ui, E) = C**(M, E) .
i€l el
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Our above Fact says that
C*™(M, E) = |_J Fz(E)
z

where Z runs over all indices for M. Hence C*"(M, E) is a union of direct
products of Banach spaces, which are locally convex by Remark[10.2] There-
fore, by Lemma we may equip C*(M, E) with the corresponding lo-
cally convex final topology. All our earlier constructions involving C*"(M, E)
are compatible with this topology. In the following we briefly list the most
important ones.

Proposition 11.1. For any a € M the evaluation map
9o : C*"(M,E) — E
fr— f(a)
18 continuous.
Corollary 11.2. The locally convex vector space C**(M, E) is Hausdorff.
Remark 11.3. With M also its tangent bundle T (M) is paracompact.
Proposition 11.4. 4. The map d : C**(M,E) — C*(T(M),E) is
continuous.

1. For any locally analytic map of paracompact manifolds g : M — N
the map
C*"(N,E) — C*"(M,E)
fr—1Ffecyg
18 continuous.
iii. For any vector field & on M the map D¢ : C**(M,E) — C*"(M, E)
18 conlinuous.
Proposition 11.5. For any covering M = J;c; U; by pairwise disjoint open
subsets U; we have
C*™(M,E) = [[ ¢™ (Ui, E)
i€l
as topological vector spaces.
To prove these properties one needs Lemma This requires to see
that C*"(M, E), in fact, is the locally convex inductive limit of the Fz(E).
Technically this means that one has to introduce a directed preorder 7 < J

(on the set of indices) such that Fz(F) C F7(FE) with this inclusion being
continuous.
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