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I. Tropical vs Tropicalization



Tropical mathematics

Tropical mathematics is mathematics over the max-plus algebra

a⊕ b := max(a, b) a� b := a + b.

Friends: min-plus, max-times.

Example. Matrix-vector multiplication(
0 −1
3 0

)
�

(
1
3

)
=

(
2
4

)
= 1�

(
1
3

)

.

Naïve recipe to do tropical mathematics:

1. Take a classical object (polynomial, polytope, hyperplanes, etc)

2. Replace + with ⊕, × with �

3. Ask: does this still make sense? Do I get an interesting object? Are
there tropical analogues of major theorems? Are there applications?
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Examples: tropical polytopes and hyperplanes
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Example: tropical polynomials
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Why tropical mathematics? Answer #1: applications

Many objects in applications are tropical. (Lecture 4)
Example: deep ReLU networks.

f (x) = max{w>x + b, c} = b � x�w ⊕ c.

One layer ReLU network = a max-plus affine monomial
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Deep ReLU networks are tropical rational functions

One layer = affine monomial

f (x) = max{a>x + b, c} = b � x�a ⊕ c.

Stack D layers =

compose monomials = polynomial.
f = f1 ◦ f2 ◦ · · · ◦ fD : Rd → Rp.
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Deep ReLU networks are tropical rational functions

Theorem. (Zhang, Naitzat, Lim, PMLR 2018)
Over the max-plus algebra, deep ReLU neural networks are ratios of
polynomials.

Research direction: use tropical algebraic geometry to answer hard
questions on deep ReLUs.

Researchers: Guido Montufar, Lek-Heng Lim, Yue Ren, Vasileios
Charisopoulos, Petros Maragos, and co-authors.
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Why tropical mathematics? Answer #2: tropicalization
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Valuations & tropicalization

Tropicalization map

trop : (k∗)n → Rn, (a1, . . . , an) 7→ (val(a1), . . . , val(an))

turns (k∗,+,×) to (Γval ,min,+).
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Examples of fields with valuations

1. Qp and the p-adic valuation

2. Field of Puiseux series over C.

k = C{{t}} =

{ ∞∑
i=`

ai t i/n : ai ∈ C, ` ∈ Z,n ∈ N

}
, val(x) = min(Supp(x))

3. If k is a field with non-archimedean norm | · | (ie:
|a + b| ≤ max(|a|, |b|), then val : a 7→ − log(|a|) is a valuation.
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Kapranov’s theorem: trop(V (f )) = V (trop(f ))
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Beyond hypersurfaces: tropical varieties, tropical basis

See Exercises for more references and open questions.
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Deformations to complex varieties

Tropical geometry and amoebas, Alain Yger, 2012.
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II. The hunt for tropical Gaussians



How to get a ‘tropical Gaussian’?

• Tropicalize the Gaussian measure on local fields1

Other approaches

• Do classical probability on the tropical affine space
TPd−1 ' Rd\R · (1, . . . ,1).

• Decision calculus (Measure theory in max-plus)2

• Brownian motion on tropical curves3

1Steve Evans, Local fields, Gaussian measures, and Brownian motions,
2000

2Marianne Akian, Jean-Pierre Quadrat, Michel Viot, Bellman
Processes,2000; and references therein

3T., Tropical Gaussians, a brief survey. arXiv:1808.10843
15 / 56



Anatomy of a Gaussian

Density of a standard Gaussian in Rn

f (x1, . . . , xn) =
1√
2π

exp(−1
2

n∑
i=1

x2
i ) =

1√
2π

exp(−1
2
‖x‖22)

Ingredients: a norm.
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Not all norms lead to Gaussians!

Laplace distribution

f (x) =
1
2

exp(−‖x‖1)

What makes the Gaussian special?
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Gaussians play well with linear algebra and independence

• Linear transformations of Gaussians are Gaussians:
X ∼ N(0,Σ)⇒ DX ∼ N(0,DΣD>)

• If D is orthonormal (D>D = DD> = I) and Σ = I, then DX d
= X .

• Theorem. (Maxwell) Let X1, . . . ,Xd be independent random variables
on R with the same distribution. Then the distribution of
(X1, . . . ,Xd ) ∈ Rd is spherically symmetric iff Xi ’s are centered
Gaussians. (Need: orthogonality)

• Σ = I ⇐⇒ coordinates of X are independent ⇐⇒ they are
uncorrelated. Fundamental to statistical applications (eg: PCA)
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uncorrelated. Fundamental to statistical applications (eg: PCA)

p-adic Gaussians satisfy the first three.It is derived from Maxwell’s
characterization.

Open Problem. PCA on p-adics. What do we get if we
tropicalize? (tropical PCA in the sense of Ruriko Yoshida et al?)
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Tropicalization of p-adic Gaussians

Switch to board.
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III. Random tropical polynomials
and varieties



Overview

Goal: study functionals of random tropical objects and their
intersections.

Examples: dimensions of varieties, # vertices of polytopes, number of
zeros of a system of random polynomials,

Motivations

• "Typical" varieties have "common" properties

• Randomness is natural in applications

• New proofs for classical results via tropicalization (?)
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Example 1: systems of random p-adic polynomials

Steve Evans, 2006, the expected number of zeros of a random
system of p-adic polynomials

Open problem. Is there a tropical proof?
See exercises sheet. See also paper: Avinash Kulkarni, Antonio
Lerario, p-adic integral geometry, 2019.
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Example 2: random tropical polynomials in one variable

Baccelli and T., 2014. Zeros of random tropical polynomials, random
polytopes and stick-breaking.

Open problem. Two or More variables?
See exercises sheet

22 / 56



The case of one variable

Random min-plus tropical polynomial T f : R→ R

T f(x) =
n⊕

i=1

(Ci � x i ) = min
i=1,...,n

(Ci + ix), Ci
i.i.d∼ F .

Example: T f(x) = a� x�2 ⊕ b � x ⊕ c.

Zeros of T f: where the minimum is achieved at least twice.
23 / 56



Classical analogue: real zeroes of random polynomials

Kac polynomial: f =
∑

i Cix i , Ci
i.i.d∼ F .

Kac ’40s: for F = N (0, 1),

E(Rn) ∼ (
2
π

+ o(1)) log(n)

Ibragimov and Maslova (’70s): for F mean 0, variance 1, no mass at 0,

Var(Rn) ∼ (
4
π

(1− 2
π

) + o(1)) log(n)

Tao and Vu (2013): local universality of zeroes of random polynomials

24 / 56



Counting zeros of T f

# roots of T f = # lower faces in the convex hull of (i ,Ci)

Points are roots
Slopes i , intercept Ci

Slopes are roots
Points (i ,Ci)
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Proof sketch: a = 1, F = exponential(1)

# roots of T f ≈ # lower faces of n uniform points in [0,1]2

≈ # lower faces of Poisson(n) points in [0,1]2
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In general, sample n points uniformly at random from a convex
r -gon. Let Vn be # vertices (equivalently, faces).

Groeneboom (1988) showed that

Vn − 2
3 r log(n)√

10
27 r log(n)

d−→ N(0,1).

Francois and T. 2014 has a simple stick-breaking proof, which
generalizes to non-exponential F .
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Proof Step 1: The vertex process

Sufficient to study the "lower left" corner (r = 1).

x

y

y(a0)

y(a1)

y(a2)

Key Lemma. The y-coordinates of consecutive vertices form a
Beta(2,1) stick-breaking sequence. 28 / 56



Proof. Step 2: Stick-breaking in y

y0

dyy

y

x

Given Y0 = y0, , independent of the slope,

P(Y1 ∈ dy) =
`(y)

y0`(0)/2
=

2
y0

y0 − y
y0

.

⇒ Y1 = Y0B1, for B1
d
= Beta(2,1), independent of Y0.
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Let Bi be i.i.d Beta(2,1). Then

• Y0 is Uniform(0,1)

• Y1 = Y0B1

• Y2 = Y0B1B2

• Yk = Y0
∏k

i=1 Bi

Yi is a stick-breaking process!

30 / 56



Proof. Step 3: approximate stopping time

The above recursion works up to Ymin, the minimum
y -coordinate of points in the square.

Ymin = O( 1
n ),⇒ stop when remaining stick < 1/n.

Approximation Lemma. Let Yi be the Beta(2,1)

stick-breaking sequence. Let Jn = inf{i ≥ 0 : Yi ≤ n−1}. Then

|Vn − Jn| = OP(1).

By classic renewal theory:

E(Jn) =
2
3

log(n), Var(Jn) =
10
27

log(n).

�
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General F : proof idea

x

y

0 1

F−1(1− e−1)

F (y) ∼ Cya
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What happens for tropicalized p-adic Gaussians

F ∼ exp(1) (left) for n = 100 vs F ∼ geometric(1/2) (right) for n = 50
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Guess: need to generate p-adic polynomials with i.i.d coefficients but in a
different basis (not as

∑
i cix i but

∑
k ck fk (x)). eg: fk (x) =

(x
k

)
(Mahler basis).
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What happens when d = 2
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What happens when d = 2

Sarah Brodsky, Michael Joswig, Ralph Morrison and Bernd Sturmfels, Moduli
of Tropical Plane Curves (2014)

Some concrete open questions: see Exercises.
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IV. Applications



The key idea of tropical geometry in applications

Tropical geometry translates geometric problems on piecewise-linear
functions to questions on discrete convex geometry and
combinatorics.

Geometry of [neural networks]→ geometry of tropical polynomials→
discrete convex geometry.
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Example 1. Number of linear regions in a ReLU network

A max-plus tropical polynomial f : Rd → R is convex and piecewise-linear

f (x) =
⊕

a∈A⊂Zd

ca � x�a = max
a

(ca + 〈a, x〉)

The graph of its convex conjugate f ∗ : Rd → R is the lower convex hull of
{(a,−ca) : a ∈ A}

f ∗(w) = sup
x

(〈w , x〉 − f (x)).

(Visualize: upper hull of (a, ca). Regular subdivision ∆c)
# linear regions of f = # cells in ∆c .
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the network
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Theorem. (Zhang-Naitzat-Lim,
2018) ReLU f : Rd → R with L
layers, n nodes each layer, n ≥ d ,
has # linear regions ≤ O(nd(L−1)).

Lowerbound: Ω((n/d)L−1dnd )

(Montufar-Pascanu- Cho-Bengio,
2013)
Deep� shallow networks
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Example 2. Auction theory



Combinatorial auctions

Many objects in auction theory and game theory are tropical.

Applications:

• Radio spectrum, highway lanes, Bank of England crisis 2008

• Stable coalition, stable matching (eg: kidney donations, medical
residency matching)

• Online auctions (Amazon, Google, etc)
37 / 56



Single-item auction
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Multi-unit auction

• Utility uj : Aj ⊂ Zn → R, uj(a) = bid for bundle a.

• Profit = uj(a)− p · a.
• Demand Duj (p) = arg maxa∈Aj{uj(a)− p · a}
• Aggregrated demand DU(p) = {∑J

j=1 aj : aj ∈ Duj (p)}.
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The problem: can we make everyone happy?

• Given {uj , j = 1, . . . , J}, a∗ ∈ Zn.

• Does there exist p s.t. a∗ ∈ DU(p)?

• If Yes, say that we have competitive equilibrium at a∗.

• NP-Hard in general (subset sum). Auction design = put
conditions on {uj} and pricing rules p to guarantee CE.
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Combinatorial auction and Tropical Geometry

Utility, profit and demand has tropical meanings

• a⊕ b = max{a,b}, a� b = a + b

• u : A ⊂ Zn → R defines tropical polynomial fu

fu(−p) = ⊕a∈Au(a)� (−p)�a = max
a∈A
{u(a)− a · p}.

• Tropical hypersurface T (fu) = {−p ∈ Rn : |Du(p)| > 1}
• T (fu)

dual←→ regular subdivision ∆u of A:

∆u = {Du(p) : p ∈ Rn} = all possible demand sets.
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Example
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Multiple agents = product of tropical polynomials

• Recall DU(p) = {∑J
j=1 aj : aj ∈ Duj (p)}

• ∆U = {DU(p) : p ∈ Rn} is the regular subdivision of A by
the aggregrated utility U : A→ Rn,

U(a) = max{
J∑

j=1

uj(aj) : aj ∈ Aj ,

J∑
j=1

aj = a}.

• fU = fu1 � fu2 � · · · fuJ , T (fU) =
⋃J

j=1 Tuj dual to ∆U

.

CE at a∗ ⇔ a∗ ∈ DU(p) for some p ⇔ a∗ is lifted by U
⇔ a∗ is a marked point of ∆U .

CE (everywhere)⇔ DU(p) = conv(DU(p)) ∩ Zn

⇔ U is concave: U = conv(U) on conv(A) ∩ Zn
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Example (cont)

U(a) = max{
J∑

j=1

uj(aj) : aj ∈ Aj ,

J∑
j=1

aj = a}.
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Example (cont)
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Example (cont)

U(a) = max{
J∑
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Example (cont)

DU(p) = {
J∑

j=1

aj : aj ∈ Duj (p)}

5 not marked in ∆U ⇒ no CE at a∗ = 5.
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Combinatorial (aka. product-mix) auctions in higher dimen-
sions

(1,1) is not marked in ∆U ⇒ no CE at a∗ = (1,1).
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More interesting: n ≥ 2 types of items

Active research directions

• Characterize equilibria

• Generalize to auctions with non-linear pricing

• Find counter-examples for certain classes of auctions (*)
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Some main theorems obtained by tropical geometry

Unimodularity Theorem. Baldwin & Klemperer (2015), Danilov, Koshevoy
and Murota (2001), Howard (2007). Exposition & connections to Oda
Conjecture: T. and Yu, 2015.

Disproving the MBV conjecture. T. 2019; Edin Husić, Georg Loho, Ben
Smith, László A. Végh, 2021

CE for nonlinear pricings: Brandenburg, Haase, T.; 2021

47 / 56



Some main theorems obtained by tropical geometry

Unimodularity Theorem. Baldwin & Klemperer (2015), Danilov, Koshevoy
and Murota (2001), Howard (2007). Exposition & connections to Oda
Conjecture: T. and Yu, 2015.
Disproving the MBV conjecture. T. 2019; Edin Husić, Georg Loho, Ben
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Another application: computational complexity

(2017)
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Another application: phylogenetics

(2020)
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Summary
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